JPH05159363A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH05159363A
JPH05159363A JP3327470A JP32747091A JPH05159363A JP H05159363 A JPH05159363 A JP H05159363A JP 3327470 A JP3327470 A JP 3327470A JP 32747091 A JP32747091 A JP 32747091A JP H05159363 A JPH05159363 A JP H05159363A
Authority
JP
Japan
Prior art keywords
alloy
layer
recording medium
recording
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3327470A
Other languages
Japanese (ja)
Inventor
Masato Harigai
眞人 針谷
Yukio Ide
由紀雄 井手
Yoshiyuki Kageyama
喜之 影山
Hiroko Iwasaki
博子 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3327470A priority Critical patent/JPH05159363A/en
Publication of JPH05159363A publication Critical patent/JPH05159363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To provide the optical recording medium being able to surely record and erase without lowering a recording sensitivity. CONSTITUTION:The medium is an optical disk having a recording layer 3, heat resistant protective layers 2 and 4 and a reflectively radiating layer 5 on a base plate 1, and the layer 5 is made of one of an Ag-Ni alloy, an Ag-Mn alloy and an Ag-Ti alloy. A suitable thermal conductivities for reflectively radiating layer is 9X10<-2>-3.2W/cm.deg in case of the Ag-Ni alloy, 4.0X10<-2>-3.2 W/cm.deg in case of the Ag-Mn alloy, 7.0X10<-2>-3.2W/cm.deg in case of the Ag-Ti alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は相変化形光記録媒体に関
するもので、光メモリーに応用できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase change type optical recording medium and can be applied to an optical memory.

【0002】[0002]

【従来の技術】相変化形光記録方式は、一般には物質の
熱による相転移に伴う光学定数の変化を利用するもので
ある。具体的にはカルコゲン系化合物材料にその材料の
エネルギーバンドキャップに対応した光を照射する事に
より光を吸収させ、これが熱に交換されて照射部の温度
が上昇し、そして溶融急冷後非晶質化する。この非晶質
化された部分(ピット)を一般には記録としている。
2. Description of the Related Art Generally, a phase change type optical recording system utilizes a change in an optical constant associated with a phase transition of a substance due to heat. Specifically, the chalcogen-based compound material is irradiated with light corresponding to the energy band cap of the material to absorb the light, which is exchanged with heat to increase the temperature of the irradiated part, and after melting and quenching, it is amorphous. Turn into. This amorphized portion (pit) is generally recorded.

【0003】次に消去の場合は、この非晶質部分に低パ
ワーで光を照射して結晶化させればよい。この様に相変
化形光記録は入射光の強度変調による記録材料の結晶−
非晶質の相変化を利用する事が基本である。そしてこの
記録、消去の感度を向上させるため、金属反射層を設け
入射光を効率的に記録層に吸収させる方法等がある。例
えば反射層としてAl、Ag、Rh等の金属を用い、記
録層としてカルコゲン系を用いる方法が提案されている
(特公昭61-18262)。しかし、Al、Ag等の金属は熱
伝導率が大きいため、熱の効率的利用が困難であり、高
感度化はあまり期待できない。そこで、反射層の熱伝導
率を小さくして高感度化を実現させる方法も提案されて
いる(特開昭63-58639)。しかしこの場合も、うまく熱
伝導率を調節しないと熱伝導率が小さくなりすぎて記録
するときの冷却効果が十分でなくなる結果、非晶質化が
困難となる可能性を有する。
Next, in the case of erasing, the amorphous portion may be irradiated with light with low power to be crystallized. In this way, the phase change optical recording is a crystal of the recording material due to the intensity modulation of the incident light.
The basis is to utilize an amorphous phase change. In order to improve the sensitivity of recording and erasing, there is a method of providing a metal reflection layer so that incident light can be efficiently absorbed by the recording layer. For example, a method has been proposed in which a metal such as Al, Ag, and Rh is used as the reflective layer and a chalcogen-based material is used as the recording layer (Japanese Patent Publication No. 61-18262). However, since metals such as Al and Ag have large thermal conductivity, it is difficult to use heat efficiently, and high sensitivity cannot be expected so much. Therefore, a method of reducing the thermal conductivity of the reflective layer to realize high sensitivity has also been proposed (JP-A-63-58639). However, also in this case, if the thermal conductivity is not properly adjusted, the thermal conductivity becomes too small and the cooling effect at the time of recording becomes insufficient, so that there is a possibility that amorphization becomes difficult.

【0004】[0004]

【発明が解決しようとする課題】本発明は、記録感度を
低下させず、しかも確実に記録、消去できる光記録媒体
を提供しようとするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical recording medium that can surely record and erase without lowering the recording sensitivity.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、特許請求の範囲に記載されたとおり
の光記録媒体である。
The constitution of the present invention for solving the above-mentioned problems is an optical recording medium as described in the claims.

【0006】すなわち、本発明は相変化形光記録媒体に
おいて、本媒体が記録層、誘電体保護層、反射放熱層か
ら構成され、この反射放熱層がAg−Ni合金、Ag−
Mn合金およびAg−Ti合金の中から選んだ何れかの
合金からなることを特徴とする。相変化形光記録媒体
は、光の照射により記録層が光を吸収、発熱する事によ
って結晶−非晶質間の相転移を行い、二相間の光学定数
の変化を利用するものである。従って、低エネルギーの
光照射でいかにして情報の記録、並びに消去を行うか
(即ち高感度化)が重要である。このためには記録層に
照射された光をいかに有効に吸収するかにかかってい
る。
That is, according to the present invention, in a phase-change type optical recording medium, the medium is composed of a recording layer, a dielectric protective layer, and a reflection heat dissipation layer, and the reflection heat dissipation layer is Ag-Ni alloy, Ag-.
It is characterized by being made of any alloy selected from a Mn alloy and an Ag-Ti alloy. The phase-change type optical recording medium utilizes a change in optical constant between two phases by causing a recording layer to absorb light and generate heat when irradiated with light to cause a phase transition between crystal and amorphous. Therefore, how to record and erase information with low energy light irradiation (that is, to increase sensitivity) is important. For this purpose, it depends on how effectively the light applied to the recording layer is absorbed.

【0007】具体的な方法としては、記録層の層厚を薄
くする事により、熱容量を低下させ情報の記録そして消
去に要する光エネルギーを低くする事と併せて反射放熱
層を設けて記録部を透過した光を反射させ、なるべく照
射された光を有効に利用する事が考えられている。さら
に反射層は一般に金属が利用されているので熱伝導率が
大きいことから急冷効果が期待でき、情報の記録の際の
非晶質化に役立つ効果を有する。しかしながら、Au、
Al、Ag、Cu等熱伝導率の大きな金属を反射層とし
て使用すると記録に際しての記録部の温度が十分に上昇
する前に、即ち、溶融に必要な温度に達する前に熱が拡
散してしまうので、記録感度の低下につながる事にな
る。一方、比較的熱伝導率の小さなTi、Mn等を利用
すると熱の伝導が低下するので、急冷効果が効率的に行
われなくなるので、記録即ち非晶質化が困難となると同
時に反射率も低下するため、反射層としての役目を失う
事になる。そこでこれらの問題を解消する方法として、
反射率が高く熱伝導の大きな金属と熱伝導率の比較的小
さな金属を合金化する事により、反射率の低下を防止す
ると同時に、熱伝導率も情報の記録、即ち融点まで速や
かに昇温し、そして非晶質化に必要な急冷効果を有する
値に調整する事が可能となり、高感度化が期待できる。
又、合金組成の調整により、ディスクの線速度(低速か
ら高速)に対応した記録媒体を提供する事が可能とな
る。
As a concrete method, by reducing the thickness of the recording layer, the heat capacity is reduced and the light energy required for recording and erasing information is reduced, and at the same time, a reflection heat dissipation layer is provided to form a recording portion. It is considered that the transmitted light is reflected and the emitted light is effectively used as much as possible. Further, since the reflective layer is generally made of metal, it has a large thermal conductivity, so that a rapid cooling effect can be expected, and it has an effect of amorphizing at the time of recording information. However, Au,
When a metal having a large thermal conductivity such as Al, Ag, or Cu is used as the reflective layer, heat diffuses before the temperature of the recording portion during recording sufficiently rises, that is, before reaching the temperature required for melting. Therefore, the recording sensitivity will be reduced. On the other hand, if Ti, Mn or the like having a relatively low thermal conductivity is used, heat conduction is reduced, so that the quenching effect is not efficiently performed, so that recording, that is, amorphization becomes difficult, and at the same time, the reflectance is reduced. Therefore, the role of the reflective layer is lost. Therefore, as a method of solving these problems,
By alloying a metal with a high reflectance and a high thermal conductivity with a metal with a relatively low thermal conductivity, a decrease in reflectance is prevented, and at the same time, the thermal conductivity records information, that is, the temperature rises rapidly to the melting point. Then, it becomes possible to adjust to a value having a quenching effect necessary for amorphization, and high sensitivity can be expected.
In addition, by adjusting the alloy composition, it becomes possible to provide a recording medium corresponding to the linear velocity of the disc (from low speed to high speed).

【0008】即ち、本発明のAg−Ni合金は、その組
成比により熱伝導率を幅広く変化させることが可能であ
り(9.0×10~2W/cm・degから3.2W/cm・deg)、ディスク
の線速に対応した高感度な記録媒体を提供することがで
きる。
That is, in the Ag-Ni alloy of the present invention, the thermal conductivity can be widely changed depending on the composition ratio (9.0 × 10 to 2 W / cm · deg to 3.2 W / cm · deg), It is possible to provide a highly sensitive recording medium corresponding to the linear velocity of the disc.

【0009】本発明の記録媒体の構成を図1に示す。こ
こで本発明で用いられる基板は通常、ガラス、セラミッ
クスあるいは樹脂であり、樹脂基板が成型性、コスト等
の点で好適である。樹脂の代表例としてはポリカーボネ
ート樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン
樹脂、アクリロニトリル−スチレン共重合体樹脂、ポリ
エチレン樹脂、ポリプロピレン樹脂、シリコン系樹脂、
フッ素系樹脂、ABS樹脂、ウレタン樹脂等があげられ
るが、加工性、光学特性等の点でポリカーボネート樹
脂、アクリル系樹脂が好ましい。又、基板の形状として
はディスク状、カード状あるいはシート状であってもよ
い。
The structure of the recording medium of the present invention is shown in FIG. Here, the substrate used in the present invention is usually glass, ceramics or resin, and a resin substrate is preferable in terms of moldability, cost and the like. Typical examples of the resin include polycarbonate resin, acrylic resin, epoxy resin, polystyrene resin, acrylonitrile-styrene copolymer resin, polyethylene resin, polypropylene resin, silicon resin,
Fluorine-based resins, ABS resins, urethane resins and the like can be mentioned, but polycarbonate resins and acrylic resins are preferable from the viewpoints of processability and optical characteristics. The shape of the substrate may be disk-shaped, card-shaped or sheet-shaped.

【0010】耐熱性保護層の材料としては、SiO、S
iO2、ZnO、SnO2、Al23、TiO2、In2
3、MgO、ZrO2等の金属酸化物、Si34、Al
N、TiN、BN、ZrNなどの窒化物、ZnS、In
23、TaS4等の硫化物、SiC、TaC、B4C、W
C、TiC、ZrCなどの炭化物やダイヤモンド状カー
ボンあるいはそれらの混合物があげられる。又、必要に
応じて不純物を含んでいてもよい。このような耐熱性保
護層は各種気相成膜法、例えば真空蒸着法、スパッタリ
ング法、プラズマCVD法、光CVD法、イオンプレー
ティング法、電子ビーム蒸着法等によって形成できる。
Materials for the heat-resistant protective layer include SiO and S.
iO 2 , ZnO, SnO 2 , Al 2 O 3 , TiO 2 , In 2 O
3 , metal oxides such as MgO and ZrO 2 , Si 3 N 4 , Al
Nitride such as N, TiN, BN, ZrN, ZnS, In
2 S 3 , sulfides such as TaS 4 , SiC, TaC, B 4 C, W
Examples thereof include carbides such as C, TiC, and ZrC, diamond-like carbon, or a mixture thereof. Moreover, you may contain impurities as needed. Such a heat resistant protective layer can be formed by various vapor phase film forming methods such as a vacuum vapor deposition method, a sputtering method, a plasma CVD method, a photo CVD method, an ion plating method and an electron beam vapor deposition method.

【0011】耐熱性保護層の膜厚としては200〜50
00Å、好適には500〜3000Åとするのがよい。
200Åより薄くなると耐熱性保護層としての機能を果
たさなくなり、逆に5000Åよりも厚くなると、感度
の低下をきたしたり、界面剥離を生じやすくなる。又、
必要に応じて保護層を多層化することもできる。
The thickness of the heat resistant protective layer is 200 to 50.
00Å, preferably 500 to 3000Å.
When the thickness is less than 200Å, the function as the heat resistant protective layer is not fulfilled, and when the thickness is more than 5000Å, the sensitivity is lowered and the interfacial peeling is likely to occur. or,
If necessary, the protective layer can be multi-layered.

【0012】一方、反射放熱層は真空蒸着法、スパッタ
法で形成し、その膜厚は放熱層材料の熱容量、屈折率に
もよるが、300〜2000Å、好ましくは50〜10
00Åとするのがよい。又、記録材料は我々が発見した
カルコパイライト型構造を有するAgInTe2にSb
を添加した系を用いた。膜の形成はスパッタ法で行うの
がよい。この時の膜厚は100〜2000Å、好ましく
は200〜1000Åが好適である。
On the other hand, the reflection heat dissipation layer is formed by a vacuum evaporation method or a sputtering method, and its film thickness depends on the heat capacity and the refractive index of the heat dissipation layer material, but is 300 to 2000 Å, preferably 50 to 10 Å.
It is good to set it to 00Å. The recording material is AgInTe 2 which has a chalcopyrite type structure that we have discovered and is Sb.
Was used. The film is preferably formed by sputtering. The film thickness at this time is preferably 100 to 2000Å, more preferably 200 to 1000Å.

【0013】記録、再生及び消去に用いる電磁波として
はレーザー光、電子線、X線、紫外線、可視光線、赤外
線、マイクロ波等、数種のものが採用可能であるが、ド
ライブに取付ける際、小型でコンパクトな半導体レーザ
ーのビ−ムが最適である。
As the electromagnetic waves used for recording, reproducing and erasing, several kinds such as laser light, electron beam, X-ray, ultraviolet ray, visible ray, infrared ray, microwave can be adopted, but when they are mounted on the drive, they are small. The beam of a compact and compact semiconductor laser is optimal.

【0014】[0014]

【実施例】以下、実施例によって本発明を具体的に説明
する。ただし、この実施例は本発明をなんら制限するも
のではない。
EXAMPLES The present invention will be specifically described below with reference to examples. However, this example does not limit the present invention in any way.

【0015】実施例1 ピッチ1.6μm、深さ700Åの溝付き、厚さ1.2
mm、直径86mmφのポリカーボネート基板上にrf
スパッタリング法により耐熱保護層、記録層、耐熱保護
層、反射層を順次積層し、評価用光ディスクを作製し
た。又、反射層を作製するさい熱伝導率測定用に20m
m×20mm×1mmのカバーグラスを取りつけた。
Example 1 Pitch of 1.6 μm, depth of 700 Å with groove, thickness of 1.2
mm on a polycarbonate substrate with a diameter of 86 mm and rf
A heat-resistant protective layer, a recording layer, a heat-resistant protective layer, and a reflective layer were sequentially laminated by a sputtering method to produce an optical disc for evaluation. Also, 20m for measuring the thermal conductivity when making the reflective layer
A cover glass measuring m × 20 mm × 1 mm was attached.

【0016】各層に用いた材料と膜厚を下記表1−(1)
に示す。
The materials and film thicknesses used for each layer are shown in Table 1- (1) below.
Shown in.

【0017】光ディスクの評価は830nmの半導体レ
ーザー光をNA=0.5のレンズを通して媒体面で1μ
mφのスポット径にしぼり込み基板側から照射すること
により行った。
The evaluation of the optical disk was performed by passing a semiconductor laser beam of 830 nm through a lens of NA = 0.5 at 1 μm on the medium surface.
It was performed by squeezing a spot diameter of mφ and irradiating from the substrate side.

【0018】成膜後の記録膜は非晶質であったが、測定
に際し最初に媒体面で4〜10mWのDC光でディスク
全面を十分に結晶化させ、それを初期(未記録)状態と
した。
Although the recording film after film formation was amorphous, at the time of measurement, the entire surface of the disk was first crystallized sufficiently by DC light of 4 to 10 mW on the medium surface to make it an initial (unrecorded) state. did.

【0019】ディスクの線速度は5m/s、7m/s、
9m/s、11m/s、15m/sとした。記録の書き
込み条件は、各々の線速度に対して、2.6MHz、
3.7MHz、4.8MHz、5.8MHz、7.9M
Hzとし、レーザーパワー(Pw)を7〜17mWまで
変化させた。
The linear velocity of the disk is 5 m / s, 7 m / s,
It was set to 9 m / s, 11 m / s, and 15 m / s. The write condition for recording is 2.6 MHz for each linear velocity,
3.7MHz, 4.8MHz, 5.8MHz, 7.9M
Hz and the laser power (Pw) was changed from 7 to 17 mW.

【0020】読み取りパワー(PR)は1.0mWとし
た。C/N(キャリア対ノイズ比)値が飽和もしくは最
大となったときのレーザーパワー(PW)と最適消去パ
ワー(PE)、並びに得られたC/N値及び消去比を表
1−(1)(2)(3)(4)(5)に示す。又、消去はDC光であ
る。
The reading power (P R ) was 1.0 mW. Table 1- () shows the laser power (P W ) and the optimum erase power (P E ) when the C / N (carrier to noise ratio) value becomes saturated or maximum, and the obtained C / N value and erase ratio. Shown in 1) (2) (3) (4) (5). Also, erasing is DC light.

【0021】又、反射層の熱伝導率の測定は膜厚が薄い
場合は非常に困難なため、4端子法により膜の電気伝導
率を測定し、ヴィーデマン・フランツの法則から計算に
より求めた。これは反射層が金属材料から作製されてい
るため、ヴィーデマン・フランツ則が成立すると判断し
たからである。
Since the thermal conductivity of the reflective layer is very difficult to measure when the film thickness is thin, the electrical conductivity of the film was measured by the four-terminal method and calculated from the Wiedemann-Franz law. This is because it was determined that the Wiedemann-Franz rule holds because the reflective layer is made of a metallic material.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】以上、表1−(1)〜(5)から明らかなよう
に、Ag−Ni合金はその組成比を調整して熱伝導率を
制御する事によりディスク特性を低下させる事なくディ
スクの線速に対応した反射放熱層を提供する事が可能と
なる。又、オーバーライトモードにおける繰り返し特性
においても本反射放熱層を用いた記録媒体は104回以上
の耐久性を有する事が確認された。又、80℃、85%雰囲
気 500時間後も酸化の傾向は全く認められなかった。
As is clear from Tables 1- (1) to (5) above, the Ag-Ni alloy has a composition ratio adjusted to control the thermal conductivity so that the disk characteristics are not deteriorated. It is possible to provide a reflection heat dissipation layer corresponding to the linear velocity. It was also confirmed that the recording medium using the present reflective heat dissipation layer has a durability of 10 4 times or more even in the repeating characteristics in the overwrite mode. Also, no tendency of oxidation was observed even after 500 hours at 80 ° C. and 85% atmosphere.

【0028】実施例2 反射放熱層の材料をAg−Mn合金に替えた以外は実施
例1と同じ条件で評価用光ディスクを作製し、同じ条件
で試験をした。
Example 2 An optical disk for evaluation was produced under the same conditions as in Example 1 except that the material of the reflection / heat dissipation layer was changed to Ag-Mn alloy, and the test was conducted under the same conditions.

【0029】その結果を下記表2−(1)(2)(3)(4)(5)に
示す。
The results are shown in Tables 2- (1) (2) (3) (4) (5) below.

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【表7】 [Table 7]

【0032】[0032]

【表8】 [Table 8]

【0033】[0033]

【表9】 [Table 9]

【0034】[0034]

【表10】 [Table 10]

【0035】以上、表2−(1)〜(5)から明らかなよう
に、Ag−Mn合金は前記Ag−Ni合金と同じくその
組成比を調整して熱伝導率を制御する事によりディスク
特性を低下させる事なくディスクの線速に対応した反射
放熱層を提供する事が可能となる。又、オーバーライト
モードにおける繰り返し特性においても本反射放熱層を
用いた記録媒体は104回以上の耐久性を有する事が確認
された。又、80℃、85%雰囲気500時間後も酸化の傾向
は全く認められなかった。
As is clear from Tables 2- (1) to (5) above, the Ag-Mn alloy has the same disk characteristics as the Ag-Ni alloy by controlling its thermal conductivity by adjusting its composition ratio. It is possible to provide a reflective heat dissipation layer corresponding to the linear velocity of the disk without decreasing the temperature. It was also confirmed that the recording medium using the present reflective heat dissipation layer has a durability of 10 4 times or more even in the repeating characteristics in the overwrite mode. Also, no tendency of oxidation was observed even after 500 hours at 80 ° C. and 85% atmosphere.

【0036】実施例3 反射放熱層の材料をAg−Ti合金に替えた以外は実施
例1と同じ条件で評価用光ディスクを作製し、同じ条件
で試験をした。
Example 3 An optical disc for evaluation was prepared under the same conditions as in Example 1 except that the material of the reflection / heat dissipation layer was changed to Ag—Ti alloy, and the test was conducted under the same conditions.

【0037】その結果を下記表3−(1)(2)(3)(4)(5)に
示す。
The results are shown in Tables 3- (1) (2) (3) (4) (5) below.

【0038】[0038]

【表11】 [Table 11]

【0039】[0039]

【表12】 [Table 12]

【0040】[0040]

【表13】 [Table 13]

【0041】[0041]

【表14】 [Table 14]

【0042】[0042]

【表15】 [Table 15]

【0043】以上、表3−(1)〜(5)から明らかなよう
に、Ag−Ti合金は前記Ag−Ni合金およびAg−
Mn合金と同じくその組成比を調整して熱伝導率を制御
する事によりディスク特性を低下させる事なくディスク
の線速に対応した反射放熱層を提供する事が可能とな
る。又、オーバーライトモードにおける繰り返し特性に
おいても本反射放熱層を用いた記録媒体は104回以上の
耐久性を有する事が確認された。又、80℃、85%雰囲気
500時間後も酸化の傾向は全く認められなかった。
As is apparent from Tables 3- (1) to (5) above, Ag-Ti alloys are the Ag-Ni alloys and Ag-Ni alloys described above.
As in the case of the Mn alloy, by adjusting the composition ratio thereof to control the thermal conductivity, it is possible to provide a reflection heat dissipation layer corresponding to the linear velocity of the disk without deteriorating the disk characteristics. It was also confirmed that the recording medium using the present reflective heat dissipation layer has a durability of 10 4 times or more even in the repeating characteristics in the overwrite mode. Also, 80 ℃, 85% atmosphere
Even after 500 hours, no tendency of oxidation was observed.

【0044】[0044]

【発明の効果】以上説明したように、本発明の光記録媒
体はAg−Ni合金、Ag−Mn合金およびAg−Ti
合金の中の何れかからなる反射放熱層を設ける事によっ
てディスクの線速に対応した高感度な記録媒体を提供す
る事ができる。
As described above, the optical recording medium of the present invention has an Ag-Ni alloy, an Ag-Mn alloy and an Ag-Ti.
It is possible to provide a highly sensitive recording medium corresponding to the linear velocity of the disk by providing the reflection / heat dissipation layer made of any of alloys.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光記録媒体の構成例を示す断面の模式
図である。
FIG. 1 is a schematic cross-sectional view showing a configuration example of an optical recording medium of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2と4 耐熱保護層 3 記録層 5 反射放熱層 6 保護層 1 Substrate 2 and 4 Heat-resistant protective layer 3 Recording layer 5 Reflective heat dissipation layer 6 Protective layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 博子 東京都大田区中馬込1丁目3番6号 株式 会社リコ−内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroko Iwasaki 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Riko Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、記録層、耐熱保護層および反
射放熱層を有し、記録層に電磁波が照射されるとその記
録材料の光学定数が変化して光情報の記録、再生および
消去が可能になる相変化型光記録媒体において、その反
射放熱層がAg−Ni合金、Ag−Mn合金およびAg
−Ti合金のうちの何れかからなることを特徴とする光
記録媒体。
1. A recording layer, a heat-resistant protective layer, and a reflection / radiation layer are provided on a substrate, and when the recording layer is irradiated with electromagnetic waves, the optical constants of the recording material change to record, reproduce, and erase optical information. In the phase change type optical recording medium capable of achieving the above, the reflection and heat dissipation layer has Ag-Ni alloy, Ag-Mn alloy and Ag.
An optical recording medium characterized by comprising any one of Ti alloys.
【請求項2】 Ag−Ni合金からなる反射放熱層の熱
伝導率が、9.0×10~2〜3.2W/cm・degの間にあることを
特徴とする請求項1記載の光記録媒体。
2. The optical recording medium according to claim 1, wherein the reflection heat dissipation layer made of an Ag—Ni alloy has a thermal conductivity of 9.0 × 10 2 to 3.2 W / cm · deg.
【請求項3】 Ag−Mn合金からなる反射放熱層の熱
伝導率が4.0×10~2〜3.2W/cm・degの間にあることを特
徴とする請求項1記載の光記録媒体。
3. The optical recording medium according to claim 1, wherein the reflective heat dissipation layer made of an Ag—Mn alloy has a thermal conductivity of 4.0 × 10 2 to 3.2 W / cm · deg.
【請求項4】 Ag−Ti合金からなる反射放熱層の熱
伝導率が7.0×10~2〜3.2W/cm・degの間にあることを特
徴とする請求項1記載の光記録媒体。
4. The optical recording medium according to claim 1, wherein the reflective heat dissipation layer made of an Ag—Ti alloy has a thermal conductivity of 7.0 × 10 2 to 3.2 W / cm · deg.
JP3327470A 1991-12-11 1991-12-11 Optical recording medium Pending JPH05159363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3327470A JPH05159363A (en) 1991-12-11 1991-12-11 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3327470A JPH05159363A (en) 1991-12-11 1991-12-11 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH05159363A true JPH05159363A (en) 1993-06-25

Family

ID=18199520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3327470A Pending JPH05159363A (en) 1991-12-11 1991-12-11 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH05159363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033730B2 (en) * 2002-06-28 2006-04-25 Williams Advanced Materials, Inc. Silver-reactive metal alloys for optical data storage and recordable storage media containing same
EP1956597A1 (en) * 2000-07-21 2008-08-13 Target Technology Company, LLC. Metal alloys for the reflective or the semi-reflective layer of an optical storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956597A1 (en) * 2000-07-21 2008-08-13 Target Technology Company, LLC. Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7033730B2 (en) * 2002-06-28 2006-04-25 Williams Advanced Materials, Inc. Silver-reactive metal alloys for optical data storage and recordable storage media containing same

Similar Documents

Publication Publication Date Title
JP3292890B2 (en) Phase change type optical recording medium using light reflection and heat dissipation material
US6319368B1 (en) Sputtering target, method of producing the target, optical recording medium fabricated by using the sputtering target, and method of forming recording layer for the optical recording medium
JP2001344824A (en) Method for producing optical recording medium and optical recording medium
EP1566801B1 (en) Sputtering target for manufacturing an optical recording medium
JP3180813B2 (en) Optical information recording medium
JP3639218B2 (en) Phase change optical recording medium
JP2908826B2 (en) Information recording medium
JPH08106647A (en) Phase transition type recording medium
JPH0737251A (en) Optical information recording method
JPH05159363A (en) Optical recording medium
JP3032600B2 (en) Optical information recording medium
JPH05151619A (en) Optical information recording medium and recording method
JP2868849B2 (en) Information recording medium
JPH06166268A (en) Optical information recording medium and its manufacture
TW200410217A (en) Rewritable optical data storage medium and use of such a medium
US20050195729A1 (en) Optical recording medium, method and apparatus for optical recording and reproducing using the same
KR20050059098A (en) Rewritable optical data storage medium and use of such a medium
JPH0737252A (en) Optical information recording method
JP4306988B2 (en) Information recording medium
JP3176582B2 (en) Recording and erasing information
JPH05185733A (en) Data recording medium
JP2954731B2 (en) Information recording medium and information recording method using the same
JPH04349242A (en) Optical recording medium
JP2986897B2 (en) Information recording medium
JPH05282704A (en) Material for light reflection and heat radiation and optical recording medium formed by using this material