JPH0428555B2 - - Google Patents

Info

Publication number
JPH0428555B2
JPH0428555B2 JP62246219A JP24621987A JPH0428555B2 JP H0428555 B2 JPH0428555 B2 JP H0428555B2 JP 62246219 A JP62246219 A JP 62246219A JP 24621987 A JP24621987 A JP 24621987A JP H0428555 B2 JPH0428555 B2 JP H0428555B2
Authority
JP
Japan
Prior art keywords
recording
recording film
film
erasing
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62246219A
Other languages
Japanese (ja)
Other versions
JPS6489050A (en
Inventor
Yasushi Myazono
Ryosuke Yokota
Shuji Yoshida
Shinji Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP62246219A priority Critical patent/JPS6489050A/en
Publication of JPS6489050A publication Critical patent/JPS6489050A/en
Publication of JPH0428555B2 publication Critical patent/JPH0428555B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は書き換え可能型光情報用記録膜材料に
係り、詳しくは光を照射し、その構造変化(相変
化)に伴なう反射率(あるいは透過率)の変化を
生ぜしめることにより記録を行ない、加えて、記
録部分に再度、光照射を行ない可逆的に元の状態
に戻ること、いわゆる消去が可能な光情報用記録
膜に用いられる材料に関するものである。 [従来の技術] 光による情報の記録は高い記録密度を最大の特
徴として、大容量記録装置への応用が期待されて
いる。光記録膜には再生専用型、追記型そして書
き換え可能型の3種類があり、ここで取扱うもの
は書き換え可能型の光記録膜であつて、Te元素
を必須成分として含有するものである。 記録報がTe元素単体からなる場合、その結晶
化温度が低く、記録を安定に保存することが困難
であり、そのためその他の元素を添加し、結晶化
温度を高めることが試みられているが、一般に結
晶化温度を高める働きのある元素を添加すると、
記録の消去に要する時間が長くなるといつた問題
が発生し、そのため更に第3元素の添加が必要と
され、これまで多くのTe元素をベースとした多
元素系記録膜が検討されてきており、その代表的
なものとして以下に示すようなものがあげられ
る。 TeGeSbS(Appl.Phys.Lett.18(6)1971
p254)、 TeOx(SPIE Proc.420,1983 p173)、 TeAsGe(Appl.Opt.22(20)1983 p3165)、 TeSeSPO(特開昭59−67086号公報)、 TeGase(JJAP 24(7)1985 p.L504)、 TeGeSn(Appl.Phys.Lett.46(8)1985
p.734)、 TeGex(Appl.Phys.Lett.49(9)1986 p502)、 TeSeSb(特開昭61−145738号公報) しかしながら上掲の従来の多元素系記録膜は
Te元素単体からなる記録膜に比べ記録の安定性
が高められ、また消去時間の短縮化もある程度達
成されているが今だ不十分であつた。また
TeGeSbS膜やTeSeSPO膜は4種又は5種の元素
からなるので、成膜の際に頻雑さが伴なうという
欠点があつた。 [発明が解決しようとする問題点] 本発明はこのような問題点を解決するためにな
されたものであつて、その目的は記録の保存安定
性を高く保ち、同時に高速消去を行なうことの出
来る書換え可能な光情報用記録膜材料を提供する
ことにある。 [問題点を解決するための手段] 本発明は、上記目的を達成させるためになされ
ものであり、本発明の光情報用記録膜材料は主成
分のTe元素を75原子%以上とし、これにSi元素
を15原子%以下、そしてSn元素を10原子%以下
含有させることを特徴とする。 [作用] 記録膜の主成分であるTe元素75原子%以上に
対してSi元素を15原子%を上限として添加し、同
時にSnを10原子%を上限として含有させること
によつて結晶化温度が高められ記録の保存安定性
が著しく向上するばかりではなく、同時に非晶質
状態から結晶状態への相変化も迅速に行われ消去
時間を大巾に短縮出来る。 [実施例] 以下、実施例により本発明を更に説明するが、
本発明はこの実施例のみに限定されるものではな
い。 記録膜はマグネトロンスパツタ法により成膜し
た。まず、スパツタに必要な記録膜用ターゲツト
の作成について説明する。 純度がいずれも99.99%以上のTe,Si及びSnの
各材料を用意し、これらをTe85Si10Sn5(原子比)
となるように秤量し、石英ガラス管に2×
10-6Torr以下の真空度で封入し、1000℃で20時
間以上加熱溶融した後、急冷固化して記録膜作成
の為の原材料を用意した。この原材料をArガス
雰囲気中で石英管より取出し、再溶融した後直径
3インチの金型に流し込み、ターゲツト用母材と
した。このターゲツト用母材を、例えば5mmの厚
さに研磨加工し、記録膜の成膜のための合金型タ
ーゲツトとした。 この合金型ターゲツトを高周波マグネトロン型
スパツタ装置に取り付け、2×10-6Torr以下の
真空度に排気した後、Arガスを導入し、0.5−
0.001Torrの圧力(望ましくは0.01−0.003Torr)
の下で50W以下(望ましくは30W以下)の高周波
電力を印加して、上記合金型ターゲツトをスパツ
タしてガラス基板上に約700−1200Å(望ましく
は800〜1000Å)の厚さに成膜した。成膜速度は
3〜10Å/sである。 スパツタ直後の記録膜の結晶化の有無について
は、X線回折測定により調べたが、第1図に示す
ように結晶化に伴なう回折ピークは認められず、
非晶質状態であつた。 成膜した記録膜の組成はICP法及びオージエ電
子分光法により調べた。測定した各元素の組成比
の一例をターゲツト材料と比較して表1に示す。
[Industrial Application Field] The present invention relates to a rewritable optical information recording film material, and more specifically, the present invention relates to a rewritable optical information recording film material. The present invention relates to a material used in an optical information recording film that can be erased, that is, recording can be performed by irradiating the recording area with light, and the recorded area can be reversibly returned to its original state by being irradiated with light again. [Prior Art] Information recording using light has a high recording density as its greatest feature, and is expected to be applied to large-capacity recording devices. There are three types of optical recording films: a read-only type, a write-once type, and a rewritable type.The one handled here is a rewritable type optical recording film that contains Te element as an essential component. When records consist of a single Te element, the crystallization temperature is low and it is difficult to store records stably.Therefore, attempts have been made to increase the crystallization temperature by adding other elements. Generally, when adding an element that increases the crystallization temperature,
Problems arise when the time required to erase records increases, and for this reason, it is necessary to add a third element, and many multi-element recording films based on the Te element have been studied. Typical examples include the following. TeGeSbS (Appl.Phys.Lett. 18 (6) 1971
p254), TeOx (SPIE Proc. 420 , 1983 p173), TeAsGe (Appl.Opt. 22 (20) 1983 p3165), TeSeSPO (JP 59-67086), TeGase (JJAP 24 (7) 1985 p. L504), TeGeSn (Appl.Phys.Lett. 46 (8) 1985
p.734), TeGe
Although recording stability has been improved and erasing time has been reduced to some extent compared to recording films made of a single Te element, this is still insufficient. Also
Since the TeGeSbS film and TeSeSPO film are composed of four or five types of elements, they have the disadvantage of being complicated in film formation. [Problems to be Solved by the Invention] The present invention has been made to solve these problems, and its purpose is to maintain high storage stability of records and at the same time enable high-speed erasing. An object of the present invention is to provide a rewritable optical information recording film material. [Means for Solving the Problems] The present invention has been made to achieve the above object, and the optical information recording film material of the present invention contains Te element as a main component in an amount of 75 atomic percent or more. It is characterized by containing 15 atomic % or less of Si element and 10 atomic % or less of Sn element. [Function] The crystallization temperature can be lowered by adding up to 15 at% of Si element to 75 at% or more of Te, which is the main component of the recording film, and at the same time containing up to 10 at% of Sn. This not only significantly improves the storage stability of records, but also allows the phase change from an amorphous state to a crystalline state to occur rapidly, thereby greatly reducing erasing time. [Examples] Hereinafter, the present invention will be further explained with reference to Examples.
The present invention is not limited to this example. The recording film was formed by magnetron sputtering method. First, the preparation of a recording film target necessary for sputtering will be explained. Prepare Te, Si, and Sn materials, each with a purity of 99.99% or higher, and combine them with Te 85 Si 10 Sn 5 (atomic ratio)
Weigh it out and put it in a quartz glass tube 2x
The material was sealed in a vacuum of 10 -6 Torr or less, heated and melted at 1000°C for over 20 hours, and then rapidly cooled and solidified to prepare a raw material for creating a recording film. This raw material was taken out from a quartz tube in an Ar gas atmosphere, remelted, and then poured into a mold with a diameter of 3 inches to form a base material for a target. This target base material was polished to a thickness of, for example, 5 mm to form an alloy type target for forming a recording film. This alloy type target was attached to a high frequency magnetron type sputtering device, and after evacuating to a vacuum level of 2 x 10 -6 Torr or less, Ar gas was introduced and 0.5 -
0.001Torr pressure (preferably 0.01−0.003Torr)
A high frequency power of 50 W or less (preferably 30 W or less) was applied to form a film on a glass substrate by sputtering to a thickness of about 700-1200 Å (preferably 800-1000 Å). The film deposition rate is 3 to 10 Å/s. The presence or absence of crystallization in the recording film immediately after sputtering was investigated by X-ray diffraction measurements, but as shown in Figure 1, no diffraction peaks associated with crystallization were observed.
It was in an amorphous state. The composition of the formed recording film was investigated by ICP method and Auger electron spectroscopy. An example of the measured composition ratio of each element is shown in Table 1 in comparison with the target material.

【表】 * 分析はオージエ電子分光法による
表1より、記録膜の組成比はSi元素がターゲツ
ト材料のそれよりも若干高くなる傾向にあるが、
大きく異なることはなかつた。又、上記ターゲツ
トの組成比以外の組成比を有する記録膜について
は、Te,Si及びSnの各元素からなる小片を前記
ターゲツト上に適当に配置してスパツタすること
により成膜した。用意した組成比の異なる記録膜
はTe75.0Si15.0Sn10.0、Te80.2Si11.8Sn8.0、Te82.2
Si10.6Sn7.8、Te85Si8Sn7、Te90.7Si7.2Sn2.1、Te95.1
Si3.9Sn1.0の6種類である。記録膜の組成比は前記
と同様の方法によつて求めた。 記録膜は成膜後ただちに保護膜を被着した。保
護膜にはSiO2を用いた。例えば、石英ガラスを
ターゲツトとして、2×10-6Torr以下に真空排
気した後、Arガスを導入して0.5−0.001Torrの
圧力の下で200W以下の高周波電力を印加し、記
録膜面上に3000Åの厚さに積層した。 上記のようにして用意した試料について、第2
図に示す静特性評価装置にり、記録時間、消去時
間そしてコントラスト等の測定を行なつた。 まず、第2図に示す静特性評価装置の簡単な説
明を行なう。光源6には波長830nmの半導体レー
ザを使用し、その半導体レーザをパルス発生器7
によつてパルス駆動して単一パルス光を出射させ
コリメータレンズ5を介して平行光とした後、偏
光ビームスプリツター4及びλ/4板3を通じ、
開口数0.5の対物レンズ2により集光し、基板1
a、記録膜1b及び保護膜1cからなる記録部材
1の基板1a側より記録膜1bにレーザ光を照射
する。記録及び消去に関する光情報は記録膜から
の反射光を対物レンズ2、λ/4板3、偏光ビー
ムスプリツター4を介して光電変換素子8に導か
れ、ストレージオシロコープ上で読み取られる。 静特性評価装置により測定した静特性の一例に
ついて以下に説明する。試料にはガラス基板上に
記録膜そして保護膜を順次積層したものを使用し
た。記録膜の組成比(原子比)ならびに膜厚はそ
れぞれTe85Si10Sn5、1000Åであり、保護膜の膜
厚は3000Åとした。測定に際し、前もつて記録膜
は加熱あるいはレーザ光照射によつて結晶化さ
せ、記録は記録膜を結晶状態より非晶質状態にす
ることで行なつた。記録レーザのパルス幅は
300ns一定、そして再生はレーザ出力0.8mW、パ
ルス幅1μsとして記録レーザの出力と記録前後の
コントラストの関係を表わしたものが第3図であ
る。記録レーザ出力のコントラストに対する閾値
は約16mWであり、閾値以上のレーザ出力を記録
膜に加えると15%以上の良好なコントラストを得
ることが出来る。ここでコントラストはRIを未
記録時の光電変換後の電気信号強度、RWを同様
に記録後の電気信号強度として(RI−RW)/RI
×100(%)と定めた。上記記録条件で得られるコ
ントラストはその他の組成比についても求めた
が、およそTeの含有量によつて定まり、その含
有量が少なくとも75%以上であれば上記と同定度
の値が得られた。次に消去特性の一例について説
明する。記録をレーザ出力17.2mW、パルス幅
300nsの条件で行なつた後、消去をレーザ出力
6.1mW一定として、そのパルス幅を変化させて
消去の程度(消去率)を調べた。その結果を第4
図に示す。消去レーザ出力が6.1mWの場合、約
1μsの短い消去時間で記録膜を未記録時の状態に
戻すことが出来た。消去率なREを消去後の電気
信号強度として(RE−RW)/RI−RW)×100(%)
と定めた。消去レーザ出力が高いほど消去時間は
短縮されるが、繰返し記録、消去回数の耐久性が
低下するため7mW程度が上限であつた。又、消
去時間はSnの含有量と関係し、含有量が多いほ
ど、非晶質状態から結晶状態への相変化の迅速化
により、短くなる傾向が認められたが、一方、記
録状態が不安定になるためその含有量は10%程度
が上限であつた。 記録膜の結晶化温度TCならびに記録寿命は液
体急冷法によつて作成した記録膜と同じ組成比を
持つ非晶質材料を示差走査熱量計によつて測定し
た発熱−吸熱特性により推定した。以下にその説
明を行なう。 単ロール法による液体急冷装置は石英ガラスの
チユーブの先に細いスリツトを持つ石英ガラスノ
ズルを内蔵しているが、この石英ガラスチユーブ
の中に、前記ターゲツト用母材作成で述べたと同
様の方法で用意した記録膜と同じ組成比を有する
バルク状の材料を入れ、Arガス雰囲気中で600℃
を加熱、再溶融する。次に石英ガラスノズルを急
速に下げて、6000rpmで高速回転している銅ロー
ルの真上に持つて行き、Arガスの圧力を石英ガ
ラスノズルに加えて、溶けている材料を銅ロール
上に流下させる。流下した材料は同ロールに接し
て、106℃/sの急冷度で冷却されて固化する。
この薄片状の固化物を粉末にし、示差走査熱量計
にかける試料とした。 第5図は上記液体急冷法によつて作成した
Te85Si8Sn7を昇温速度20K/minで測定した発熱
−吸熱特性であるが、151℃にTeの結晶化に伴な
う発熱ピークが認められる。Teの結晶化温度は
記録膜中のSiの含有量に関係し、Siの含有量と共
に高まり、例えば、Te85Si10Sn5では158℃となつ
た。Teの結晶化温度はSiの含有量を調整するこ
とにより所望する値とすることが出来るが、あま
り含有量を多くすると消去が難かしくなるため、
15%程度が上限であつた。 次に記録寿命について説明する。記録膜の性能
が、記録寿命と消去条件を導入して頻度因子
(Frequency Factor)νOと活性化エネルギーEと
の関係から検討されている(奥田、光メモリーシ
ンポジウム’86論文集(1986)69)。そこで、活
性化エネルギーと結晶化温度TCを実験的に求め、
頻度因子を計算し、活性化エネルギーと頻度因子
の値より記録寿命を推定した。昇温速度Rを前記
の20K/minに加えて10K/min及び5K/minと
してそれぞれ結晶化温度を発熱−吸熱特性より求
め、第6図に示したようにキツシンジヤープロツ
トを行ない、その勾配より活性化エネルギーが
2.3eVと算出された。他の組成比を有する記録膜
についても同様の測定を行なつたが、Teの含有
量が75%以上であればSi及びSnの含有量を変化
させても活性化エネルギーの大きな変化はなく
2.2−2.3eVの範囲の値となつた。ジヨンソン−メ
ール−アブラミ(Johnson−Mehl−Avrami)式
は近似的にlog(νO/R)5.15(103×E/TC)‐
1.56と表わされる(J.Colmenero他、
Thermochimica Acta 35(1980)381)。上式
にE=2.3eVそしてTC=151℃を代入するとνO
1033と計算された、前記記録膜評価のためのνO
E特性上のE=2.3eVとνO1033で与えられる点
は記録寿命が室温において30年以上となる領域に
存在する。従つて、本発明の記録膜は室温におい
て30年以上の記録寿命を有するものと推定した。 なお上述の実施例では記録膜の成膜を高周波マ
グネトロンスパツタ法により行なつたが、その他
電子ビーム蒸着や多元蒸着等の記録膜成膜方法を
用いてもよい。 保護膜は実施例のSiO2に限定されるものでは
なく、酸化アルミニウムなどの酸化物、フツ化マ
グネシウムなどのフツ化物、硫化亜鉛などの硫化
物、窒化シリコンなどの窒化物などであつてもよ
い。さらには、エポキシ樹脂などの耐熱性の高い
樹脂を用いることも有効である。 基板にはガラス以外にポリカーボネートなどの
樹脂、アルミニウムなどの金属あるいはセラミツ
ク材料なども用いることも可能である。 [発明の効果] Teを主成分にし、これに所定量のSi及びSnを
加えなる、本発明の書き換え可能な記録膜材料は
記録の保存安定性が著しく優れているだけでな
く、消去時間を大幅に短縮することが出来るとい
う利点がある。従つて計算機用や画像フアイル用
などの記録装置に幅広く利用しうるものである。
[Table] *Analysis is by Auger electron spectroscopy From Table 1, the composition ratio of the recording film tends to have a slightly higher Si element content than that of the target material.
There wasn't much difference. A recording film having a composition ratio other than that of the target was formed by sputtering small pieces of the elements Te, Si, and Sn appropriately placed on the target. The prepared recording films with different composition ratios were Te 75.0 Si 15.0 Sn 10.0 , Te 80.2 Si 11.8 Sn 8.0 , Te 82.2.
Si 10.6 Sn 7.8 , Te 85 Si 8 Sn 7 , Te 90.7 Si 7.2 Sn 2.1 , Te 95.1
There are six types: Si 3.9 Sn 1.0 . The composition ratio of the recording film was determined by the same method as described above. A protective film was applied to the recording film immediately after the film was formed. SiO 2 was used for the protective film. For example, using quartz glass as a target, after evacuation to 2 x 10 -6 Torr or less, Ar gas is introduced and high frequency power of 200 W or less is applied under a pressure of 0.5-0.001 Torr, and then the surface of the recording film is heated. Laminated to a thickness of 3000 Å. Regarding the sample prepared as above, the second
Recording time, erasing time, contrast, etc. were measured using the static characteristic evaluation device shown in the figure. First, a brief explanation of the static characteristic evaluation apparatus shown in FIG. 2 will be given. A semiconductor laser with a wavelength of 830 nm is used as the light source 6, and the semiconductor laser is connected to the pulse generator 7.
A single pulse of light is emitted by pulse-driving and converted into parallel light through a collimator lens 5, and then passed through a polarizing beam splitter 4 and a λ/4 plate 3.
The light is focused by an objective lens 2 with a numerical aperture of 0.5, and
a, the recording film 1b is irradiated with a laser beam from the substrate 1a side of the recording member 1 consisting of the recording film 1b and the protective film 1c. Optical information regarding recording and erasing is obtained by guiding the reflected light from the recording film to the photoelectric conversion element 8 via the objective lens 2, the λ/4 plate 3, and the polarizing beam splitter 4, and reading it on the storage oscilloscope. An example of static characteristics measured by the static characteristics evaluation device will be described below. The sample used was one in which a recording film and a protective film were sequentially laminated on a glass substrate. The composition ratio (atomic ratio) and thickness of the recording film were Te 85 Si 10 Sn 5 and 1000 Å, respectively, and the thickness of the protective film was 3000 Å. In the measurement, the recording film was previously crystallized by heating or laser beam irradiation, and recording was performed by changing the recording film from a crystalline state to an amorphous state. The recording laser pulse width is
Figure 3 shows the relationship between the recording laser output and the contrast before and after recording, assuming a constant 300 ns and a laser output of 0.8 mW and a pulse width of 1 μs for reproduction. The threshold value for the contrast of the recording laser output is about 16 mW, and if a laser output higher than the threshold value is applied to the recording film, a good contrast of 15% or more can be obtained. Here, the contrast is expressed as: R I is the electric signal intensity after photoelectric conversion when not recorded, and R W is the electric signal intensity after recording (R I − R W ) / R I
It was set as ×100 (%). The contrast obtained under the above recording conditions was also determined for other composition ratios, but it was approximately determined by the Te content, and if the content was at least 75% or more, the above identification value was obtained. Next, an example of erasing characteristics will be explained. Record laser power 17.2mW, pulse width
After 300ns of erasure, laser output
The degree of erasure (erasure rate) was investigated by varying the pulse width with a constant 6.1 mW. The result is the fourth
As shown in the figure. When the erase laser power is 6.1mW, approx.
The recording film could be returned to its unrecorded state with a short erasing time of 1 μs. The erasure rate R E is the electric signal strength after erasure (R E − R W )/R I − R W ) × 100 (%)
It was determined that The higher the erasing laser output, the shorter the erasing time, but the durability of repeated recording and erasing decreases, so the upper limit was about 7 mW. In addition, the erasing time was related to the content of Sn, and it was observed that the higher the Sn content, the faster the phase change from the amorphous state to the crystalline state, resulting in a shorter erasing time. The upper limit for its content was about 10% to ensure stability. The crystallization temperature T C and recording life of the recording film were estimated from the exothermic-endothermic characteristics measured using a differential scanning calorimeter of an amorphous material having the same composition ratio as the recording film produced by the liquid quenching method. The explanation will be given below. A liquid quenching device using the single roll method has a built-in quartz glass nozzle with a thin slit at the end of a quartz glass tube. A bulk material having the same composition ratio as the prepared recording film was added and heated at 600°C in an Ar gas atmosphere.
Heat and remelt. Next, the quartz glass nozzle is lowered rapidly and placed directly above the copper roll, which is rotating at a high speed of 6000 rpm, and Ar gas pressure is applied to the quartz glass nozzle, causing the melted material to flow down onto the copper roll. let The material that has flowed down comes into contact with the roll and is cooled and solidified at a rapid cooling rate of 10 6 °C/s.
This flaky solidified material was powdered and used as a sample to be applied to a differential scanning calorimeter. Figure 5 was created using the liquid quenching method described above.
The exothermic-endothermic characteristics of Te 85 Si 8 Sn 7 were measured at a heating rate of 20 K/min, and an exothermic peak associated with crystallization of Te is observed at 151°C. The crystallization temperature of Te is related to the Si content in the recording film and increases with the Si content, for example, it reached 158°C in Te 85 Si 10 Sn 5 . The crystallization temperature of Te can be set to the desired value by adjusting the Si content, but if the content is too high, it becomes difficult to erase.
The upper limit was about 15%. Next, recording life will be explained. The performance of the recording film has been studied from the relationship between the frequency factor ν O and the activation energy E by introducing the recording life and erasing conditions (Okuda, Optical Memory Symposium '86 Proceedings (1986) 69) ). Therefore, we experimentally determined the activation energy and crystallization temperature T C.
The frequency factor was calculated, and the recorded lifespan was estimated from the activation energy and frequency factor value. The crystallization temperature was determined from the exothermic-endothermic characteristics by increasing the heating rate R to 10 K/min and 5 K/min in addition to the above-mentioned 20 K/min, and performed a Kissin gear plot as shown in Figure 6 to find the slope. More activation energy
It was calculated to be 2.3eV. Similar measurements were performed on recording films with other composition ratios, but as long as the Te content was 75% or more, there was no significant change in activation energy even if the Si and Sn contents were changed.
The value was in the range of 2.2−2.3eV. The Johnson-Mehl-Avrami equation is approximately log(ν O /R)5.15(10 3 ×E/T C )-
1.56 (J. Colmenero et al.
Thermochimica Acta 35 (1980) 381). Substituting E = 2.3eV and T C = 151℃ into the above equation, ν O
ν O − for the recording film evaluation, which was calculated as 10 33
The point given by E=2.3 eV and ν O 10 33 on the E characteristic exists in a region where the recording life is 30 years or more at room temperature. Therefore, it was estimated that the recording film of the present invention would have a recording life of 30 years or more at room temperature. In the above-described embodiments, the recording film was formed by high frequency magnetron sputtering, but other recording film forming methods such as electron beam evaporation or multi-dimensional evaporation may be used. The protective film is not limited to SiO 2 in the embodiment, but may also be an oxide such as aluminum oxide, a fluoride such as magnesium fluoride, a sulfide such as zinc sulfide, a nitride such as silicon nitride, etc. . Furthermore, it is also effective to use a resin with high heat resistance such as epoxy resin. In addition to glass, the substrate may also be made of resin such as polycarbonate, metal such as aluminum, or ceramic material. [Effects of the Invention] The rewritable recording film material of the present invention, which is composed of Te as a main component and to which predetermined amounts of Si and Sn are added, not only has outstanding recording storage stability but also shortens erasing time. It has the advantage that it can be significantly shortened. Therefore, it can be widely used in recording devices for computers, image files, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の記録膜材料の成膜直後のX
線回折動性図、第2図は、記録膜の記録時間、消
去時間、コントラスト等を測定手するための静特
性評価装置図、第3図は、コントラストの記録レ
ーザ出力依存性を示す図、第4図は、消去率の消
去パルス幅依存性を示す図、第5図は、記録膜の
発熱−吸熱特性を示す図、第6図は、記録膜材料
のキツシンジヤープロツト図である。 1…記録部材、1a…基板、1b…記録膜、1
c…保護膜、2…対物レンズ、3…λ/4板、4
…偏光ビームスプリツター、5…コリメータレン
ズ、6…光源、7…パルス発生器、8…光電変換
素子。
FIG. 1 shows X immediately after film formation of the recording film material of the present invention.
Line diffraction dynamic diagram, Figure 2 is a diagram of a static characteristic evaluation device for measuring the recording time, erasing time, contrast, etc. of a recording film, Figure 3 is a diagram showing the dependence of contrast on recording laser output, FIG. 4 is a diagram showing the dependence of the erasing rate on the erasing pulse width, FIG. 5 is a diagram showing the exothermic-endothermic characteristics of the recording film, and FIG. 6 is a kissing gear plot of the recording film material. 1...Recording member, 1a...Substrate, 1b...Recording film, 1
c...Protective film, 2...Objective lens, 3...λ/4 plate, 4
...Polarizing beam splitter, 5...Collimator lens, 6...Light source, 7...Pulse generator, 8...Photoelectric conversion element.

Claims (1)

【特許請求の範囲】[Claims] 1 75原子%以上のTe元素と、15原子%以下の
Si元素と、10原子%以下のSn元素とを含有する
ことを特徴とする光情報用記録膜材料。
1 75 atomic% or more of Te element and 15 atomic% or less of Te element
A recording film material for optical information, characterized by containing Si element and 10 atomic % or less of Sn element.
JP62246219A 1987-09-30 1987-09-30 Optical information recording film material Granted JPS6489050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62246219A JPS6489050A (en) 1987-09-30 1987-09-30 Optical information recording film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62246219A JPS6489050A (en) 1987-09-30 1987-09-30 Optical information recording film material

Publications (2)

Publication Number Publication Date
JPS6489050A JPS6489050A (en) 1989-04-03
JPH0428555B2 true JPH0428555B2 (en) 1992-05-14

Family

ID=17145284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62246219A Granted JPS6489050A (en) 1987-09-30 1987-09-30 Optical information recording film material

Country Status (1)

Country Link
JP (1) JPS6489050A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544362B (en) * 2010-12-31 2014-02-05 中国科学院上海微系统与信息技术研究所 Phase change material for phase change storage and method for adjusting phase change parameter

Also Published As

Publication number Publication date
JPS6489050A (en) 1989-04-03

Similar Documents

Publication Publication Date Title
US5194363A (en) Optical recording medium and production process for the medium
EP0294932B1 (en) A method for recording and erasing information
JP2990011B2 (en) Optical recording medium
JP3268157B2 (en) Optical recording medium
KR20000062984A (en) Information recording medium, manufacturing method of the medium and recording method of the medium
JPH0832482B2 (en) Optical information recording medium
JPH10166738A (en) Optical recording material and optical recording medium
JPS61269247A (en) Reversible optical information recording and reproducing method
JPH0428555B2 (en)
JP4227278B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing method thereof
JPH05151619A (en) Optical information recording medium and recording method
TWI230849B (en) Erasable optics record material of highly optical contrast and its recording media
KR20050059098A (en) Rewritable optical data storage medium and use of such a medium
JP2538915B2 (en) How to record and erase information
JP2615627B2 (en) Optical information recording medium
JP2637982B2 (en) Optical information recording medium
JPS63167440A (en) Method for recording or recording and erasing information
JPH041933B2 (en)
JP2538798B2 (en) Rewritable optical information recording medium
JP2538797B2 (en) Rewritable optical information recording medium
JPH0226299B2 (en)
JP3176582B2 (en) Recording and erasing information
Dimitrov et al. GaGeSb alloys for high-speed reversible phase-change optical recording
JP2892025B2 (en) Optical recording medium
JP4121231B2 (en) Initializing method of optical recording medium