JPH0221441A - Magneto-optical recording medium and its production - Google Patents

Magneto-optical recording medium and its production

Info

Publication number
JPH0221441A
JPH0221441A JP17056788A JP17056788A JPH0221441A JP H0221441 A JPH0221441 A JP H0221441A JP 17056788 A JP17056788 A JP 17056788A JP 17056788 A JP17056788 A JP 17056788A JP H0221441 A JPH0221441 A JP H0221441A
Authority
JP
Japan
Prior art keywords
recording medium
film
protective film
ratio
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17056788A
Other languages
Japanese (ja)
Other versions
JP2548311B2 (en
Inventor
Kiminori Maeno
仁典 前野
Masanobu Kobayashi
小林 政信
Kayoko Oishi
大石 佳代子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63170567A priority Critical patent/JP2548311B2/en
Priority to US07/376,591 priority patent/US4950547A/en
Priority to US07/466,947 priority patent/US5009762A/en
Publication of JPH0221441A publication Critical patent/JPH0221441A/en
Application granted granted Critical
Publication of JP2548311B2 publication Critical patent/JP2548311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obviate the deterioration of corrosion resistance by using one material selected from a strontium titanate compd. and barium titanate compd. or the mixed crystals of both as a protective film. CONSTITUTION:The protective film 13a is deposited on the surface of a sub strate 11 consisting of a polycarbonate resin. A magnetic film 15 is then deposited and formed on the surface of the protective film 13a by using a target for the magnetic film. The protective film 13b is in succession deposited and formed on the surface of the magnetic film 15 by the same film forming conditions as for the protective film 13a. The protective films 13a, 13b consist of the either one material selected from the strontium titanate compd. (SrTiOx) and the barium titanate compd. (BaTiOx) (where X denotes 2.7<=X<=3.0 value) or the mixed crystals composed of both thereof. The recording medium is consti tuted of such protective film material, by which >=2.2 refractive index (n) and <=0.03 coefft. (k) of light absorption are obtd. The deterioration in the corrosion resistance is obviated in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は光磁気記録媒体に関するものであり、特に、
カー(にerr)効果エンハンスメント(Enhanc
ement)と保護特性とに優れた保護膜を具えた光磁
気記録媒体に関する。 (従来の技術) 光磁気記録媒体(以下、単に記録媒体と称する場合も有
る。)は、貫換えのできる磁性膜を具えた高茫度記録媒
体として、研究開発が活発に行なわれでいる。 このような記録媒体の磁性膜を構成する光磁気記録材料
の内でも、希土類金属と遷移金属との非晶質合金(以下
、単にRE−TM金合金称する場合も有る。)は、磁化
方向が成膜面に対して垂直に配向した垂直磁化膜となる
こと、保磁力が数(にOe)と大きいこと、スパッタ、
真空蒸着またはその他の被着技術で比較的容易に成膜が
可能であること等の点で、最も研究が道み、実用化が進
んでいる。 しかしながら、RE−TM金合金ら成る磁性膜は耐食性
が低く(例えば文献I: 「光磁気ディスク」(今村修
武監修、eu−リケブス発行、第427頁)参照)、シ
かも、磁気光学的な効果(カー(Kerr)効果)が小
さいという欠点が有る。 そこで、種々の材料から成る保護膜でRE−TM金合金
ら成る磁性膜を挟み、当該磁性膜の腐食を防ぐと共に、
光の多重反射を利用して見掛は上のカー(にerr)回
転角を大きくする構造が知られている(前記文献工:第
119頁)。 以下、図面を参照して、上述した従来の光磁気記録媒体
につき説明する。 第5図は、保護膜を具えた記録媒体の一構成例を説明す
るため、概略的な断面により示す説明図である0図中、
断面を示すハツチングは一部省略する。 この第5図からも理解できるように、基板11の表面に
保護膜13a、磁性膜15及び保護膜+3bを順次形成
することによって記録媒体17が構成される。 このうち、基板11は例えばポリカーボネート樹脂、ガ
ラス、エポキシ樹脂またはその他任意好適な材料から成
り円板形状を有する。 また、保II膜13aと+3bとは、例えば5iO1S
iO□、/IuN 、 Si3N、 、Au5iN 、
 Au5iONまたはその他の保護膜材料を被着させで
形成する。既に述べたように、この保護膜の被着は例え
ばスパッタ法、真空蒸着法またはその他の、保護膜を構
成する材料に応じた被着技術によって行なわれる。 ざらに、磁性膜15は前述したRE−TM金合金ら構成
され、このような合金として例えばTb−Fe合金、T
b−Co合金、Tb−Fe−Co合金またはその他、希
土類金属と遷移金属との組み合わせが、種々、知られで
いる。 このような構造の記録媒体17において、当該媒体17
の読取り側に配設された保護膜13aはC/N比(Ca
rrier/No1se Ratio:搬送波対雑音比
)に影Wを及ぼす要因であるため、次のような条件を満
たすことか必要とされている。 ■見掛は上のカー回転角を高めるために屈折率の高い材
料であること ■書込みや読取りに使用される光の波長(通常、750
〜900(nm)程度)においで透光性を有する材料で
あること ■媒体を使用する環境で、例えば水分等から磁性膜を保
護し得る耐食性材料であること また、保護膜+3bは、少なくとも上述の■として示す
耐食性を満たす材料であれば、カー効果エンハンスメン
トをもたらす条件を欠く他の材料で構成しても良い。 このような記録媒体17は、1 (un)程度のスポッ
ト径に絞ったレーザビーム及び外部磁界を用いた熱磁気
書込み方式によって情報の書込みか行なわれ、前述した
垂直磁化膜であることから10a(ビット/am2)と
いう極めて高9度な記録が可能である。また、原理的に
は、消去と再書込みとの繰り返しを無限回に近く行なう
ことかできるという優れた特色を有する。 (発明が解決しようとする課題) 上述1ノた従来技術の説明からも理解できるように、光
磁気記録媒体における保護膜の屈折率と透光性とは、情
報の書込み特性や読取り特性に大きく影響する。このう
ち屈折率についで考えれば、例えばアルミ系の保護膜材
料(例えば前述したAQ、N 、 A[SiN 、 A
u5iON)は屈折率nが2程度であり、周知の材料中
で比較的高い値を示す材料としで知られている。しかし
ながら、現在では、種々の情報機器の発達に伴なって記
録全席の向上が要求されており、従来周知の保護膜材料
が有する屈折率ではカー効果エンハンスメントが不充分
であるという問題が有る。 また、前述したように、磁性膜の読取り側に形成される
保護膜は、情報の書込みや読取りに使用される波長での
吸光係数kが小さいものであることが要求される。この
吸光係数には、上述した屈折率nを含む複素屈折率n−
ki(iは虚数単位)として知ることができる、実際に
、従来周知の保護膜材料の吸光係数には、10−1程度
の値を有するが、ざらに低い値とすることが望まれる。 しかしながら、屈折率nと吸光係数にとに関する要求を
満たし、かつ耐食性にも優れた保護膜材料が得られてい
ないという問題点が有った。 この発明の目的は、上述した従来の問題点に鑑み、上述
した種々の要求を満たす保護膜を具えた信頼性の高い光
磁気記録媒体と、当該媒体の製造に好適な方法とを提供
することに有る。 (課題を解決するための手段) この目的の達成を図るため、この出願の第一発明に係る
光磁気記録媒体によれば、基板上に、少なくとも、保護
膜と磁性膜とを具えで成る光磁気記録媒体において、 上述した保護膜が、チタン酸ストロンチウム系化合物(
SrTiOx)及びチタン酸バリウム系化合物(BaT
iOx) (但し、Xは2.7≦×≦3.0の値を表わ
す、)のうちから選ばれたいずれか一方の物質または双
方の混晶から成る ことを特徴としている。 また、この出願の第二発明に係る光磁気記録媒体の製造
方法によれば、基板上に、少なくとも、保護膜と磁性膜
とを具えて成る光磁気記録媒体を製造するに当り、 上述した保護膜を、チタン酸ストロンチウム(SrTi
O3)及びチタン酸バリウム(8aTiO3)のうちか
ら選ばれたいずれか一方または双方から成る成膜用ター
ゲットと、チタン(Ti)または酸化チタン(TiOY
)(但し、Yは正数を表わす、)から成る組成調整用タ
ーゲットとを同時にスパッタして被着形成する ことを特徴としている。 ざらに、この出願の第三発明に係る光磁気記録媒体の製
造方法によれば、基板上に、少なくとも、保護膜と磁性
膜とを具えて成る光磁気記録媒体を製造するに当り、 上述した保護膜を、チタン酸ストロンチウム(SrTi
03)及びチタン酸バリウム(BaTiO:+)のうち
から選ばれたいずれか一方または双方から成る成膜用タ
ーゲットを不活性ガスと酸素との混合雰囲気中でスパッ
タして被着形成する ことを特徴としている。 また、この出願の第四発明に係る光磁気記録媒体の製造
方法によれば、基板上に、少なくとも、保護膜と磁性膜
とを具えて成る光磁気記録媒体を製造するに当り、 上述した保護膜を、チタン酸ストロンチウム(SrTi
03)及びチタン酸バリウム(8aTi03)のうちか
ら選ばれたいずれか一方または双方から成る成膜用ター
ゲットと、チタン(Ti)または酸化チタン(TiCh
) (但し、Yは正数を表わす。)から成る組成調整用
ターゲットとを、不活性ガスと酸素との混合雰囲気中で
同時にスパッタしで被着形成する ことを特徴としている。 尚、上述した第二発明、第三発明及び第四発明に係る方
法において、チタン酸ストロンチウムとチタン酸バリウ
ムとの双方から成る成膜用ターゲットとは、これら2つ
の物質が混晶として構成される成膜用ターゲットを用い
る場合と、各々の物質から成る合計2種類の成膜用ター
ゲットを同時に用いる場合とを包括的に表わしている。 (作用) この出願の第一発明に係る光磁気記録媒体によれば、上
述した保護膜材料で記録媒体を構成することにより、屈
折率nが2.2以上、吸光係数kが0.03以下となり
、ざらに従来の材料に比して耐食性の劣化をきたすこと
がない。 また、この出願の第二発明に係る光磁気記録媒体の製造
方法によれば、前述したように、成膜用ターゲットと組
成調整用ターゲットとを同時にスバ・ンタして保護膜を
形成することにより高い屈折率と低い吸光係数とを実現
することができ、ざらに耐食性の劣化を回避することが
できる。 これら特性のうち、特に、上述した吸光係数kについて
は、組成調整用ターゲットにおける酸素の占める割合を
大きくすることによって、当該係数kをOとすることも
でき、実質的に透明な保護膜を実現することができる。 この製造方法の作用についでは、明らかではないが、組
成調整用クーゲットとして前述した構成のものを用いる
ことにより、成膜用ターゲットを構成する物質と、保護
膜としで被着された物質との間の化学量論的な組成のず
れが補償されると考えられる。 ざら1こ、この出願の第三発明に係る光磁気記録媒体の
製造方法によれば、前述したように、成膜用ターゲット
のみを、例えばアルゴンのような不活性ガスと酸素との
混合雰囲気中でスパッタして保護膜形成することにより
高い屈折率と低い吸光係数とを実現することができ、さ
らに耐食性の劣化を回避することができる。これら特性
のうち、特に、上述した吸光係数k(ごついでは、混合
雰囲気中において酸素の占める割合を大きくすることに
よって、当該係数kVoとすることもでき、実質的に透
明な保護膜を実現することができる。 また、この出願の第四発明に係る光磁気記録媒体の製造
方法によれば、前述したように、成膜用クーゲットと組
成調整用ターゲットとを同時に、かっ例えばアルゴンの
ような不活性ガスと酸素との混合雰囲気中でスパッタし
て保護膜形成することにより高い屈折率と低い吸光係数
とを実現することができ、ざらに耐食性の劣化を回避す
ることができる。この第四発明に係る方法によれば、上
述した第二発明及び第三発明と同様に、組成調整用ター
ゲットにおいて酸素の占める割合や混合雰囲気中におい
て酸素の占める割合を大きくすることによって、吸光係
数に80とすることかでき、実質的に透明な保護膜を実
現することができる。 (実施例) 以下、図面を参照して、この出願に係る発明の実施例に
つき説明する。尚、以下に説明する実施例は、この発明
の範囲の好ましい数値例、その他の条件で説明するが、
これらは単なる例示であって、この発明はこれら特定の
条件にのみ限定されるものではないことを理解されたい
、また、この実施例では、記録媒体の構造の一例としで
前述した第5図に示す構造を有する比較例及び実施例1
〜18の、合計19種類の記録媒体を作製して種々の特
性を測定し、比較検討した。これら試料についでの説明
の理解を容易とするため、各々の試料に係る記録媒体の
材料構成、被着条件及び特性評価の結果を第69頁に別
表として記載する。 比1
(Industrial Application Field) This invention relates to magneto-optical recording media, and in particular,
Carr (err) effect enhancement (Enhanc)
The present invention relates to a magneto-optical recording medium provided with a protective film having excellent protection properties. (Prior Art) Magneto-optical recording media (hereinafter sometimes simply referred to as recording media) are being actively researched and developed as high-intensity recording media equipped with a magnetic film that can be penetrated. Among the magneto-optical recording materials constituting the magnetic film of such recording media, amorphous alloys of rare earth metals and transition metals (hereinafter sometimes simply referred to as RE-TM gold alloys) have magnetization in the direction of magnetization. The perpendicular magnetization film is oriented perpendicularly to the film formation surface, the coercive force is as large as several Oe, the sputtering,
Since it is relatively easy to form a film using vacuum evaporation or other deposition techniques, it has the most research and practical application. However, the magnetic film made of RE-TM gold alloy has low corrosion resistance (see, for example, Document I: "Magneto-Optical Disk" (edited by Osamu Imamura, published by EU-Rikebus, p. 427)), and may have poor magneto-optical properties. It has the disadvantage that the effect (Kerr effect) is small. Therefore, a magnetic film made of RE-TM gold alloy is sandwiched between protective films made of various materials to prevent corrosion of the magnetic film and to
A structure is known that uses multiple reflections of light to increase the apparent rotation angle of the upper Kerr (Nierr) (cited above, p. 119). The conventional magneto-optical recording medium mentioned above will be explained below with reference to the drawings. FIG. 5 is an explanatory diagram showing a schematic cross section in order to explain an example of the configuration of a recording medium provided with a protective film.
Some hatching indicating the cross section is omitted. As can be understood from FIG. 5, the recording medium 17 is constructed by sequentially forming a protective film 13a, a magnetic film 15, and a protective film +3b on the surface of the substrate 11. Among these, the substrate 11 is made of, for example, polycarbonate resin, glass, epoxy resin, or any other suitable material, and has a disk shape. In addition, the protective II films 13a and +3b are, for example, 5iO1S.
iO□, /IuN, Si3N, , Au5iN,
Formed by depositing Au5iON or other overcoat material. As already mentioned, the application of this protective film is carried out, for example, by sputtering, vacuum evaporation or other application techniques depending on the material of which the protective film is made. In general, the magnetic film 15 is made of the above-mentioned RE-TM gold alloy, and examples of such alloy include Tb-Fe alloy, T
Various b-Co alloys, Tb-Fe-Co alloys, or other combinations of rare earth metals and transition metals are known. In the recording medium 17 having such a structure, the medium 17
The protective film 13a disposed on the reading side of the C/N ratio (Ca
Since this is a factor that affects the carrier/noise ratio (carrier/noise ratio), it is necessary to satisfy the following conditions. ■The apparent material must have a high refractive index to increase the Kerr rotation angle.■The wavelength of the light used for writing and reading (usually 750
- 900 (nm)) ■It must be a corrosion-resistant material that can protect the magnetic film from, for example, moisture in the environment in which the medium is used.Also, the protective film +3b must be made of at least the above-mentioned material. As long as the material satisfies the corrosion resistance shown in (■), it may be constructed of other materials that lack the conditions that bring about Kerr effect enhancement. Information is written on such a recording medium 17 by a thermomagnetic writing method using a laser beam narrowed to a spot diameter of about 1 (un) and an external magnetic field, and since it is the perpendicular magnetization film described above, 10a ( It is possible to record extremely high 9 degrees (bits/am2). Furthermore, it has the excellent feature that, in principle, erasing and rewriting can be repeated almost infinitely many times. (Problem to be Solved by the Invention) As can be understood from the explanation of the prior art mentioned in No. 1 above, the refractive index and light transmittance of the protective film in a magneto-optical recording medium have a large effect on the information writing and reading characteristics. Affect. Among these, considering the refractive index, for example, aluminum-based protective film materials (for example, the aforementioned AQ, N, A [SiN, A
u5iON) has a refractive index n of approximately 2, and is known as a material exhibiting a relatively high value among known materials. However, at present, with the development of various information devices, there is a demand for improved overall recording performance, and there is a problem that the Kerr effect enhancement is insufficient with the refractive index of conventionally known protective film materials. Furthermore, as described above, the protective film formed on the reading side of the magnetic film is required to have a small extinction coefficient k at the wavelength used for writing and reading information. This extinction coefficient includes the complex refractive index n-, which includes the refractive index n mentioned above.
In fact, the extinction coefficient of conventionally known protective film materials, which can be known as ki (i is an imaginary unit), has a value of about 10-1, but it is desired to set it to a much lower value. However, there has been a problem in that a protective film material that satisfies the requirements regarding refractive index n and extinction coefficient and also has excellent corrosion resistance has not been obtained. In view of the above-mentioned conventional problems, it is an object of the present invention to provide a highly reliable magneto-optical recording medium equipped with a protective film that satisfies the various requirements mentioned above, and a method suitable for manufacturing the medium. There is. (Means for Solving the Problem) In order to achieve this object, according to the magneto-optical recording medium according to the first invention of this application, a magneto-optical recording medium comprising at least a protective film and a magnetic film on a substrate is provided. In magnetic recording media, the above-mentioned protective film is made of a strontium titanate compound (
SrTiOx) and barium titanate compounds (BaT
iOx) (where X represents a value of 2.7≦x≦3.0) or a mixed crystal of both. Further, according to the method for manufacturing a magneto-optical recording medium according to the second invention of this application, in manufacturing a magneto-optical recording medium comprising at least a protective film and a magnetic film on a substrate, the above-mentioned protection is applied. The film was made of strontium titanate (SrTi
A film forming target made of either or both of barium titanate (8aTiO3) and titanium (Ti) or titanium oxide (TiOY).
) (where Y represents a positive number) is simultaneously deposited by sputtering. In general, according to the method for manufacturing a magneto-optical recording medium according to the third invention of this application, in manufacturing a magneto-optical recording medium comprising at least a protective film and a magnetic film on a substrate, the above-mentioned method is performed. The protective film is made of strontium titanate (SrTi).
03) and barium titanate (BaTiO:+), or both of them, by sputtering in a mixed atmosphere of inert gas and oxygen. It is said that Further, according to the method for manufacturing a magneto-optical recording medium according to the fourth invention of this application, in manufacturing a magneto-optical recording medium comprising at least a protective film and a magnetic film on a substrate, the above-mentioned protection is applied. The film was made of strontium titanate (SrTi
03) and barium titanate (8aTi03), or a film forming target made of either or both of titanium (Ti) or titanium oxide (TiCh).
) (wherein Y represents a positive number) is simultaneously deposited by sputtering in a mixed atmosphere of inert gas and oxygen. In addition, in the methods according to the second, third, and fourth inventions described above, the film-forming target made of both strontium titanate and barium titanate is one in which these two substances are constituted as a mixed crystal. It comprehensively represents the case where a film-forming target is used and the case where a total of two types of film-forming targets made of each substance are used at the same time. (Function) According to the magneto-optical recording medium according to the first invention of this application, by configuring the recording medium with the above-mentioned protective film material, the refractive index n is 2.2 or more and the extinction coefficient k is 0.03 or less. Therefore, there is no deterioration in corrosion resistance compared to conventional materials. Further, according to the method for manufacturing a magneto-optical recording medium according to the second invention of this application, as described above, the film formation target and the composition adjustment target are simultaneously sintered to form a protective film. A high refractive index and a low extinction coefficient can be achieved, and deterioration of corrosion resistance can be largely avoided. Among these characteristics, especially regarding the above-mentioned extinction coefficient k, the coefficient k can be set to O by increasing the proportion of oxygen in the target for composition adjustment, thereby realizing a substantially transparent protective film. can do. The operation of this manufacturing method is not clear, but by using the composition-adjusting cuget with the above-mentioned structure, it is possible to create a bond between the material that constitutes the film-forming target and the material that is deposited as a protective film. It is thought that the deviation in the stoichiometric composition of is compensated for. According to the method for manufacturing a magneto-optical recording medium according to the third invention of this application, as described above, only the film forming target is placed in a mixed atmosphere of an inert gas such as argon and oxygen. By forming a protective film by sputtering, a high refractive index and a low absorption coefficient can be achieved, and deterioration of corrosion resistance can be avoided. Among these characteristics, the above-mentioned extinction coefficient k (in particular, the coefficient kVo can be obtained by increasing the proportion of oxygen in the mixed atmosphere, and a substantially transparent protective film can be realized. Further, according to the method for manufacturing a magneto-optical recording medium according to the fourth invention of this application, as described above, the film-forming target and the composition adjustment target are simultaneously heated using an inert gas such as argon. By forming a protective film by sputtering in a mixed atmosphere of gas and oxygen, it is possible to achieve a high refractive index and a low extinction coefficient, and it is possible to roughly avoid deterioration of corrosion resistance. According to this method, as in the second and third inventions described above, the extinction coefficient can be set to 80 by increasing the proportion of oxygen in the composition adjustment target and the proportion of oxygen in the mixed atmosphere. (Embodiments) Examples of the invention according to this application will be described below with reference to the drawings. , will be explained using preferred numerical examples and other conditions within the scope of this invention,
It should be understood that these are merely examples, and that the present invention is not limited to these specific conditions. Comparative example and Example 1 having the structure shown
A total of 19 types of recording media, 18 to 18, were manufactured, various characteristics were measured, and comparative studies were conducted. In order to facilitate understanding of the explanations regarding these samples, the material composition, adhesion conditions, and property evaluation results of the recording medium for each sample are listed in a separate table on page 69. ratio 1

【倒 く製造条件の説明〉 まず、この比較例に係る記録媒体では、従来周知のスパ
ッタ技術によって、ポリカーボネート樹脂から成る基板
11の表面に一酸化ケイ素(Sin)から成る保護膜1
3aを約800(λ)の膜厚で被着形成する。この時の
成膜条件は、SiOのみがら成る直径126(mm)の
成膜用ターゲットを用い、投入電力が500(W) 、
アルゴンのガス圧が3(mTorr)として行なった。 次に、チルどラム二鉄:コバルトの組成比が22ニア0
:8(原子数の比)である磁性膜用のターゲットを用意
し、上述と同様なスパッタ条件により、保護膜13aの
表面に、約800(人)の膜厚を以って磁性膜15を被
着形成する。 続いて、前述した保護膜13aと同一の条件によって、
上述した磁性膜15の表面に約1000 (λ)の膜厚
で保護膜+3t)を被着形成し、比較例に係る記録媒体
を得た。 < C/N比の測定手順と測定結果の説明〉このC/N
比の測定に当っては、上述した手順により、ポリカーボ
ネート樹脂基板上に作製された比較例に係る記録媒体を
試料とし、書込みに用いた光の波長830(nm) 、
回転数900(r、p、m、)、デユーティ−50(%
)、記録周波数1.85(MHz)、記録パワー7 (
mW)で記録し、その後、読出しパワー1.6(mW)
 、バンド幅30(にHz)でC/N比の測定を行なっ
た。 その結果、比較例に係る記録媒体のC/N比は44.0
(dB)であった。 く耐食性試験の手順と測定結果の説明〉耐食性試験では
、比較例に係る記録媒体に対して予め情報を書込み、こ
の記録媒体t60(”G)の温度で相対湿度ヲ80(%
)とした条件(以下、単に耐食性試験条件と称する。)
で200時間に亙って保持する。然る後、予め書込まれ
た情報が耐食性試験の後に損傷する割合(エラーレート
)を測定した結果と、上述したC7N比の測定結果とに
より、耐食性を評価した。 その結果、エラーレートは約10−4程度であり、C/
N比は耐食性試験前の値と同じ44.0(dB)であっ
た。 く複素屈折率の測定手順と結果〉 この測定では、前述した保護膜と同じ被着条件によって
シリコンウェハの表面に2000 (λ)の膜厚でSi
Oを被着させた試料を別途作製し、エリプソメーターを
用いて633(nm)の波長における複素屈折率n−k
iを測定した。 その結果、複素屈折率は1.90−0.10 iであっ
た。 次に、チタン酸ストロンチウム(SrTiO3)7a成
膜用ターゲツトとしで用いた場合の実施例1〜4に係る
記録媒体につき説明する。 罠庭拠] く製造条件の説明〉 この実施例]に係る記録媒体では、従来周知のスパッタ
技術によって、ポリカーボネート樹脂がら成る基板11
の表面に、保護膜13at約800(λ)の膜厚で被着
形成する。この時の成膜条件は、SrTiO3のみから
成る直径126(mm)の成膜用ターゲットを用い、投
入電力が500(W) 、アルゴンのガス圧が3 (m
丁orr)として行なった。 次に、前述した組成を有する磁性膜用のターゲットを用
い、上述と同様なスパッタ条件によって、保護膜13a
の表面に約800(λ)の膜厚を以って磁性膜15を被
着形成する。 続いて、前述した保護膜13aと同一の成膜条件によっ
て、上述した磁性膜15の表面に約1000(人)の膜
厚で保護膜+3bを被着形成し、実施例]に係る記録媒
体を得た。 <C/N比の測定手順と測定結果の説明〉この実施例1
に係る記録媒体のC/N比測定に当っても、前述した比
較例と同一の手順により、ポリカーボネート樹脂基板上
に作製された実施例1に係る記録媒体を試料とし、書込
みに用いた光の波長830(nm) 、回転数900(
乙ρ、m、)、デユーティ−50(%)、記録周波数1
.85(MHz) 、記録パワー7 (mW)で記録し
、その後、読出しパワー1.6(mW) 、バンド幅3
0(にHz)でC/N比の測定を行なった。 その結果、実施例1に係る記録媒体のC/N比は47.
5(dB)であった。 く耐食性試験の手順と測定結果の説明〉耐食性試験では
、実施例1に係る記録媒体に対して予め情報INF込み
、この記録媒体%60(’C)の温度で相対湿度を80
(%)とした比較例と同一の耐食′i試験条件下で20
0時間に亙って保持する、然る後、前述した情報の損傷
割合(エラーレート)の測定と、上述したC/N比の測
定とにより、耐食゛I!を評価した。 その結果、エラーレートは約101程度であり、C/N
比は耐食性試験前の値と同じ47.5(dB)であった
。 〈複素屈折率の測定子j@と結果〉 この測定では、上述と同じ被着条件によって、シリコン
ウェハの表面に、保護膜を2000 (λ)の膜厚て被
着させた試料を別途作製し、エリプソメーターを用いて
633(nm)の波長における複素屈折率n−kiを測
定した。 その結果、複素屈折率は2.22−0.02 iであっ
た。 大18汁λ 〈製造条件の説明〉 この実施例2に係る記録媒体では、第2発明に係る方法
を通用して保護膜13aと+3bとを被着形成し、磁!
膜15の被着は既に述べたのと同一の材料、膜厚及び被
着条件で試料作製を行なった。 この保護膜の被着条件につき詳述すれば、まず、チタン
(Ti)から成る直径126(mm)の組成調整用ター
ゲットと、チタン酸ストロンチウム(SrTiO3)か
ら成る直径25(mm)の成膜用ターゲットとを用意す
る。然る後、上述した組成調整用ターゲットの表面1こ
成膜用ターゲットを6枚@コする。このように、被スパ
ツタ面において、組成調整用ターゲットの表面が成膜用
ターゲットにより覆われた状態で、これら2種頼のター
ゲットを同時にスパッタし、ポリカーボネート樹脂から
成る基板11の表面に、保護膜13aを約800(λ)
の膜厚で被着形成した。この時の成膜条件は、前述と同
様に、投入電力が500(W) 、アルゴンのガス圧が
3(mTorr)としで行なった。 上述した説明からも理解できるように、この実施例2で
は、SrTiO3から成る成膜用ターゲットが被スパツ
タ面に占める面積の割合を約95(%)とし、Tiから
成る組成調整用ターゲットか被スパツタ面に占める面積
の割合を約5(%)として保護膜の被着形成を行なった
。 <C/N比の測定子j@と測定結果の説明〉この実施例
2に係る記録媒体に閉じでも、比較例及び実施例]と同
一の条件でC/N比の測定を行なった。その結果、実施
例2に係る記録媒体のC/N比は46.8(dB)であ
った。 〈耐食性試験の手順と測定結果の説明〉耐食性試験も比
較例及び実施例1と同一の耐食性試験条件下で200時
間に亙って保持した後に行ない、前述した情報の損傷割
合(エラーレート)の測定と、上述したC/N比の測定
とにより、耐食性を評価した。 その結果、エラーレートは約10−5程度であっ、C7
N比は耐食性試験前の値と同じ46.8(dB)であっ
た。 〈複素屈折率の測定手順と結果〉 この実施例2に係る記録媒体の複素屈折率測定においで
も、シリコンウェハの表面1こ、上述と同じ被着条件に
よって2000 (A )の膜厚で保護膜を被着させた
試料を別途作製し、比較例及び実施例1と同様にエリプ
ソ、メーターを用いで633(nm)の波長における複
素屈折率n−ki%測定した。 その結果、複素屈折率は2.23−0.03 iであっ
た。 大】l性ユ く製造条件の説明〉 この実施例3に係る記録媒体では、組成調整用ターゲッ
トに一酸化チタン(Tie)を用い、第一発明に係る方
法を適用して保護膜13aと131)とそ被着形成し、
磁性膜15の被着は既に述べたのと同一の材料、膜厚及
び被着条件で試料作製を行なった。 この保護膜の被着条件につき詳述すれば、−酸化チタン
(Tie)から成る直径126(mm)の組成調整用タ
ーゲットと、チタン酸ストロンチウム(SrTiO3)
から成る直径25(mm)の成膜用ターゲットとを用意
する。然る後、実施例2と同様に、被スパツタ面におい
で、組成調整用ターゲットの表面が6枚の成膜用ターゲ
ットにより覆われた状態で、これら2種類のターゲット
を同時(こスパッタし、ポリカーボネート樹脂から成る
基板11の表面に、保護膜13aを約800(A)の膜
厚で被着形成した。この時の成膜条件は、前述と同一の
投入電力及びアルゴンガス圧として行なった。 上述した説明からも理解できるように、この実施例3で
は、5rTi(hから成る成膜用ターゲットが被スパッ
ク面に占める面積の割合を約95(%)とし、TiOか
ら成る組成調整用ターゲットが上述した面において占め
る割合を約5(%)として保護膜の被着形成を行なった
。 < C/N比の測定手順と測定結果の説明〉この実施例
3に係る記録媒体に闇しても、比較例、実施例1及び実
施例2と同一の条件でC/N比の測定を行なった結果、
実施例3に係る記録媒体のC/N比は47.5(dB)
であった。 く耐食性試験の手順と測定結果の説明〉前述した比較例
、実施例1及び実施例2と同一の耐食性試験条件で20
0時間保持した復に、実施例3に係る記録媒体のエラー
レートの測定と、C/N比の測定とを行なった結果、エ
ラーレートは約10−5程度であり、C/N比は耐食性
試験前の値と同し47.5(dB)であった。 く複素屈折率の測定手順と結果〉 この実施例3に係る記録媒体の樗素屈折率測定において
も、シリコンウェハの表面に、上述と同じ被着条件で、
2000 (A )の保護膜を被着させた試料を別途作
製し、比較例、実施例1及び実施例2と同様に測定した
結果、複素屈折率は2.22−0.02 iであった。 大】l外圧 〈製造条件の説明〉 この実施例4に係る記録媒体では、組成調整用ターゲッ
トに二酸化チタン(Ti02)を用い、第二発明に係る
方法を適用して保護膜13aと+3bとを被着形成し、
磁性膜15の被着は既に述べたのと同一の材料、膜厚及
び被着条件で試料作製を行なった。 この保護膜形成においでは、二酸化チタン(TiO□)
を組成調整用ターゲットとして用いたことを除き、実施
例2及び実施例3と同一の投入電力及びアルゴンガス圧
として行なった。 上述した説明からも理解できるように、この実施例4で
は、SrTiO3から成る成膜用ターゲットが被スパツ
タ面に占める面積の割合を約95(%)とし、TiO2
から成る組成調整用ターゲットが上述した面において占
める割合を約5(%)として保護膜の被着形成を行なっ
た。 <C1N比の測定手順と測定結果の説明〉この実施例4
に係る記録媒体に閉じても、比較例、実施例1〜3と同
一の条件でC/N比の測定を行なった結果、実施例4に
係る記録媒体のC/N比は47.0(dB)であった。 く耐食性試験の手順と測定結果の説明〉前述した比較例
、実施例1〜3と同一の耐食性試験条件で200時間保
持した後に、実施例4に係る記録媒体のエラーレートの
測定と、C/N比の測定とを行なった結果、エラーレー
トは約10−5程度であり、C/N比は耐食性試験前の
値と同じ47.0(dB)であった。 く複素屈折率の測定手順と結果〉 この実施例4に係る記録媒体の複素屈折率測定においで
も、シリコンウェハの表面に、上述と同じ被着条件で、
2000 (λ)の保護膜を被着させた試料を別途作製
し、比較例、実施例1〜3と同様に測定した結果、複素
屈折率は2.21であった、この説明からも理解できる
ように、実施例4に係る記録媒体の吸光係数kがOとな
り、実質的に透明な保護膜を形成することができた。 続いて、チタン酸バリウム(8aTiO3)を成膜用タ
ーゲットとして用いた場合の実施例5〜8に係る記録媒
体につき説明する。 犬】l1互 〈製造条件の説明〉 この実施例5に係る記録媒体では、チタン酸バリウム(
BaTiO3)から成る直径126(mm)の成膜用タ
ーゲットを用いたこと以外は、実施例2と同一の積層関
係及び成膜条件で記録媒体を作製し、実施例5に係る記
録媒体を得た。 < C/N比の測定手順と測定結果の説明〉この実施例
5に係る記録媒体のC/N比測定に当っても、前述した
比較例及び実施例1〜4に係る記録媒体と同一の手順に
より測定を行なつた結果、実施例5に係る記録媒体のC
/11比は48.0(dB)であった。 く耐食性試験の手順と測定結果の説明〉この実施例5に
係る記録媒体に関して、比較例及び実施例1〜4に係る
記録媒体と同一の耐食性試験条件下で200時間に亙っ
て保持した後、前述したエラーレートの測定と、上述し
たC/N比の測定とにより、耐食性を評価した。 その結果、エラーレートは約10−5程度であり、C/
N比は耐食性試験前の値と同じ48.0(dB)であっ
た。 く複素屈折率の測定手順と結果〉 上述と同じ被着条件によって、シリコンウェハの表面に
、保護膜を2000 (^)の膜厚で被着させた実施例
5に係る試料を別途作製し、エリプソメーターを用いで
複素屈折率n−ki@測定した結果、複素屈折率は2.
25−0.02 iであった。 医涜l性旦 〈製造条件の説明〉 この実施例6では、チタン酸バリウム(BaTiO3)
から成る直径25(mm)の成膜用ターゲットを用いた
ことを除き、第二発明を利用した実施例2と同一の積層
間係及び成膜条件で記録媒体を作製した。 即ち、チタン(Ti)から成る直径126(mm)の組
成調整用ターゲットの表面に上述した成膜用ターゲット
を6枚載】した状態で、これら2種類のターゲットを同
時にスパッタして、保護膜13aを及び+3bt被着形
成した。この時の成膜条件は、前述と同一の投入電力及
びアルゴンガス圧とした。 上述した説明からも理解できるように、この実施例6で
は、BaTiO3から成る成膜用ターゲットか被スパツ
タ面に占める面積の割合を約95(%)とし、Tiから
成る組成調整用ターゲットが被スパツタ面において占め
る割合を約5(%)として保護膜の被着形成を行なった
。 <C/N比の測定手順と測定結果の説明〉この実施例6
(こ係る記録媒体に闇しても、比較例及び実施例1〜5
と同一の条件でC/N比の測定を行なった結果、実施例
6に係る記録媒体のC/N比は47.0(dB)であっ
た。 く耐食性試験の手順と測定結果の説明〉この実施例6に
係る記録媒体に関して、比較例及び実施例1〜5に係る
記録媒体と同一の耐食性試験条件下で200時間に亙っ
て保持した後、前述したエラーレートの測定と、上述し
たC/N比の測定とにより、耐食性を評価した。 その結果、エラーレートは約10−5程度であり、C/
N比は耐食性試験前の値と同じ47.0(dB)であっ
た。 く複素屈折率の測定手順と結果〉 上述と同じ被着条件によって、シリコンウェハの表面に
、保護膜を2000 C人)の膜厚で被着させた試料を
別途作製し、比較例及び実施例1〜5と同様に測定した
結果、複素屈折率は2.27−0.02 iであった。 スパッタ面に占める面積の割合を約5(%)として保護
膜の被着形成を行なった。 太五1江L 〈製造条件の説明〉 この実施例7では、チタン酸バリウム(BaTiO3)
から成る直径25(mm)の成膜用ターゲットを用いた
ことを除き、第二発明に係る方法を利用して実施例3と
同一の積層関係及び成膜条件で記録媒体を作製した。即
ち、−酸化チタン(Tie)から成る直径126 (m
m)の組成調整用ターゲットの表面に上述した成膜用タ
ーゲットを6枚装置した状態で、これら2種類のターゲ
ットを同時にスパッタして、保護膜13a及び+3bを
被着形成した。この時の成膜条件は、前述と同一の投入
電力及びアルゴンガス圧とした。 上4の説明からも理解できるように、この実施例7では
、BaTiOsから成る成膜用ターゲットが被スパツタ
面に占める面積の割合を約95(%)とし、TiOから
成る組成調整用クーゲットが被< C/N比の測定手順
と測定結果の説明〉この実施例7に係る記録媒体に関し
ても、比較例及び実施例1〜6と同一の条件でC/N比
の測定を行なった結果、実施例7に係る記録媒体のC/
N比は48.0(dB)であった。 〈耐食性試験の手順と測定結果の説明〉この実施例7に
係る記録媒体に関しで、比較例及び実施例1〜6に係る
記録媒体と同一の耐食性試験条件下で200時間に亙っ
て保持した後、前述したエラーレートの測定と、上述し
たC/N比の測定とにより、耐食性を評価した。 その結果、エラーレートは約10−5程度であり、C/
N比は耐食性試験前の値と同じ48.0(dB)であっ
た。 〈複素屈折率の測定手順と結果〉 上述と同じ被着条件によって、シリコンウェハの表面に
、保護膜を2000 (λ)の膜厚で被着させた試料を
別途作製し、エリプソメーターを用いて633(nm)
の波長にあける複素屈折率n−kiを測定した結果、複
素屈折率は2.25−0.02iであった。 犬】l凱旦 く製造条件の説明〉 この実施例8では、チタン酸バリウム(BaTiO3)
から成る直径25(mm)の成膜用ターゲットを用いて
保護膜13a及び+3El形成したことを除き、実施例
4と同一の条件で記録媒体を作製した。即ち、−酸化チ
タン(TiOz)から成る直径126 (mm)の組成
調整用ターゲットの表面に上述した成膜用タゲットを6
枚in!Itした状態で、これら21M類のターゲット
を同時にスパッタし保護膜13a及び13bt被着形成
した。この時の成膜条件は、前述と同一の投入電力及び
アルゴンガス圧とした。 上述の説明からも理解できるように、この実施例8では
、BaTi0.から成る成膜用ターゲットが被スパツタ
面に占める面積の割合を約95(%)とし、TiO□か
ら成る組成調整用ターゲットが被スパツタ面に占める面
積の割合を約5(%)として保護膜の被着形成を行なっ
た。 < C/N比の測定手順と測定結果の説明〉この実施例
8に係る記録媒体に関しで、比較例及び実施例1〜7と
同一の条件でC/N比の測定を行なった結果、実施例8
に係る記録媒体のC/N比は47.5(dB)であった
。 〈耐食性試験の手順と測定結果の説明〉前述した比較例
、実施例1〜7と同一の耐食性試験条件で200時間保
持した後に、実施例8に係る記録媒体のエラーレートの
測定と、C/N比の測定とを行なった結果、エラーレー
トは約10−’程度であり、C/N比は耐食性試験前の
値と同じ47.5(dB)であった。 〈複素屈折率の測定手順と結果〉 この実施例8に係る記録媒体の複素屈折率測定においで
も、シリコンウェハの表面に、上述と同し被着条件及び
膜厚2000 (人)で保護膜を被着させた試料を別途
作製し、比較例及び実施例1〜7と同様に測定した結果
、複素屈折率は2.21であった。この説明からも理解
できるように、前述した実施例4に係る記録媒体と同様
に吸光係数kがOとなり、実質的に透明な保護膜を実現
することかできた。 次に、チタン酸ストロンチウム(SrTi03)とチタ
ン酸バリウム(BaTiO3)との双方を成膜用ターゲ
ットとして保護膜を形成した場合の実施例9〜実施例1
2につき説明する。 夾11性旦 〈製造条件の説明〉 この実施例9では、チタン酸ストロンチウム(SrTi
O3)とチタン酸バリウム(BaTiO3)と(組成比
1:1)の混晶から成る直径126(mm)の成膜用タ
ーゲットを用いて保護膜13a及び13El形成したこ
とを除き、従来周知のスパッタ技術を利用した実施例]
及び実施例5と同様な積層関係及び成膜条件で記録媒体
を作製した。この時の成膜条件は、前述と同一の投入電
力及びアルゴンガス圧とした。 <C/N比の測定手順と測定結果の説明〉この実施例9
に係る記録媒体に関しで、比較例及び実施例1〜8と同
一の条件でC/N比の測定を行なった結果、記録媒体の
C/N比は48.0(dB)であった。 尚、この実施例9に係る光磁気記録媒体では、耐食性試
験を行なわなかった。 く複素屈折率の測定手順と結果〉 この実施例9に係る記録媒体の複素屈折率測定において
も、シリコンウェハの表面に、上述と同し被着条件及び
膜厚2000 (λ)で保護膜を被着させた試料を別途
作製し、比較例及び実施例1〜8と同様に測定した結果
、複素屈折率は2,240.02iであった。 医1■1」 〈製造条件の説明〉 この実施例10では、チタン酸ストロンチウム(SrT
iO3)から成る直径25(mm)の成膜用ターゲット
とチタン酸バリウム(BaTiO3)から成る直径25
(mm)の成膜用ターゲットとを用いて保護膜13a及
び+3bを形成したことを除き、第二発明を利用した実
施例3及び実施例7と同様な積層関係及び成膜条件で記
録媒体を作製した。F5ち、チタン(Ti)から成る直
径126(mm)の組成調整用ターゲットの表面に、上
述した5rTi03から成る成膜用クーゲットとBaT
iO3から成る成膜用ターゲットとを、夫々3枚ずつ、
合計6枚載百した状態で、これら3種類のターゲットを
同時にスパッタし、保護膜13a及び+3bを被着形成
した。この時の成膜条件は、前述と同一の投入電力及び
アルゴンガス圧とした。 上述の説明からも理解できるように、この実施例10で
は、5rTi03とBaTi0+との夫々から成る成膜
用ターゲットが被スパツタ面に占める面積の割合の合計
を約95(%)とし、Tiから成る組成調整用ターゲッ
トが被スパツタ面に占める面積の割合を約5(%)とし
て保護膜の被着形成を行なった。 <C/N比の測定手順と測定結果の説明〉この実施例1
0に係る記録媒体に閉して、比較例及び実施例1〜9と
同一の条件でC/N比の測定を行なった結果、記録媒体
のC/N比は47.0(dB)であった。 尚、この実施例10に係る光磁気記録媒体では、上述し
た実施例9と同様に、耐食性試験を行なわなかった。 〈複素屈折率の測定手順と結果〉 この実施例10に係る記録媒体の複素屈折率測定におい
ても、シリコンウェハの表面に、上述と同し被着条件及
び膜厚2000 (λ)で保護膜を被着させた試料を別
途作製し、比較例及び実施例1〜9と同様に測定した結
果、複素屈折率は2.26−0.03 iであった。 医涜」(U く製造条件の説明〉 この実施例11では、−酸化チタン(Tie)から成る
組成調整用ターゲットを用いたこと以外は、上述の実施
例10と同一の積層関係及び成膜条件とし、第二発明に
係る方法を利用して記録媒体を作製した。即ち、−酸化
チタン(Tie)から成る直径126(mm)の組成調
整用ターゲットの表面に、5rTiOzから成る成膜用
ターゲットとBaTiO3から成る成膜用ターゲットと
を、夫々3枚ずつ、合計6枚@冒した状態で、これら3
種類のターゲットを同時にスパッタし、保護膜13a及
び+3bを被着形成した。この時の成膜条件は、前述と
同一の投入電力及びアルゴンガス圧とした。 上述の説明からも理解できるように、この実施例11で
は、SrTiO3とBaTiO3との夫々から成る成膜
用ターゲットが被スパツタ面に占める面積の割合の合計
を約95(%)とし、TiOから成る組成調整用ターゲ
ットが被スパツタ面に占める面積の割合を約5(%)と
して保護膜の被着形成を行なった。 <C/N比の測定手順と測定結果の説明〉この実施例1
1に係る記録媒体に関して、比較例及び実施例1〜10
と同一の条件でC/N比の測定を行なった結果、記録媒
体のC/N比は48.0(dB)であった。 〈耐食性試験の手順と測定結果の説明〉この実施例11
では、前述した耐食性試験条件下で1000時間(こ亙
って保持した後、記録媒体のエラーレートの測定と、C
/N比の測定とを行なった結果、エラーレートは約10
−5程度であり、C/N比は耐食性試験前の値と同じ4
8.0(dB)であった。 〈複素屈折率の測定手順と結果〉 この実施例11に係る記録媒体の複素屈折率測定におい
ても、シリコンウェハの表面に、上述と同し被着条件及
び膜厚2000 (人)で保護膜を被着させた試料を別
途作製し、比較例及び実施例1〜10と同様に測定した
結果、複素屈折率は2.24−0.02iであった。 英1■引4 く製造条件の説明〉 この実施例12では、二酸化チタン(Ti02)から成
る組成調整用ターゲットを用いたこと以外は、上述の実
施例11と同一の積層関係及び成膜条件とし、第二発明
に係る方法を利用して記録媒体を作製した。即ち、二酸
化チタン(TiO2)がら成る直径126(mm)の組
成調整用ターゲットの表面に、5rTi(hから成る成
膜用ターゲットとBaTiO3がら成る成膜用ターゲッ
トとを、夫々3枚ずつ、合計6枚載冒した状態で、これ
ら3種類のターゲットを同時にスパッタし、保護膜13
a及び+3b%形成した。この時の成膜条件は、前述と
同一の投入電力及びアルゴンガス圧とした。 上述の説明からも理解できるように、この実施例12て
は、5rTi(hとBaTiOsとの夫々から成る成膜
用ターゲットが被スパツタ面に占める面積の割合の合計
を約95(%)とし、TiO□から成る組成調整用ター
ゲットが被スパツタ面に占める面積の割合を約5(%)
として保護膜の被着形成を行なった。 <C/N比の測定手順と測定結果の説明〉この実施例1
2に係る記録媒体に関して、比較例及び実施例1〜11
と同一の条件でC/N比の測定を行なった結果、記録媒
体のC/N比は48.2(dB)であった。 〈耐食性試験の手順と測定結果の説明〉この実施例12
では、実施例11と同様に、前述した耐食性試験条件下
で1000時間に亙って保持した後、記録媒体のエラー
レートの測定と、C/N比の測定とを行なった結果、エ
ラーレートは約10−5程度であり、C/N比は耐食性
試験前の値と同じ48.2(dB)であった。 〈複素屈折率の測定手順と結果〉 この実施例12に係る記録媒体の複素屈折率測定におい
でも、シリコンウェハの表面に、上述と同し被着条件及
び膜厚2000 (λ)で保護膜を被着させた試料を別
途作製し、比較例及び実施例1〜11と同様に測定した
結果、複素屈折率は2.22であった。この説明からも
理解できるように、前述した実施例4及び実施例8に係
る記録媒体と同様に吸光係数kが0となり、実質的に透
明な保護膜を実現することができた。 以下、上述した比較例の特性及び実施例1〜12の特性
につき、別表を参照して詳細に検討する。 まず、C/N比につき比較すれば、この別表及び前述し
た説明からも理解できるように、比較例に係る記録媒体
が44.0(dB)であるのに対して、実施例1〜12
に係るいずれの記録媒体であってもC/N比の特性向上
が認められる。−例としで、これら実施例中でC/N比
の向上が最も低い実施例2では46、8(dB)が得ら
れ、2.8(dB)向上した。また、実施例12に係る
記録媒体では、当該特性値の向上が最も著しく、比較例
に比して4.2(dB)高い48.2(dB)のC/N
比が得られた。 ざらに、耐食性試験の結果からも理解できるように、比
較例及び実施例1〜実施例8、実施例11及び実施例1
2に係る記録媒体では、200時間に亙る耐食性試験の
後のC/N比の低下は認められず、特に、実施例11に
係る記録媒体と実施例12に係る記録媒体とは、同し耐
食性試験条件を1000時間に亙って保持した復であっ
てもC/N比の低下は認められなかった。 一方、既に述べたように、エラーレートの測定からは、
200時間に亙って前述した耐食性試験条件に保持した
、比較例に係る記録媒体は約10−4であった。これに
対して、実施例1〜実施例8、実施例11及び実施例1
2に係る記録媒体では、比較例と同し条件下、約10−
5程度の値が得られ、この発明に係る保護膜の材料構成
によって記録媒体の安定性が向上したことが理解できる
。ざらに、実施例11に係る記録媒体と実施例12に係
る記録媒体では、上述と同し耐食性試験条件を1000
時間に亙って保持した後であっても約10−5のエラー
レートが得られ、5rTi03とBaTiO3との双方
を同時にスパッタしで得られた保護膜を具えることによ
り、記録情報の安定性は著しく向上することが理解でき
る。 また、複素屈折率n−kiのうちの屈折率nについて比
較すれば、比較例に係る試料の屈折率nが1.90であ
るのに対して、実施例1〜12に係る試料では、いずれ
の実施例でも屈折率nが2.21以上であり、カー効果
エンハンスメントによっでC/N比が向上したことが理
解できる。 さらに、吸光係数kに関しては、比較例における吸光係
数kが0.10であるのに比しで、いずれの実施例でも
著しい向上が認められ、特に、実施例4、実施例8及び
実施例12に係る試料では、吸光係数kが0となり、実
質的に透明な保護膜材料が被着されていることが理解で
きる。 これに加えて、別表からも理解できるよう(こ、例えば
実施例2〜4に係る3種類の記録媒体を比較すると、組
成調整用ターゲットに酸素が含有されでいる割合が大き
く成るにつれて吸光係数にの値が小さく成る傾向が見て
取れる。このような傾向は、実施例6〜8または実施例
10〜12における夫々の比較からも認められる。 また、実施例1と実施例2、実施例5と実施例6または
実施例9と実施例10の、夫々の記録媒体に関する比較
から、第二発明に係る方法を利用して組成調整用ターゲ
ットにチタン(Ti)%用いることにより、屈折率nが
向上しているのが理解できる。 上述した比較例と実施例1〜12との比較からも理解で
きるように、この出願の第二発明に係る方法により作製
された記録媒体では、各々の材料構成において組成調整
用ターゲットと同時に成膜用ターゲットをスパッタする
ことにより、従来の記録媒体に比して、優れた特性の記
録媒体が得られる。 保護膜13a及び+3bを形成したことを除き、チタン
酸ストロンチウム(SrTi03)から成る直径126
(mm)の成膜用ターゲットを用いて実施例1と同様な
槓層閉係及び成膜条件で記録媒体を作製した。この時の
成膜条件は、前述と同一の投入電力とし、上述した混合
雰囲気のガス圧は3 (mTorr)とした。 次に、この出願の第三発明に係る方法の実施例として、
不活性ガスと酸素との混合雰囲気中で、成層用ターゲッ
トのみをスパッタして保護膜形成した場合の実施例13
〜実施例15に係る記録媒体につき説明する。尚、これ
ら第三発明に係る実施例では、前述した実施例9及び実
施例10と同様に耐食性試験を行なわなかった。 火遊■(す く製造条件の説明〉 この実施例13では、アルゴン80(体積%)及び酸素
20(体積%)の混合雰囲気中でスパッタして< C/
N比の測定手順と測定結果の説明〉この実施例13に係
る記録媒体に間しで、比較例及び実施例1〜12と同一
の条件でC/N比の測定を行なった結果、記録媒体のC
/N比は47.6(dB)であった。 〈複素屈折率の測定手順と結果〉 この実施例13に係る記録媒体の複素屈折率測定におい
ても、シリコンウェハの表面に、上述と同し被着条件及
び膜厚2000 (λ)で保護膜を被着させた試料を別
途作製し、比較例及び実施例1〜12と同様に測定した
結果、複素屈折率は2.22であった。この説明からも
理解できるように、前述した実施例4、実施例8及び実
施例12に係る記録媒体と同様に吸光係数kが0となり
、実質的に透明な保護膜を実現することができた。 太遊U 〈製造条件の説明〉 この実施例14では、アルゴン80(体積%)及び酸素
20(体積%)の混合雰囲気中でスパッタして保護膜1
3a及び+3b@形成したことを除き、チタン酸バリウ
ム(BaTiO3)から成る直径126(mm)の成膜
用ターゲットを用いた実施例5と同様な積層関係及び成
膜条件で記録媒体を作製した。 この時の成膜条件は、前述と同一の投入電力とし、上述
した混合雰囲気のガス圧は3 (mTorr)とした。 < C/N比の測定手順と測定結果の説明〉この実施例
14に係る記録媒体に閉じて、比較例及び実施例1〜1
3と同一の条件でC/N比の測定を行なった結果、記録
媒体のC/N比は47.5(dB)であった。 〈複素屈折率の測定手順と結果〉 この実施例14に係る記録媒体の複素屈折率測定におい
でも、シリコンウェハの表面に、上述と同し被着条件及
び膜厚2000 (λ)で保護膜を被着させた試料を別
途作製し、比較例及び実施例1〜13と同様に測定した
結果、複素屈折率は2.21であった。この説明からも
理解できるように、前述した実施例4、実施例8、実施
例12及び実施例13に係る記録媒体と同様に吸光係数
kが0となり、実質的に透明な保護膜を実現することが
できた。 犬mゆ 〈製造条件の説明〉 この実施例15では、アルゴン80(体積%)及び酸素
20(体積%)の混合雰囲気中でスパッタして保護膜1
3a及び+3bを形成したことを除き、チタン酸ストロ
ンチウム(SrTiO3)とチタン酸バリウム(BaT
iO3)と(組成比1:1)の混晶から成る直径126
(mm)の成膜用ターゲットを用いた実施例9と同様な
積層間係及び成膜条件で記録媒体を作製した。この時の
成膜条件は、前述と同一の投入電力とし、上述した混合
雰囲気のガス圧は3 (mTorr)とした。 <C/N比の測定手順と測定結果の説明〉この実施例1
5に係る記録媒体に関して、比較例及び実施例1〜14
と同一の条件でC/N比の測定を行なった結果、記録媒
体のC/N比は48.1(dB)であった。 実施例4、実施例8及び実施例12〜14に係る記録媒
体と同様に吸光係数kfJ<oとなり、実質的に透明な
保護膜を実現することができた。 これら実施例13〜15に係る記録媒体の特性からも理
解できるように、この出願に係る第三発明の方法によれ
ば、不活性ガスと酸素との混合雰囲気中でスパッタして
保護膜を形成することにより、この出願の第二発明を利
用して二酸化チタン(TiO7)を組成調整用ターゲッ
トに用いた場合とほぼ同様の複素屈折率が得られ、実質
的に透明な保護膜を形成し得る。 〈複素屈折率の測定手順と結果〉 この実施例15に係る記録媒体の複素屈折率測定におい
でも、シリコンウェハの表面に、上述と同し被着条件及
び膜厚2000 (人)で保護膜を被着させた試料を別
途作製し、比較例及び実施例1〜14と同様に測定した
結果、複素屈折率は2.23であった。この説明からも
理解できるように、前述した次に、この出願の第四発明
に係る方法の実施例としで、不活性ガスと酸素との混合
雰囲気中で、成膜用ターゲットと組成調整用ターゲット
とを同時にスパッタして保護膜形成した場合の実施例1
6〜実施例18に係る記録媒体につき説明する。 尚、前述したように、第二発明に係る実施例からも理解
できるように、組成調整用クーゲットとしてチタン(T
i)を用いて保護膜形成した場合には、屈折率の向上が
見られた。従って、この実施例では、組成調整用ターゲ
ットとして■lヲ用いると共に、第三発明に係る実施例
との比較を容易とする目的で、混合雰囲気がアルゴン8
0(体積%)及び酸素20(体積%)の場合につき特性
測定を行なった。 医長上−ゆ 〈製造条件の説明〉 この実施例16ては、アルゴン80(体積%)及び酸素
20(体積%)の混合雰囲気中でスパッタして保護膜1
3a及び+3bを形成したことを除き、実施例2と同様
な積層間係及び成膜条件で記録媒体を作製した。即ち、
チタン(Ti)から成る直径+26(mm)の組成調整
用ターゲットと、チタン酸ストロンチウム(SrTi0
3)から成る直径25(mm)の成膜用ターゲットとを
用意して、上述した組成調整用ターゲットの表面に成膜
用ターゲットを6枚截盲し、上述した混合雰囲気中で、
これら2種類のターゲットを同時にスパッタする。この
時の成膜条件は、前述と同一の投入電力とし、上述した
混合雰囲気のガス圧は3 (mTorr)とした。 < C/N比の測定手順と測定結果の説明〉この実施例
16に係る記録媒体に閉しで、比較例及び実施例1〜1
5と同一の条件でC/N比の測定を行なった結果、記録
媒体のC/N比は47.5(dB)であった。 〈耐食性試験の手順と測定結果の説明〉この実施例16
では、比較例及び実施例1〜8と同様に、前述した耐食
性試験条件下で200時間に亙って保持した後、記録媒
体のエラーレートの測定と、C/N比の測定とを行なっ
た。 その結果、エラーレートは約10−5程度であり、C/
N比は耐食性試験前の値と同じ47.5(dB)であっ
た。 く複素屈折率の測定手順と結果〉 この実施例16に係る記録媒体の複素屈折率測定におい
でも、シリコンウェハの表面に、上述と同し被着条件及
び膜厚2000 (人)で保護膜を被着させた試料を別
途作製し、比較例及び実施例1〜15と同様に測定した
結果、複素屈折率は2.23であった。この説明からも
理解できるように、前述した実施例4、実施例8及び実
施例12〜実施例15に係る記録媒体と同様に吸光係数
kがOとなり、実質的に透明な保護膜を実現することが
できた。 天上I引口 〈製造条件の説明〉 この実施例17では、アルゴン80(体積%)及び酸素
20(体積%)の混合雰囲気中でスパッタして保護膜1
3a及び+3bを形成したことを除き、実施例6と同様
な積層関係及び成膜条件で記録媒体を作製した。即ち、
チタン(Ti)から成る直径126(mm)の組成調整
用ターゲットと、チタン酸バリウム(BaTiO3)か
ら成る直径25(mm)の成膜用ターゲットとを用意し
て、上述した組成調整用ターゲットの表面に成膜用ター
ゲットを6枚装置し、上述した混合雰囲気中で、これら
2種類のターゲットを同時にスパッタする。この時の成
膜条件は、前述と同一の投入電力とし、上述した混合雰
囲気のガス圧は3 (mTorr)とした。 < C/N比の測定手順と測定結果の説明〉この実施例
17に係る記録媒体に関して、比較例及び実施例1〜1
6と同一の条件でC/N比の測定を行なった結果、記録
媒体のC/N比は47.0(dB)であった。 く耐食性試験の手順と測定結果の説明〉この実施例17
では、比較例及び実施例1〜8と同様に、前述した耐食
a試験条件下で200時間に亙って保持した後、記録媒
体のエラーレートの測定と、C/N比の測定とを行なっ
た。 その結果、エラーレートは約10−5程度であり、C/
N比は耐食性試験前の値と同じ47゜0(dB)であっ
た。 く複素屈折率の測定手順と結果〉 この実施例17に係る記録媒体の複素屈折率測定におい
でも、シリコンウェハの表面に、上述と同し被着条件及
び膜厚2000 (λ)で保護膜を被若ざぜた試料を別
途作製し、比較例及び実施例1〜16と同様に測定した
結果、複素屈折率は2.25であった。この説明からも
理解できるように、前述した実施例4、実施例8及び実
施例12〜実施例16に係る記録媒体と同様に吸光係数
kがOとなり、実質的に透明な保護膜を実現することが
できた。 火遊」1則 〈製造条件の説明〉 この実施例18では、アルゴン80(体積%)及び酸素
20(体積%)の混合雰囲気中でスパッタして保護膜+
3a及び+3bを形成したことを除き、実施例10と同
様な積層関係及び成膜条件で記録媒体を作製した。即ち
、チタン(Ti)がら成る直径126(mm)の組成調
整用ターゲットの表面に、チタン酸ストロンチウム(S
rTi03)から成る直径25(mm)の成膜用ターゲ
ットと、チタン酸バリウム(BaTiO3)から成る直
径25(mm)の成膜用ターゲットとを、各々3枚r装
置し、上述した混合雰囲気中で、これら3種類のターゲ
ットを同時にスパッタする。この時の成膜条件は、前述
と同一の投入電力とし、上述した混合雰囲気のガス圧は
3(mTorr)とした。 <C/N比の測定手順と測定結果の説明〉この実施例1
8に係る記録媒体に関して、比較例及び実施例1〜17
と同一の条件でC/N比の測定を行なった結果、記録媒
体のC/N比は47.9(dB)であった。 尚、この実施例18に係る記録媒体では、耐食性試験を
行なわなかった。 く複素屈折率の測定手順と結果〉 この実施例18に係る記録媒体の複素屈折率測定にあい
でも、シリコンウェハの表面に、上述と同し被着条件及
び膜厚2000 (λ)で保護膜を被着させた試料を別
途作製し、比較例及び実施例1〜17と同様に測定した
結果、複素屈折率は2.24であった。この説明からも
理解できるように、前述した実施例4、実施例8及び実
施例12〜実施例17に係る記録媒体と同様に吸光係数
kfJ<Oとなり、実質的に透明な保護膜を実現するこ
とができた。 以下、図面を参照して、この出願の第四発明に係る実施
例として、不活性ガスと酸素との混合雰囲気における酸
素の含有率を種々(こ変え、前述した成膜用ターゲット
と組成調整用ターゲットとを同時にスパッタし、これに
よって得られた試料の複素屈折率を測定した結果につき
説明する。 く試料の製造条件〉 この測定では、前述した比較例及び実施例1〜18と同
様に、シリコンウェハの表面に2000 (A )の膜
厚で保護膜材料を被着形成した試料を用いた。 この試料の製造条件につき詳述すれば、まず、前述の実
施例2で用いたのと同一の寸法を有する、チタン酸スト
ロンチウム(SrTiO3)から成る成膜用ターゲット
とチタン(Ti)から成る組成調整用ターゲットとを用
意する。然る後、アルゴンと酸素とから成るスバ・yタ
ガスにおいで酸素が占める割合を0〜50(体積%)の
範囲内で種々に変え、このような被着雰囲気中において
、上述した組成調整用ターゲットと2f!類の成膜用タ
ーゲットとを同時にスパッタして成膜を行なった。 尚、この際の被着条件は、投入電力を500(W)、上
述した混合気体から成るスバ・ンタガスの圧力を3 (
mTorr)に統一しで行なった。 第1図及び第2図は、上述の製造条件により作製した各
々の試料につき、複素屈折率n−kiを測定した結果を
示す特性曲線図である。これら図において、第1図は、
縦軸に屈折率n及び横軸に酸素含有率(体積%)8採っ
て示し、第2図は縦軸に吸光係数k及び横軸に酸素含有
率(体積%)を採って示しである。 まず、第1図からも理解できるように、上述したスパッ
タガスにおける酸素含有率を高めでいくに従って、屈折
率nの減少傾向が認められた。 例えばスバ・ンタガスを酸素0(体積%)とした場合(
アルゴン100(体積%)とした前述の実施例21こ相
当)では屈折率nが2,23であるのに対して、酸素5
0(体積%)とした場合には屈折率nが2.1程度にま
で減少した。 また、第2図から理解できるように、吸光係数kについ
ても同様の傾向が見られ、スパッタガス中の酸素含有率
が0(体積%)である実施例2に相当する試料では吸光
係数kが0.03となった。 これに対して、酸素含有率を20(体積%)とした混合
雰囲気でスパッタを行なった場合には吸光係数kがOと
なるのが認められ、当該含有率を20(体積%)よりも
大きな値としでも、Oを示すのが認められた。 次に、上述したチタン酸ストロンチウムの代わりに、チ
タン酸バリウムを成膜用ターゲットとしで、アルゴンと
酸素との含有率を極少でこ変えて得られた試料の複素屈
折率を測定した結果につき説明する。尚、試料の作製に
係る種々の条件は、上述したチタン酸ストロンチウム(
SrTi03)の代わりにチタン酸バリウム(BaTi
O3)7&用いたことを除いて同一とし、シリコンウェ
ハの表面に2000(λ)の膜厚で保護膜材料を被着し
て作製した試料を用いて測定を行なった。 第3図及び第4図は、前述した第1図または第2図と同
様に複素屈折率n−kiを測定した結果を示す特性曲線
図である。これら図において、菓3図は、縦軸に屈折率
n及び横軸に酸素含有率(体積%)を採って示し、第4
図は縦軸に吸光係数k及び横軸に酸素含有率(体積%)
を採って示しである。 まず、第3図からも理解できるように、このチタン酸バ
リウムを用いて混合雰囲気中で被着形成した試料におい
ても、上述したチタン酸ストロンチウムの場合と同様に
、スパッタガスにおける酸素含有率を高めるに従って、
屈折率nの減少傾向が認められた。例えばスパッタガス
を酸素O(体積%)とした場合(アルゴン100(体積
%)とした前述の実施例6に相当)には屈折率nが2.
27となった。これに対して、スパッタガスにおける酸
素含有率を50(体積%)とした場合には、屈折率nか
2.1程度にまで減少した。 また、第4図から理解できるように、吸光係数kについ
でもチタン酸ストロンチウムと同様の傾向が見られ、ス
バ・シタガス中の酸素含有率がO(体積%)である試料
(実施例6に相当)では吸光係数kが0.02となった
。これに対して、酸素含有率を20(体積%)とした混
合雰囲気でスパッタを行なった場合には、チタン酸スト
ロンチウムの場合と同様に、吸光係数kが0となるのが
認められ、当該含有率を20(体積%)よりも大きな値
としてもOとなることが理解できる。 以上、この出願の発明に係る実施例につき、f!々の条
件で作製した記録媒体を試料として詳細に説明した。こ
こで、上述した製造方法と、各製造方法により作製され
た保護膜の組成との関係につき説明する。 上述した実施例のうち、実施例]、実施例5及び実施例
9に係る記録媒体は、従来周知のスパッタリシグ技術に
より保護膜を被着形成して作製したものである。また、
これに加えて、この出願の方法発明により作製された記
録媒体においても、特性測定の結果から理解できるよう
に、実施例1〜18に係る記録媒体(保護膜)では、は
ぼ同一の組成を有すると考えられる。これらの元素構成
において、例えばストロンチウム、バリウム及びチタン
といった金属元素については、例えばオージェ−効果を
利用した化学分析技術を用いて決定可能であるが、チタ
ン酸系の化合物の場合には、気体成分と成り易い酸素を
含む構成であるため、厳密な組成を決定することが難し
い。 しかしながら、例えば文献■:「誘電体部」(岡小天著
、第55〜77頁、現代工学社刊)からも理解できるよ
うに、例えばMOとTiOx−+との共融によりMTi
Gx(Mは金属元素)で表わされるチタン酸系の物質で
は、上述したMOが有する複素屈折率とTiOx−+が
有する複素屈折率との平均によって求めることかできる
。ざらに述べれば、上述したチタン酸系の物質ではXの
値が3に近い程、吸光係数kかOに近似することが知ら
れている。詳細に説明すると、−酸化チタン(Tie)
と上述した金属酸化物MOとにより得られるチタン酸塩
は吸収を有する(吸光係数kが0でない)のに対しで、
二酸化チタン(Ti02)と金属酸化物とにより得られ
るチタン酸塩は透明(吸光係数kが0)となることが知
られている。 このような光学的性質から、上述した実施例1〜18に
係る保護膜の組成を計算すれば、上述したXの値は2.
7≦×≦3.0となる。 以上、この発明の実施例につき詳細に説明したが、この
発明は上述した実施例にのみ限定されるものではないこ
と明らかである。 例えば、上述した実施例においては、この出願の方法発
明に係るスパッタカスとしてアルゴンを用いた場合につ
き説明したが、他の不活性ガスであっても同様の効果を
期待し得る。 また、実施例に係る記録媒体の構造として、第5図に示
す積層間係で構成したものを例示した。しかしながら、
この発明の光磁気記録媒体は、特定の積層関係によって
のみ効果が得られるものではなく、例えば反射膜または
その他の構成成分を付加して構成した場合であっても同
様の効果を得ることができる。 ざらに、上述した実施例では、Tb −Fe −Coか
ら成る磁性膜を用いた場合につき説明したが、これに限
定されるものではなく、種々のRE−TM金合金用いる
ことができる。 これら材料、寸法、配MS係、数値的条件及びその他、
上述した特定の条件は、この発明の目的の範囲内で、任
意好適な設計の変更及び変形を行ない得ること明らかで
ある。 (発明の効果) 上述した説明からも明らかなように、この出願の第一発
明に係る光磁気記録媒体によれば、保護膜材料として、
チタン酸ストロンチウム系化合物(SrTiOx)及び
チタン酸バリウム系化合物(8aTiOx)(但し、X
は2.7≦X≦3,0の値を表わす、)のうちから選ば
れた一方の物質または双方の混晶を保護膜としで用いる
構成と成している。これがため、従来の保護膜材料を具
えた記録媒体に比して、高い屈折率と低い吸光係数とを
実現することができ、ざらに耐食性の劣化を来すことが
ない。 また、この出願の第二発明に係る光磁気記録媒体の製造
方法(こよれば、前述した所定の材料から成る成膜用タ
ーゲットと組成調整用ターゲットとを同時にスパッタし
て保護膜を被着形成することにより、第一発明に係る記
録媒体r8容易に実現することができる。 ざらに、この出願の第三発明に係る光磁気記録媒体の製
造方法によれば、酸素を含む混合雰囲気中で前述した所
定の材料から成る成膜用ターゲットをスパッタして保護
膜形成することにより、第一発明に係る記録媒体を容易
に得ることができる。 これに加えて、この出願(こ係る第四発明の光磁気記録
媒体の製造方法によれば、上述した第二発明と第三発明
とを同時に適用することにより、第一発明に係る記録媒
体を容易に得ることができる。 従って、この出願に係る発明を適用することにより、優
れた特性を有する記録媒体を簡単かつ
[Description of Manufacturing Conditions] First, in the recording medium according to this comparative example, a protective film 1 made of silicon monoxide (Sin) was formed on the surface of a substrate 11 made of polycarbonate resin by a conventionally well-known sputtering technique.
3a is deposited to a thickness of about 800 (λ). The film forming conditions at this time were to use a film forming target with a diameter of 126 (mm) made only of SiO, and an input power of 500 (W).
The experiment was conducted at an argon gas pressure of 3 (mTorr). Next, the composition ratio of chilled ram diiron: cobalt is 22 near 0.
:8 (ratio of the number of atoms) is prepared, and under the same sputtering conditions as above, the magnetic film 15 is deposited on the surface of the protective film 13a to a thickness of about 800. Adhesive formation. Subsequently, under the same conditions as the above-mentioned protective film 13a,
A protective film +3t) was deposited on the surface of the magnetic film 15 described above to a thickness of about 1000 (λ) to obtain a recording medium according to a comparative example. <Explanation of C/N ratio measurement procedure and measurement results> This C/N
In measuring the ratio, a recording medium according to a comparative example manufactured on a polycarbonate resin substrate was used as a sample according to the procedure described above, and the wavelength of the light used for writing was 830 (nm),
Rotation speed 900 (r, p, m,), duty -50 (%
), recording frequency 1.85 (MHz), recording power 7 (
mW) and then read out with a power of 1.6 (mW).
The C/N ratio was measured with a bandwidth of 30 (Hz). As a result, the C/N ratio of the recording medium according to the comparative example was 44.0.
(dB). Explanation of Corrosion Resistance Test Procedures and Measurement Results> In the corrosion resistance test, information was written in advance on the recording medium according to the comparative example, and the relative humidity was set to 80 (%) at a temperature of t60 ("G).
) conditions (hereinafter simply referred to as corrosion resistance test conditions).
Hold for 200 hours. Thereafter, the corrosion resistance was evaluated based on the result of measuring the rate at which the pre-written information was damaged after the corrosion resistance test (error rate) and the measurement result of the C7N ratio described above. As a result, the error rate is about 10-4, and C/
The N ratio was 44.0 (dB), the same as the value before the corrosion resistance test. Measurement procedure and results of complex refractive index In this measurement, a film thickness of 2000 (λ) of Si was deposited on the surface of the silicon wafer under the same deposition conditions as for the protective film described above.
A sample coated with O was prepared separately, and the complex refractive index n-k at a wavelength of 633 (nm) was measured using an ellipsometer.
i was measured. As a result, the complex refractive index was 1.90-0.10 i. Next, recording media according to Examples 1 to 4 in which strontium titanate (SrTiO3) 7a is used as a target for film formation will be described. In the recording medium according to this embodiment, a substrate 11 made of polycarbonate resin is formed by a conventionally well-known sputtering technique.
A protective film 13 at a thickness of approximately 800 (λ) is formed on the surface of the protective film 13at. The film forming conditions at this time were to use a film forming target with a diameter of 126 (mm) made only of SrTiO3, an input power of 500 (W), and an argon gas pressure of 3 (mm).
It was carried out as (Ding orr). Next, using the target for the magnetic film having the composition described above, the protective film 13a is sputtered under the same sputtering conditions as described above.
A magnetic film 15 with a film thickness of about 800 (λ) is deposited on the surface. Subsequently, a protective film +3b was deposited on the surface of the magnetic film 15 to a thickness of about 1000 (layers) under the same film-forming conditions as the protective film 13a described above, and the recording medium according to the example] was formed. Obtained. <Explanation of C/N ratio measurement procedure and measurement results> This Example 1
In measuring the C/N ratio of the recording medium according to Example 1, the recording medium according to Example 1, which was manufactured on a polycarbonate resin substrate, was used as a sample by the same procedure as the comparative example described above, and the light used for writing was measured. Wavelength 830 (nm), rotation speed 900 (
ρ, m, ), duty -50 (%), recording frequency 1
.. 85 (MHz), recording power 7 (mW), then read power 1.6 (mW), bandwidth 3
The C/N ratio was measured at 0 (Hz). As a result, the C/N ratio of the recording medium according to Example 1 was 47.
It was 5 (dB). Explanation of Corrosion Resistance Test Procedures and Measurement Results> In the corrosion resistance test, information INF was included in advance for the recording medium according to Example 1, and the recording medium was heated at a temperature of 60% ('C) and a relative humidity of 80%.
(%) under the same corrosion resistance test conditions as the comparative example.
The corrosion resistance I! is retained for 0 hours and then measured by measuring the damage rate (error rate) of the information described above and measuring the C/N ratio described above. was evaluated. As a result, the error rate was about 101, and the C/N
The ratio was 47.5 (dB), the same as the value before the corrosion resistance test. <Complex refractive index measuring element j@ and results> In this measurement, a separate sample was prepared with a protective film deposited to a thickness of 2000 (λ) on the surface of a silicon wafer under the same deposition conditions as above. The complex refractive index n-ki at a wavelength of 633 (nm) was measured using an ellipsometer. As a result, the complex refractive index was 2.22-0.02 i. Large 18 soup λ <Explanation of manufacturing conditions> In the recording medium according to the second embodiment, the protective films 13a and +3b are deposited and formed using the method according to the second invention, and the magnetic!
For the deposition of the film 15, samples were prepared using the same material, film thickness, and deposition conditions as described above. To explain in detail the conditions for depositing this protective film, first, a target for composition adjustment with a diameter of 126 (mm) made of titanium (Ti) and a film forming target with a diameter of 25 (mm) made of strontium titanate (SrTiO3) are used. Prepare a target. Thereafter, one surface of the above-mentioned target for composition adjustment was coated with six targets for film formation. In this way, on the surface to be sputtered, with the surface of the composition adjustment target covered by the film forming target, these two types of targets are simultaneously sputtered to form a protective film on the surface of the substrate 11 made of polycarbonate resin. 13a to about 800 (λ)
The film was deposited to a thickness of . The film forming conditions at this time were as described above, with an input power of 500 (W) and an argon gas pressure of 3 (mTorr). As can be understood from the above description, in Example 2, the ratio of the area of the film forming target made of SrTiO3 to the surface to be sputtered is approximately 95 (%), and the composition adjustment target made of Ti or the sputtered target is The protective film was formed with the area occupied by the surface being approximately 5 (%). <Explanation of C/N ratio measuring element j@ and measurement results> Even when the recording medium according to Example 2 was closed, the C/N ratio was measured under the same conditions as in Comparative Example and Example]. As a result, the C/N ratio of the recording medium according to Example 2 was 46.8 (dB). <Explanation of Corrosion Resistance Test Procedures and Measurement Results> The corrosion resistance test was also carried out after being held for 200 hours under the same corrosion resistance test conditions as in Comparative Example and Example 1, and the damage rate (error rate) of the information mentioned above was confirmed. Corrosion resistance was evaluated by the measurement and the measurement of the C/N ratio described above. As a result, the error rate was about 10-5, and C7
The N ratio was 46.8 (dB), the same as the value before the corrosion resistance test. <Measurement procedure and results of complex refractive index> In the complex refractive index measurement of the recording medium according to Example 2, a protective film with a film thickness of 2000 (A) was applied to the surface of the silicon wafer under the same deposition conditions as described above. A sample coated with was prepared separately, and the complex refractive index n-ki% at a wavelength of 633 (nm) was measured using an ellipsometer and a meter in the same manner as in Comparative Example and Example 1. As a result, the complex refractive index was 2.23-0.03 i. [Large] Explanation of manufacturing conditions> In the recording medium according to the third embodiment, titanium monoxide (Tie) is used as the target for composition adjustment, and the protective films 13a and 131 are formed by applying the method according to the first invention. ) and its adhesion,
For the deposition of the magnetic film 15, samples were prepared using the same material, film thickness, and deposition conditions as described above. In detail, the conditions for depositing this protective film are as follows: - a target for composition adjustment with a diameter of 126 (mm) made of titanium oxide (Tie) and strontium titanate (SrTiO3);
A film forming target with a diameter of 25 (mm) is prepared. Thereafter, as in Example 2, these two types of targets were simultaneously sputtered on the surface to be sputtered, with the surface of the composition adjustment target covered with six film forming targets. A protective film 13a with a thickness of about 800 (A) was deposited on the surface of the substrate 11 made of polycarbonate resin.The film forming conditions at this time were the same input power and argon gas pressure as described above. As can be understood from the above explanation, in this Example 3, the ratio of the area of the film forming target made of 5rTi(h) to the surface to be spun is approximately 95 (%), and the composition adjustment target made of TiO is The protective film was formed with a proportion of about 5 (%) on the above-mentioned surface. <Explanation of C/N ratio measurement procedure and measurement results> As a result of measuring the C/N ratio under the same conditions as Comparative Example, Example 1, and Example 2,
The C/N ratio of the recording medium according to Example 3 was 47.5 (dB)
Met. Explanation of the corrosion resistance test procedure and measurement results> Under the same corrosion resistance test conditions as the comparative example, Example 1, and Example 2 described above,
After holding the recording medium for 0 hours, the error rate and C/N ratio of the recording medium according to Example 3 were measured. It was 47.5 (dB), the same as the value before the test. Complex refractive index measurement procedure and results> In the measurement of the complex refractive index of the recording medium according to this Example 3, the same deposition conditions as above were applied to the surface of the silicon wafer.
A sample with a protective film of 2000 (A) was separately prepared and measured in the same manner as in Comparative Example, Example 1, and Example 2, and the complex refractive index was 2.22-0.02 i. . Large] External pressure <Explanation of manufacturing conditions> In the recording medium according to the fourth embodiment, titanium dioxide (Ti02) is used as the target for composition adjustment, and the protective films 13a and +3b are formed by applying the method according to the second invention. Adhesive formation,
For the deposition of the magnetic film 15, samples were prepared using the same material, film thickness, and deposition conditions as described above. In this protective film formation, titanium dioxide (TiO□)
The same power input and argon gas pressure as in Examples 2 and 3 were used, except that the target was used for composition adjustment. As can be understood from the above explanation, in this Example 4, the ratio of the area occupied by the film forming target made of SrTiO3 to the surface to be sputtered is approximately 95(%),
The protective film was formed by setting the ratio of the target for composition adjustment consisting of the above-mentioned surface to about 5 (%). <Explanation of C1N ratio measurement procedure and measurement results> This Example 4
As a result of measuring the C/N ratio under the same conditions as the comparative example and Examples 1 to 3, the C/N ratio of the recording medium according to Example 4 was 47.0 ( dB). Explanation of Corrosion Resistance Test Procedures and Measurement Results> After holding for 200 hours under the same corrosion resistance test conditions as in the comparative example and Examples 1 to 3, the error rate of the recording medium according to Example 4 was measured, and C/ As a result of measuring the N ratio, the error rate was about 10-5, and the C/N ratio was 47.0 (dB), the same as the value before the corrosion resistance test. Complex refractive index measurement procedure and results> In the complex refractive index measurement of the recording medium according to Example 4, the same deposition conditions as above were applied to the surface of the silicon wafer.
A sample with a protective film of 2000 (λ) was separately prepared and measured in the same manner as in Comparative Examples and Examples 1 to 3, and the complex refractive index was 2.21, which can be understood from this explanation. As shown, the extinction coefficient k of the recording medium according to Example 4 was O, and a substantially transparent protective film could be formed. Next, recording media according to Examples 5 to 8 in which barium titanate (8aTiO3) is used as a film formation target will be described. <Description of manufacturing conditions> In the recording medium according to Example 5, barium titanate (
A recording medium according to Example 5 was obtained by producing a recording medium under the same lamination relationship and film formation conditions as in Example 2, except for using a film formation target made of BaTiO3 with a diameter of 126 (mm). . <Explanation of C/N ratio measurement procedure and measurement results> In measuring the C/N ratio of the recording medium according to Example 5, the same recording medium as that of the comparative example and Examples 1 to 4 described above was used. As a result of measurement according to the procedure, C of the recording medium according to Example 5
/11 ratio was 48.0 (dB). Description of Corrosion Resistance Test Procedures and Measurement Results> After holding the recording medium according to Example 5 for 200 hours under the same corrosion resistance test conditions as the recording media according to Comparative Example and Examples 1 to 4. The corrosion resistance was evaluated by the error rate measurement described above and the C/N ratio measurement described above. As a result, the error rate is about 10-5, and C/
The N ratio was 48.0 (dB), the same as the value before the corrosion resistance test. Measurement procedure and results of complex refractive index> A sample according to Example 5 was separately prepared in which a protective film was deposited on the surface of a silicon wafer with a film thickness of 2000 (^) using the same deposition conditions as described above. As a result of measuring the complex refractive index n-ki@ using an ellipsometer, the complex refractive index was 2.
It was 25-0.02 i. In this Example 6, barium titanate (BaTiO3)
A recording medium was produced using the same lamination relationship and film forming conditions as in Example 2 using the second invention, except that a film forming target with a diameter of 25 (mm) consisting of was used. That is, with six of the above-mentioned film forming targets placed on the surface of a composition adjustment target made of titanium (Ti) and having a diameter of 126 mm, these two types of targets are simultaneously sputtered to form the protective film 13a. and +3bt were deposited. The film forming conditions at this time were the same input power and argon gas pressure as described above. As can be understood from the above explanation, in this Example 6, the ratio of the area occupied by the film forming target made of BaTiO3 to the surface to be sputtered is approximately 95 (%), and the ratio of the area occupied by the target for composition adjustment made of Ti to the sputtered surface is set. The protective film was formed with a proportion of about 5 (%) on the surface. <Explanation of C/N ratio measurement procedure and measurement results> This Example 6
(Comparative Examples and Examples 1 to 5
As a result of measuring the C/N ratio under the same conditions as above, the C/N ratio of the recording medium according to Example 6 was 47.0 (dB). Description of Corrosion Resistance Test Procedures and Measurement Results> After holding the recording medium according to Example 6 for 200 hours under the same corrosion resistance test conditions as the recording media according to Comparative Example and Examples 1 to 5. The corrosion resistance was evaluated by the error rate measurement described above and the C/N ratio measurement described above. As a result, the error rate is about 10-5, and C/
The N ratio was 47.0 (dB), the same as the value before the corrosion resistance test. Measurement procedure and results of complex refractive index A sample was separately prepared in which a protective film was deposited on the surface of a silicon wafer to a thickness of 2000 cm under the same deposition conditions as described above, and a comparative example and an example were prepared. As a result of measurement in the same manner as in 1 to 5, the complex refractive index was 2.27-0.02 i. The protective film was formed with the area occupied by the sputtered surface being approximately 5 (%). Taigo Ie L <Explanation of manufacturing conditions> In this Example 7, barium titanate (BaTiO3)
A recording medium was produced using the method according to the second invention under the same lamination relationship and film forming conditions as in Example 3, except that a film forming target with a diameter of 25 (mm) consisting of was used. - diameter 126 (m) of titanium oxide (Tie).
With six of the above film forming targets placed on the surface of the composition adjustment target (m), these two types of targets were simultaneously sputtered to form protective films 13a and +3b. The film forming conditions at this time were the same input power and argon gas pressure as described above. As can be understood from the explanation in 4 above, in this Example 7, the ratio of the area occupied by the film forming target made of BaTiOs to the surface to be sputtered is approximately 95 (%), and the composition adjustment target made of TiO is covered. <Explanation of C/N ratio measurement procedure and measurement results> Regarding the recording medium according to Example 7, the C/N ratio was also measured under the same conditions as the comparative example and Examples 1 to 6. C/ of the recording medium according to Example 7
The N ratio was 48.0 (dB). <Explanation of Corrosion Resistance Test Procedures and Measurement Results> The recording medium according to Example 7 was held for 200 hours under the same corrosion resistance test conditions as the recording media according to Comparative Example and Examples 1 to 6. Thereafter, the corrosion resistance was evaluated by the error rate measurement described above and the C/N ratio measurement described above. As a result, the error rate is about 10-5, and C/
The N ratio was 48.0 (dB), the same as the value before the corrosion resistance test. <Measurement procedure and results of complex refractive index> A sample was separately prepared with a protective film deposited on the surface of a silicon wafer at a film thickness of 2000 (λ) under the same deposition conditions as above, and measured using an ellipsometer. 633 (nm)
As a result of measuring the complex refractive index n-ki at the wavelength of , the complex refractive index was 2.25-0.02i. [Explanation of production conditions] In this Example 8, barium titanate (BaTiO3)
A recording medium was produced under the same conditions as in Example 4, except that the protective film 13a and +3El were formed using a film forming target with a diameter of 25 (mm) consisting of: That is, the above-mentioned film forming target was placed on the surface of a composition adjustment target made of titanium oxide (TiOz) with a diameter of 126 (mm).
A piece in! In this state, these 21M type targets were simultaneously sputtered to form protective films 13a and 13b. The film forming conditions at this time were the same input power and argon gas pressure as described above. As can be understood from the above explanation, in this Example 8, BaTi0. The ratio of the area occupied by the film forming target made of TiO on the surface to be sputtered is about 95 (%), and the ratio of the area occupied by the composition adjustment target made of TiO□ to the surface to be sputtered is about 5 (%). Adhesion formation was performed. <Explanation of C/N ratio measurement procedure and measurement results> Regarding the recording medium according to Example 8, the C/N ratio was measured under the same conditions as Comparative Example and Examples 1 to 7. Example 8
The C/N ratio of the recording medium was 47.5 (dB). <Explanation of Corrosion Resistance Test Procedures and Measurement Results> After being held for 200 hours under the same corrosion resistance test conditions as in the comparative example and Examples 1 to 7, the error rate of the recording medium according to Example 8 was measured, and the C/ As a result of measuring the N ratio, the error rate was about 10-', and the C/N ratio was 47.5 (dB), the same as the value before the corrosion resistance test. <Measurement procedure and results of complex refractive index> In the measurement of the complex refractive index of the recording medium according to Example 8, a protective film was also applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 mm as described above. A sample was separately prepared and measured in the same manner as in Comparative Example and Examples 1 to 7, and as a result, the complex refractive index was 2.21. As can be understood from this explanation, the absorption coefficient k was O, similar to the recording medium according to Example 4 described above, and it was possible to realize a substantially transparent protective film. Next, Examples 9 to 1 in which a protective film was formed using both strontium titanate (SrTi03) and barium titanate (BaTiO3) as targets for film formation.
Let me explain about 2. In this Example 9, strontium titanate (SrTi
Conventional well-known sputtering was used, except that the protective films 13a and 13El were formed using a film-forming target with a diameter of 126 (mm) consisting of a mixed crystal of O3) and barium titanate (BaTiO3) (composition ratio 1:1). Example using technology]
A recording medium was produced using the same lamination relationship and film formation conditions as in Example 5. The film forming conditions at this time were the same input power and argon gas pressure as described above. <Explanation of C/N ratio measurement procedure and measurement results> This Example 9
The C/N ratio of the recording medium was measured under the same conditions as in Comparative Example and Examples 1 to 8, and the C/N ratio of the recording medium was 48.0 (dB). Note that a corrosion resistance test was not conducted on the magneto-optical recording medium according to Example 9. Complex refractive index measurement procedure and results> In the complex refractive index measurement of the recording medium according to Example 9, a protective film was applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 (λ) as described above. A sample was prepared separately and measured in the same manner as in Comparative Example and Examples 1 to 8, and as a result, the complex refractive index was 2,240.02i. <Explanation of manufacturing conditions> In this Example 10, strontium titanate (SrT
A film formation target with a diameter of 25 (mm) made of iO3) and a diameter 25 (mm) made of barium titanate (BaTiO3)
The recording medium was formed using the same lamination relationship and film forming conditions as in Example 3 and Example 7 using the second invention, except that the protective films 13a and +3b were formed using a film forming target of (mm). Created. F5, on the surface of a composition adjustment target made of titanium (Ti) with a diameter of 126 (mm), the above-mentioned Cugetto for film formation made of 5rTi03 and BaT were applied.
Three film-forming targets each made of iO3,
With a total of six targets loaded, these three types of targets were sputtered simultaneously to form protective films 13a and +3b. The film forming conditions at this time were the same input power and argon gas pressure as described above. As can be understood from the above description, in this Example 10, the total area ratio of the film forming target made of 5rTi03 and BaTi0+ on the sputtering target surface is approximately 95 (%), and the film forming target made of Ti The protective film was formed by setting the ratio of the area of the target for composition adjustment to the surface to be sputtered to about 5 (%). <Explanation of C/N ratio measurement procedure and measurement results> This Example 1
As a result of measuring the C/N ratio under the same conditions as Comparative Example and Examples 1 to 9, the C/N ratio of the recording medium was 47.0 (dB). Ta. Note that the magneto-optical recording medium according to Example 10 was not subjected to a corrosion resistance test as in Example 9 described above. <Measurement procedure and results of complex refractive index> In the complex refractive index measurement of the recording medium according to Example 10, a protective film was also applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 (λ) as described above. A deposited sample was prepared separately and measured in the same manner as in Comparative Example and Examples 1 to 9, and the complex refractive index was 2.26-0.03 i. Explanation of Manufacturing Conditions In this Example 11, the same stacking relationship and film forming conditions as in Example 10 were used, except that a composition adjustment target made of -titanium oxide (Tie) was used. A recording medium was produced using the method according to the second invention.That is, a film forming target made of 5rTiOz and a film forming target made of 5rTiOz were placed on the surface of a composition adjustment target made of -titanium oxide (Tie) with a diameter of 126 (mm). These 3 were exposed to a film formation target made of BaTiO3, 3 each, for a total of 6 targets.
Various types of targets were simultaneously sputtered to form protective films 13a and +3b. The film forming conditions at this time were the same input power and argon gas pressure as described above. As can be understood from the above description, in this Example 11, the total area ratio of the film forming target made of SrTiO3 and BaTiO3 on the sputtering target surface is approximately 95 (%), and the film forming target made of TiO The protective film was formed by setting the ratio of the area of the target for composition adjustment to the surface to be sputtered to about 5 (%). <Explanation of C/N ratio measurement procedure and measurement results> This Example 1
Regarding the recording medium according to No. 1, Comparative Examples and Examples 1 to 10
As a result of measuring the C/N ratio under the same conditions as above, the C/N ratio of the recording medium was 48.0 (dB). <Explanation of corrosion resistance test procedure and measurement results> Example 11
Now, after holding for 1000 hours under the above-mentioned corrosion resistance test conditions, the error rate of the recording medium was measured and the C
/N ratio measurement, the error rate was approximately 10
-5, and the C/N ratio is 4, which is the same as the value before the corrosion resistance test.
It was 8.0 (dB). <Measurement procedure and results of complex refractive index> In the measurement of the complex refractive index of the recording medium according to Example 11, a protective film was also applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 mm as described above. A deposited sample was prepared separately and measured in the same manner as in Comparative Example and Examples 1 to 10, and the complex refractive index was 2.24-0.02i. Explanation of manufacturing conditions> In this example 12, the same stacking relationship and film formation conditions as in the above example 11 were used, except that a composition adjustment target made of titanium dioxide (Ti02) was used. , a recording medium was produced using the method according to the second invention. That is, on the surface of a composition adjustment target made of titanium dioxide (TiO2) with a diameter of 126 (mm), a film formation target made of 5rTi(h) and a film formation target made of BaTiO3 were placed, 3 each, for a total of 6 These three types of targets are sputtered at the same time in the state where the protective film 13 is exposed.
a and +3b% formed. The film forming conditions at this time were the same input power and argon gas pressure as described above. As can be understood from the above description, in this Example 12, the total area ratio of the film forming target made of 5rTi(h) and BaTiOs on the surface to be sputtered is approximately 95 (%), The proportion of the area occupied by the target for composition adjustment made of TiO□ on the surface to be sputtered is approximately 5 (%).
As a step, a protective film was formed. <Explanation of C/N ratio measurement procedure and measurement results> This Example 1
Comparative Examples and Examples 1 to 11 regarding the recording medium according to 2.
As a result of measuring the C/N ratio under the same conditions as above, the C/N ratio of the recording medium was 48.2 (dB). <Explanation of corrosion resistance test procedure and measurement results> Example 12
Now, as in Example 11, after holding for 1000 hours under the above-mentioned corrosion resistance test conditions, the error rate of the recording medium was measured and the C/N ratio was measured. As a result, the error rate was The C/N ratio was about 10-5, and the C/N ratio was 48.2 (dB), the same as the value before the corrosion resistance test. <Measurement procedure and results of complex refractive index> In the complex refractive index measurement of the recording medium according to Example 12, a protective film was also applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 (λ) as described above. A sample was separately prepared and measured in the same manner as in Comparative Example and Examples 1 to 11, and as a result, the complex refractive index was 2.22. As can be understood from this explanation, the absorption coefficient k was 0, similar to the recording media according to Examples 4 and 8 described above, and a substantially transparent protective film could be realized. Hereinafter, the characteristics of the comparative example and the characteristics of Examples 1 to 12 described above will be discussed in detail with reference to the attached table. First, if we compare the C/N ratio, as can be understood from this appendix and the above explanation, the recording medium according to the comparative example has a C/N ratio of 44.0 (dB), whereas the recording medium according to Examples 1 to 12 has a C/N ratio of 44.0 (dB).
An improvement in C/N ratio characteristics is observed in any of the recording media according to the above. - As an example, in Example 2, which had the lowest improvement in C/N ratio among these Examples, 46.8 (dB) was obtained, which was an improvement of 2.8 (dB). In addition, in the recording medium according to Example 12, the improvement in the characteristic value was most remarkable, with a C/N of 48.2 (dB), which is 4.2 (dB) higher than that of the comparative example.
The ratio was obtained. In general, as can be understood from the results of the corrosion resistance test, Comparative Examples, Examples 1 to 8, Example 11, and Example 1
In the recording medium according to Example 2, no decrease in the C/N ratio was observed after the 200-hour corrosion resistance test, and in particular, the recording medium according to Example 11 and the recording medium according to Example 12 had the same corrosion resistance. Even after maintaining the test conditions for 1000 hours, no decrease in the C/N ratio was observed. On the other hand, as already mentioned, from the measurement of the error rate,
The recording medium according to the comparative example, which was maintained under the above-mentioned corrosion resistance test conditions for 200 hours, had a resistance of about 10-4. In contrast, Examples 1 to 8, Example 11, and Example 1
In the recording medium according to No. 2, under the same conditions as the comparative example, about 10-
A value of about 5 was obtained, and it can be understood that the stability of the recording medium was improved by the material composition of the protective film according to the present invention. Roughly speaking, the same corrosion resistance test conditions as above were applied to the recording medium according to Example 11 and the recording medium according to Example 12.
An error rate of about 10-5 was obtained even after holding for a long time, and the stability of recorded information was improved by providing a protective film obtained by simultaneously sputtering both 5rTi03 and BaTiO3. It can be seen that the results are significantly improved. Moreover, if we compare the refractive index n of the complex refractive index n-ki, the refractive index n of the sample according to the comparative example is 1.90, whereas the refractive index n of the sample according to Examples 1 to 12 is The refractive index n was also 2.21 or more in Example 1, and it can be seen that the C/N ratio was improved by Kerr effect enhancement. Furthermore, regarding the extinction coefficient k, compared to the extinction coefficient k of 0.10 in the comparative example, a remarkable improvement was observed in all Examples, especially in Examples 4, 8, and 12. In the sample according to the above, the extinction coefficient k becomes 0, and it can be understood that a substantially transparent protective film material is applied. In addition, as can be understood from the attached table (for example, when comparing the three types of recording media according to Examples 2 to 4, as the proportion of oxygen contained in the target for composition adjustment increases, the extinction coefficient decreases. It can be seen that there is a tendency for the value of From the comparison of the respective recording media in Example 6 or Example 9 and Example 10, it was found that by using the method according to the second invention and using % titanium (Ti) in the target for composition adjustment, the refractive index n was improved. As can be understood from the comparison between the above-mentioned comparative example and Examples 1 to 12, in the recording medium manufactured by the method according to the second invention of this application, the composition of each material is different. By sputtering the film-forming target at the same time as the adjustment target, a recording medium with superior characteristics compared to conventional recording media can be obtained. Diameter 126 made of SrTi03)
A recording medium was produced using a film formation target of (mm) under the same layer closure and film formation conditions as in Example 1. The film forming conditions at this time were the same input power as described above, and the gas pressure of the mixed atmosphere described above was 3 (mTorr). Next, as an example of the method according to the third invention of this application,
Example 13 in which a protective film was formed by sputtering only the layering target in a mixed atmosphere of inert gas and oxygen
~A recording medium according to Example 15 will be explained. In addition, in these Examples according to the third invention, the corrosion resistance test was not conducted as in Examples 9 and 10 described above. Fire ■ (Explanation of manufacturing conditions) In this Example 13, sputtering was performed in a mixed atmosphere of 80% by volume of argon and 20% by volume of oxygen to achieve <C/
Explanation of N ratio measurement procedure and measurement results> As a result of measuring the C/N ratio on the recording medium according to Example 13 under the same conditions as Comparative Example and Examples 1 to 12, the recording medium C of
/N ratio was 47.6 (dB). <Measurement procedure and results of complex refractive index> In the complex refractive index measurement of the recording medium according to Example 13, a protective film was also applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 (λ) as described above. A sample was separately prepared and measured in the same manner as in Comparative Example and Examples 1 to 12, and as a result, the complex refractive index was 2.22. As can be understood from this explanation, the absorption coefficient k was 0, similar to the recording media according to Examples 4, 8, and 12 described above, and a substantially transparent protective film could be realized. . Taiyu U <Description of manufacturing conditions> In this Example 14, the protective film 1 was sputtered in a mixed atmosphere of 80% by volume of argon and 20% by volume of oxygen.
A recording medium was produced under the same lamination relationship and film forming conditions as in Example 5 using a film forming target made of barium titanate (BaTiO3) with a diameter of 126 (mm), except that 3a and +3b@ were formed. The film forming conditions at this time were the same input power as described above, and the gas pressure of the mixed atmosphere described above was 3 (mTorr). <Explanation of C/N ratio measurement procedure and measurement results> Regarding the recording medium according to Example 14, Comparative Example and Examples 1 to 1
As a result of measuring the C/N ratio under the same conditions as in Example 3, the C/N ratio of the recording medium was 47.5 (dB). <Measurement procedure and results of complex refractive index> In the complex refractive index measurement of the recording medium according to Example 14, a protective film was also applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 (λ) as described above. A sample was separately prepared and measured in the same manner as in Comparative Example and Examples 1 to 13, and as a result, the complex refractive index was 2.21. As can be understood from this explanation, the absorption coefficient k is 0, similar to the recording media according to Examples 4, 8, 12, and 13 described above, and a substantially transparent protective film is realized. I was able to do that. <Explanation of manufacturing conditions> In Example 15, the protective film 1 was sputtered in a mixed atmosphere of 80% by volume of argon and 20% by volume of oxygen.
Strontium titanate (SrTiO3) and barium titanate (BaT
Diameter 126 consisting of a mixed crystal of iO3) and (composition ratio 1:1)
A recording medium was produced under the same lamination relationship and film forming conditions as in Example 9 using a film forming target of (mm). The film forming conditions at this time were the same input power as described above, and the gas pressure of the mixed atmosphere described above was 3 (mTorr). <Explanation of C/N ratio measurement procedure and measurement results> This Example 1
Regarding the recording medium according to No. 5, Comparative Examples and Examples 1 to 14
As a result of measuring the C/N ratio under the same conditions as above, the C/N ratio of the recording medium was 48.1 (dB). Similar to the recording media according to Examples 4, 8, and 12 to 14, the extinction coefficient kfJ<o, and a substantially transparent protective film could be realized. As can be understood from the characteristics of the recording media according to Examples 13 to 15, according to the method of the third invention according to this application, a protective film is formed by sputtering in a mixed atmosphere of inert gas and oxygen. By doing so, it is possible to obtain a complex refractive index that is almost the same as when titanium dioxide (TiO7) is used as a target for composition adjustment using the second invention of this application, and it is possible to form a substantially transparent protective film. . <Measurement procedure and results of complex refractive index> In the measurement of the complex refractive index of the recording medium according to Example 15, a protective film was also applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 mm as described above. A deposited sample was prepared separately and measured in the same manner as in Comparative Example and Examples 1 to 14, and as a result, the complex refractive index was 2.23. As can be understood from this explanation, as described above, as an example of the method according to the fourth invention of this application, a film forming target and a composition adjusting target were prepared in a mixed atmosphere of an inert gas and oxygen. Example 1 in which a protective film was formed by simultaneously sputtering
Recording media according to Examples 6 to 18 will be explained. As mentioned above, as can be understood from the embodiments of the second invention, titanium (T
When a protective film was formed using i), an improvement in the refractive index was observed. Therefore, in this example, 1 is used as a target for composition adjustment, and in order to facilitate comparison with the example according to the third invention, the mixed atmosphere is argon 8.
Characteristic measurements were performed for the cases of 0 (vol%) and 20 (vol%) of oxygen. Medical Director (Explanation of Manufacturing Conditions) In this Example 16, the protective film 1 was sputtered in a mixed atmosphere of 80% by volume of argon and 20% by volume of oxygen.
A recording medium was produced using the same lamination relationship and film forming conditions as in Example 2, except that 3a and +3b were formed. That is,
A composition adjustment target made of titanium (Ti) with a diameter of +26 (mm) and strontium titanate (SrTi0
Prepare a film forming target with a diameter of 25 (mm) consisting of 3), cut six film forming targets on the surface of the composition adjustment target described above, and in the mixed atmosphere described above,
These two types of targets are sputtered simultaneously. The film forming conditions at this time were the same input power as described above, and the gas pressure of the mixed atmosphere described above was 3 (mTorr). <Explanation of C/N ratio measurement procedure and measurement results> Comparative example and Examples 1 to 1
As a result of measuring the C/N ratio under the same conditions as in No. 5, the C/N ratio of the recording medium was 47.5 (dB). <Explanation of corrosion resistance test procedure and measurement results> This Example 16
Then, as in Comparative Examples and Examples 1 to 8, after holding for 200 hours under the above-mentioned corrosion resistance test conditions, the error rate and C/N ratio of the recording medium were measured. . As a result, the error rate is about 10-5, and C/
The N ratio was 47.5 (dB), the same as the value before the corrosion resistance test. Complex refractive index measurement procedure and results> In the complex refractive index measurement of the recording medium according to Example 16, a protective film was also applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 mm as described above. A sample was prepared separately and measured in the same manner as in Comparative Example and Examples 1 to 15, and as a result, the complex refractive index was 2.23. As can be understood from this explanation, the absorption coefficient k is O, similar to the recording media according to Examples 4, 8, and 12 to 15 described above, and a substantially transparent protective film is realized. I was able to do that. Top I drawer <Description of manufacturing conditions> In this Example 17, the protective film 1 was sputtered in a mixed atmosphere of 80% by volume of argon and 20% by volume of oxygen.
A recording medium was manufactured using the same lamination relationship and film forming conditions as in Example 6, except that 3a and +3b were formed. That is,
A composition adjustment target with a diameter of 126 (mm) made of titanium (Ti) and a film formation target with a diameter of 25 (mm) made of barium titanate (BaTiO3) were prepared, and the surface of the composition adjustment target described above was prepared. Six film-forming targets are installed in the apparatus, and these two types of targets are sputtered simultaneously in the above-mentioned mixed atmosphere. The film forming conditions at this time were the same input power as described above, and the gas pressure of the mixed atmosphere described above was 3 (mTorr). <Explanation of C/N ratio measurement procedure and measurement results> Regarding the recording medium according to Example 17, Comparative Example and Examples 1 to 1
As a result of measuring the C/N ratio under the same conditions as in Example 6, the C/N ratio of the recording medium was 47.0 (dB). Explanation of corrosion resistance test procedure and measurement results> Example 17
Now, as in Comparative Examples and Examples 1 to 8, after holding for 200 hours under the above-mentioned corrosion resistance test conditions, the error rate and C/N ratio of the recording medium were measured. Ta. As a result, the error rate is about 10-5, and C/
The N ratio was 47°0 (dB), the same as the value before the corrosion resistance test. Complex refractive index measurement procedure and results> In the complex refractive index measurement of the recording medium according to Example 17, a protective film was applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 (λ) as described above. A discolored sample was prepared separately and measured in the same manner as in Comparative Examples and Examples 1 to 16, and as a result, the complex refractive index was 2.25. As can be understood from this explanation, the absorption coefficient k is O, similar to the recording media according to Examples 4, 8, and 12 to 16 described above, and a substantially transparent protective film is realized. I was able to do that. In Example 18, the protective film +
A recording medium was manufactured using the same lamination relationship and film forming conditions as in Example 10, except that 3a and +3b were formed. That is, strontium titanate (S
Three film-forming targets with a diameter of 25 (mm) made of Ti03) and three film-forming targets with a diameter of 25 (mm) made of barium titanate (BaTiO3) were placed in the above-mentioned mixed atmosphere. , these three types of targets are sputtered simultaneously. The film forming conditions at this time were the same input power as described above, and the gas pressure of the mixed atmosphere described above was 3 (mTorr). <Explanation of C/N ratio measurement procedure and measurement results> This Example 1
Regarding the recording medium according to No. 8, Comparative Examples and Examples 1 to 17
As a result of measuring the C/N ratio under the same conditions as above, the C/N ratio of the recording medium was 47.9 (dB). Note that a corrosion resistance test was not conducted on the recording medium according to Example 18. Complex refractive index measurement procedure and results> In the complex refractive index measurement of the recording medium according to Example 18, a protective film was applied to the surface of the silicon wafer under the same deposition conditions and film thickness of 2000 (λ) as described above. A sample coated with was prepared separately and measured in the same manner as in Comparative Example and Examples 1 to 17, and as a result, the complex refractive index was 2.24. As can be understood from this explanation, the absorption coefficient kfJ<O, similar to the recording media according to Examples 4, 8, and 12 to 17 described above, and a substantially transparent protective film is realized. I was able to do that. Hereinafter, with reference to the drawings, as an example according to the fourth invention of this application, various oxygen contents in the mixed atmosphere of inert gas and oxygen (with various oxygen contents) will be described. The following describes the results of measuring the complex refractive index of the sample obtained by sputtering the target at the same time. A sample was used in which a protective film material was deposited on the surface of the wafer to a thickness of 2000 (A).To explain the manufacturing conditions for this sample in detail, first, the same conditions as those used in Example 2 described above were used. A film forming target made of strontium titanate (SrTiO3) and a composition adjustment target made of titanium (Ti) are prepared, which have the same dimensions.After that, oxygen is removed in a gas containing argon and oxygen. The composition adjustment target described above and the 2f! type film formation target were simultaneously sputtered to form a film in such a deposition atmosphere by varying the ratio within the range of 0 to 50 (volume %). The deposition conditions at this time were that the input power was 500 (W), and the pressure of Suba-Ntagas consisting of the above-mentioned mixed gas was 3 (
mTorr). FIGS. 1 and 2 are characteristic curve diagrams showing the results of measuring the complex refractive index n-ki for each sample produced under the above manufacturing conditions. In these figures, Figure 1 is
The vertical axis shows the refractive index n and the horizontal axis shows the oxygen content (volume %) 8. In FIG. 2, the vertical axis shows the extinction coefficient k and the horizontal axis shows the oxygen content (volume %). First, as can be understood from FIG. 1, as the oxygen content in the sputtering gas was increased, the refractive index n tended to decrease. For example, if Suba Ntagas is oxygenated 0 (vol%) (
In the case of the above-mentioned Example 21 in which argon was 100% (by volume), the refractive index n was 2.23, whereas oxygen was 5%.
When it was set to 0 (volume %), the refractive index n decreased to about 2.1. Furthermore, as can be understood from Fig. 2, a similar tendency is observed for the extinction coefficient k, and in the sample corresponding to Example 2 where the oxygen content in the sputtering gas is 0 (vol%), the extinction coefficient It became 0.03. On the other hand, when sputtering is performed in a mixed atmosphere with an oxygen content of 20 (vol%), it is observed that the extinction coefficient k becomes O; Even as a value, it was observed that it showed O. Next, we will explain the results of measuring the complex refractive index of samples obtained by using barium titanate as a film formation target instead of the strontium titanate mentioned above and changing the content of argon and oxygen to a minimum. do. The various conditions related to sample preparation are as follows: strontium titanate (
Barium titanate (BaTi) is used instead of SrTi03).
Measurements were performed using a sample prepared by depositing a protective film material with a film thickness of 2000 (λ) on the surface of a silicon wafer, except that O3)7& was used. 3 and 4 are characteristic curve diagrams showing the results of measuring the complex refractive index n-ki in the same manner as in FIG. 1 or 2 described above. In these figures, the third diagram shows the refractive index n on the vertical axis and the oxygen content (volume %) on the horizontal axis.
In the figure, the vertical axis shows the extinction coefficient k and the horizontal axis shows the oxygen content (volume %).
This is shown by taking the following. First, as can be understood from Figure 3, even in the sample deposited using this barium titanate in a mixed atmosphere, the oxygen content in the sputtering gas is increased, as in the case of strontium titanate described above. According to
A decreasing trend in the refractive index n was observed. For example, when the sputtering gas is oxygen O (volume %) (corresponding to the above-mentioned Example 6 where argon is 100 (vol%)), the refractive index n is 2.
It became 27. On the other hand, when the oxygen content in the sputtering gas was set to 50 (vol%), the refractive index n decreased to about 2.1. Furthermore, as can be understood from Fig. 4, the same tendency as that of strontium titanate was observed in the extinction coefficient k, and the sample in which the oxygen content in Suba Shita Gas was O (volume %) (corresponding to Example 6) was observed. ), the extinction coefficient k was 0.02. On the other hand, when sputtering is performed in a mixed atmosphere with an oxygen content of 20 (vol%), it is observed that the extinction coefficient k becomes 0, as in the case of strontium titanate, and the It can be understood that even if the ratio is larger than 20 (volume %), it becomes O. As mentioned above, regarding the embodiments of the invention of this application, f! A detailed explanation was given using recording media produced under various conditions as samples. Here, the relationship between the above-described manufacturing methods and the composition of the protective film manufactured by each manufacturing method will be explained. Among the above-mentioned examples, the recording media according to Example], Example 5, and Example 9 were manufactured by depositing and forming a protective film using a conventionally well-known sputtering technique. Also,
In addition, as can be understood from the results of characteristic measurements, the recording media (protective films) according to Examples 1 to 18 had almost the same composition even in the recording media produced by the method invention of this application. It is considered to have. In these elemental compositions, for example, metal elements such as strontium, barium, and titanium can be determined using chemical analysis techniques that utilize the Auger effect, but in the case of titanic acid compounds, gaseous components and Since it contains oxygen, which is easily formed, it is difficult to determine the exact composition. However, as can be understood from, for example, the literature ■: "Dielectric Part" (written by Koten Oka, pp. 55-77, published by Gendai Kogakusha), for example, MTi
For a titanate-based substance represented by Gx (M is a metal element), it can be determined by averaging the complex refractive index of MO and the complex refractive index of TiOx-+. Briefly speaking, it is known that in the titanic acid-based substances mentioned above, the closer the value of X is to 3, the closer the extinction coefficient is to k or O. To explain in detail: -Titanium oxide (Tie)
While the titanate obtained from the metal oxide MO and the above-mentioned metal oxide MO has absorption (the extinction coefficient k is not 0),
It is known that titanates obtained from titanium dioxide (Ti02) and metal oxides are transparent (extinction coefficient k is 0). If the composition of the protective films according to Examples 1 to 18 described above is calculated from such optical properties, the value of X described above is 2.
7≦×≦3.0. Although the embodiments of the present invention have been described in detail above, it is clear that the present invention is not limited only to the embodiments described above. For example, in the above-mentioned embodiment, the case where argon was used as the sputtering residue according to the method invention of this application was explained, but the same effect can be expected even if other inert gases are used. Further, as an example of the structure of the recording medium according to the embodiment, one constructed with interlayers shown in FIG. 5 is illustrated. however,
The magneto-optical recording medium of the present invention can obtain the same effect not only by a specific lamination relationship, but also by adding, for example, a reflective film or other constituent components. . Roughly speaking, in the above-mentioned embodiments, the case where a magnetic film made of Tb-Fe-Co was used was explained, but the present invention is not limited to this, and various RE-TM gold alloys can be used. These materials, dimensions, MS distribution, numerical conditions and others,
It will be appreciated that the specific conditions described above may be subject to any suitable design modifications and variations within the scope of the invention. (Effect of the invention) As is clear from the above explanation, according to the magneto-optical recording medium according to the first invention of this application, as a protective film material,
Strontium titanate compounds (SrTiOx) and barium titanate compounds (8aTiOx) (however, X
represents a value of 2.7≦X≦3,0), or a mixed crystal of both substances is used as a protective film. Therefore, compared to recording media provided with conventional protective film materials, it is possible to achieve a higher refractive index and a lower extinction coefficient, and there is no significant deterioration in corrosion resistance. In addition, a method for manufacturing a magneto-optical recording medium according to a second invention of this application (according to which a protective film is formed by simultaneously sputtering a film forming target and a composition adjustment target made of the above-mentioned predetermined materials). By doing so, it is possible to easily realize the recording medium r8 according to the first invention.Roughly speaking, according to the method for manufacturing a magneto-optical recording medium according to the third invention of this application, the above-mentioned process is performed in a mixed atmosphere containing oxygen. The recording medium according to the first invention can be easily obtained by forming a protective film by sputtering a film-forming target made of a predetermined material. According to the method for manufacturing a magneto-optical recording medium, the recording medium according to the first invention can be easily obtained by simultaneously applying the second invention and the third invention described above.Therefore, the invention according to this application By applying

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は実施例を説明するため、縦軸に屈折
率n、及び横軸にスパッタ雰囲気における酸素含有率を
、夫々採って示す特性曲線図、第2図及び第4図は実施
例を説明するため、縦軸に吸光係数k、及び横軸にスパ
ッタ雰囲気における酸素含有率を、夫々採って示す特性
曲線図、 第5図は、従来の技術及び実施例を説明するため、光磁
気記録媒体の一構成例を概略的断面により示す説明図で
ある。 11・・・・基板、13a、13b・・・・・保護膜1
5・−・・磁性膜、17・・・・光磁気記録媒体。 特 許 出 願 人 沖電気工業株式会社 酸素含有率(体積%) 実施例の説明図 酸素含有率(体積%) 実施例の説明図 第4図 酸素含有率(体積%) 酸素含有率(体積%) 実施例の説明図 第2図 従来の技術及び実施例の説明図 第5図
1 and 3 are characteristic curve diagrams in which the vertical axis shows the refractive index n and the horizontal axis shows the oxygen content in the sputtering atmosphere, respectively, in order to explain the embodiment. In order to explain the examples, a characteristic curve diagram showing the extinction coefficient k on the vertical axis and the oxygen content in the sputtering atmosphere on the horizontal axis, respectively. FIG. 2 is an explanatory diagram schematically showing a configuration example of a magneto-optical recording medium in cross section. 11...Substrate, 13a, 13b...Protective film 1
5... Magnetic film, 17... Magneto-optical recording medium. Patent Applicant Oki Electric Industry Co., Ltd.Oxygen Content Rate (Volume %)Explanatory Diagram of ExamplesOxygen Content Rate (Volume %)Explanatory Diagram of ExamplesFigure 4Oxygen Content Rate (Volume %)Oxygen Content Rate (Volume %) Implementation An explanatory diagram of an example Fig. 2 An explanatory diagram of a conventional technique and an example Fig. 5

Claims (4)

【特許請求の範囲】[Claims] (1)基板上に、少なくとも、保護膜と磁性膜とを具え
て成る光磁気記録媒体において、 前記保護膜が、チタン酸ストロンチウム系 化合物(SrTiO_x)及びチタン酸バリウム系化合
物(BaTiO_x)(但し、Xは2.7≦X≦3.0
の値を表わす。)のうちから選ばれたいずれか一方の物
質または双方の混晶から成る ことを特徴とする光磁気記録媒体。
(1) In a magneto-optical recording medium comprising at least a protective film and a magnetic film on a substrate, the protective film is made of a strontium titanate compound (SrTiO_x) and a barium titanate compound (BaTiO_x) (however, X is 2.7≦X≦3.0
represents the value of ) or a mixed crystal of both materials.
(2)基板上に、少なくとも、保護膜と磁性膜とを具え
て成る光磁気記録媒体を製造するに当り、前記保護膜を
、チタン酸ストロンチウム (SrTiO_3)及びチタン酸バリウム(BaTiO
_3)のうちから選ばれたいずれか一方または双方から
成る成膜用ターゲットと、チタン(Ti)または酸化チ
タン(TiO_Y)(但し、Yは正数を表わす。)から
成る組成調整用ターゲットとを同時にスパッタして被着
形成する ことを特徴とする光磁気記録媒体の製造方法。
(2) When manufacturing a magneto-optical recording medium comprising at least a protective film and a magnetic film on a substrate, the protective film is replaced with strontium titanate (SrTiO_3) and barium titanate (BaTiO_3).
A film formation target made of one or both selected from _3) and a composition adjustment target made of titanium (Ti) or titanium oxide (TiO_Y) (wherein, Y represents a positive number). 1. A method for manufacturing a magneto-optical recording medium, characterized in that deposition is formed by sputtering at the same time.
(3)基板上に、少なくとも、保護膜と磁性膜とを具え
て成る光磁気記録媒体を製造するに当り、前記保護膜を
、チタン酸ストロンチウム (SrTiO_3)及びチタン酸バリウム(BaTiO
_3)のうちから選ばれたいずれか一方または双方から
成る成膜用ターゲットを不活性ガスと酸素との混合雰囲
気中でスパッタして被着形成する ことを特徴とする光磁気記録媒体の製造方法。
(3) When manufacturing a magneto-optical recording medium comprising at least a protective film and a magnetic film on a substrate, the protective film may be formed of strontium titanate (SrTiO_3) and barium titanate (BaTiO).
_3) A method for manufacturing a magneto-optical recording medium, characterized by sputtering and depositing a film-forming target made of one or both of the above in a mixed atmosphere of inert gas and oxygen. .
(4)基板上に、少なくとも、保護膜と磁性膜とを具え
て成る光磁気記録媒体を製造するに当り、前記保護膜を
、チタン酸ストロンチウム (SrTiO_3)及びチタン酸バリウム(BaTiO
_3)のうちから選ばれたいずれか一方または双方から
成る成膜用ターゲットと、チタン(Ti)または酸化チ
タン(TiO_Y)(但し、Yは正数を表わす。)から
成る組成調整用ターゲットとを、不活性ガスと酸素との
混合雰囲気中で同時にスパッタして被着形成する ことを特徴とする光磁気記録媒体の製造方法。
(4) When manufacturing a magneto-optical recording medium comprising at least a protective film and a magnetic film on a substrate, the protective film may be formed of strontium titanate (SrTiO_3) and barium titanate (BaTiO).
A film formation target made of one or both selected from _3) and a composition adjustment target made of titanium (Ti) or titanium oxide (TiO_Y) (wherein, Y represents a positive number). A method for manufacturing a magneto-optical recording medium, characterized in that deposition is performed by sputtering simultaneously in a mixed atmosphere of an inert gas and oxygen.
JP63170567A 1988-07-08 1988-07-08 Magneto-optical recording medium and manufacturing method thereof Expired - Fee Related JP2548311B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63170567A JP2548311B2 (en) 1988-07-08 1988-07-08 Magneto-optical recording medium and manufacturing method thereof
US07/376,591 US4950547A (en) 1988-07-08 1989-07-07 Magneto-optical recording medium having protective film with increased Kerr effect and improved protection characteristic and manufacturing method of the same
US07/466,947 US5009762A (en) 1988-07-08 1990-01-18 Magneto-optical recording medium having protective film with increased kerr effect and improved protection characteristic and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170567A JP2548311B2 (en) 1988-07-08 1988-07-08 Magneto-optical recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0221441A true JPH0221441A (en) 1990-01-24
JP2548311B2 JP2548311B2 (en) 1996-10-30

Family

ID=15907231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170567A Expired - Fee Related JP2548311B2 (en) 1988-07-08 1988-07-08 Magneto-optical recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2548311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109408A (en) * 1997-01-29 2000-08-29 Toyota Jidosha Kabushiki Kaisha Driving force transmission system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889498U (en) * 1972-01-31 1973-10-27
JPS6430129U (en) * 1987-08-12 1989-02-23
JPH01110030U (en) * 1988-01-20 1989-07-25
JP3087580U (en) * 2002-01-28 2002-08-09 直樹 高橋 Toothpaste tube that can be opened and closed with one hand

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889498U (en) * 1972-01-31 1973-10-27
JPS6430129U (en) * 1987-08-12 1989-02-23
JPH01110030U (en) * 1988-01-20 1989-07-25
JP3087580U (en) * 2002-01-28 2002-08-09 直樹 高橋 Toothpaste tube that can be opened and closed with one hand

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109408A (en) * 1997-01-29 2000-08-29 Toyota Jidosha Kabushiki Kaisha Driving force transmission system
US6315099B1 (en) 1997-01-29 2001-11-13 Toyota Jidosha Kabushiki Kaisha Driving force transmission system
US6510932B2 (en) 1997-01-29 2003-01-28 Toyota Jidosha Kabushiki Kaisha Driving force transmission system

Also Published As

Publication number Publication date
JP2548311B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
EP0304873B1 (en) Magneto-optical recording medium
JPH05504993A (en) Method for sputtering multilayer bodies for magneto-optical recording
US5400307A (en) Magneto-optical recording medium with stacked layer structure
JP2005135568A (en) Information recording medium, its manufacturing method, and sputtering target
JPH0221441A (en) Magneto-optical recording medium and its production
JPH06120029A (en) Vertically magnetized film, multilayer film for vertically magnetized film and manufacturing method of the same
JP2701337B2 (en) Magneto-optical recording medium
JPH057775B2 (en)
US5009762A (en) Magneto-optical recording medium having protective film with increased kerr effect and improved protection characteristic and manufacturing method of the same
US8133565B2 (en) Recording medium
JP2503268B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPH03156753A (en) Optical recording medium
JP5838306B2 (en) Information recording medium and manufacturing method thereof
JP2882657B2 (en) Magneto-optical recording medium
JPH0660452A (en) Magneto-optical recording medium
JPH01107344A (en) Magneto-optical recording medium and production thereof
JPS6189604A (en) Metal oxide magnetic substance and magnetic film
JPS63311642A (en) Optical memory element
JPS60211904A (en) Magnetic substance and magnetic film of metal oxide
JPH035929A (en) Optical recording medium and its production
JPH08213236A (en) Magnetic multilayered film, manufacture thereof and photomagnetic recording medium
JPS59171054A (en) Magneto-optical storage element
JPS62266746A (en) Optical recording medium and its production
JPH02110842A (en) Magneto-optical recording medium and magneto-optical recording method
JPS60214506A (en) Metal-oxide magnetic body and magnetic film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees