JPS62266746A - Optical recording medium and its production - Google Patents

Optical recording medium and its production

Info

Publication number
JPS62266746A
JPS62266746A JP61108663A JP10866386A JPS62266746A JP S62266746 A JPS62266746 A JP S62266746A JP 61108663 A JP61108663 A JP 61108663A JP 10866386 A JP10866386 A JP 10866386A JP S62266746 A JPS62266746 A JP S62266746A
Authority
JP
Japan
Prior art keywords
layer
protective layer
optical recording
recording medium
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108663A
Other languages
Japanese (ja)
Inventor
Kiyoshi Chiba
潔 千葉
Tetsuo Sato
哲生 佐藤
Kazutomi Suzuki
鈴木 和富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP61108663A priority Critical patent/JPS62266746A/en
Priority to DE8787106848T priority patent/DE3773531D1/en
Priority to EP87106848A priority patent/EP0245833B1/en
Publication of JPS62266746A publication Critical patent/JPS62266746A/en
Priority to US08/203,708 priority patent/US5512364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the boundary of a recording layer and to prevent the deterioration by the oxidation reaction of the boundary of the substrate side recording layer by providing a protective layer contg. an easily oxidizing metal on the substrate side surface of the recording layer. CONSTITUTION:The protective layer 3 consisting of the easily oxidizing metal is provided on the substrate 1 side surface of the recording layer 4 which is provided on the substrate 1 consisting of a transparent synthetic resin and consists of a thin metallic film rewritable by light. The layer 4 is formed on the layer 3 without exposing the layer 3 to the atm. after formation of said layer in the stage of production. The boundary of the layer 4 is thereby stabilized and the deterioration by the oxidation reaction on the layer 4 boundary on the substrate 1 side is prevented.

Description

【発明の詳細な説明】 [利用分野] 本発明はレーザ等の光により情報の記録・再生・消去等
を行なう光記録媒体に関する。更に詳細には、透明合成
樹脂基板上に結晶及び非晶質間の相転移で反射率が変化
する金属簿膜よりなる記録層を形成し、その反射率の変
化で情報を再生する光記録、あるいは透明合成樹脂基板
上に膜面に垂直な方向に磁化容易方向を有した金Iil
薄膜よりなる記録層を形成し、磁気光学効果により情報
再生する光磁気記録に用いられる耐環境性の秀れた光記
録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to an optical recording medium on which information is recorded, reproduced, erased, etc. using light such as a laser. More specifically, optical recording involves forming a recording layer made of a metal film whose reflectance changes due to phase transition between crystal and amorphous on a transparent synthetic resin substrate, and reproducing information by changing the reflectance. Or gold Iil with easy magnetization direction perpendicular to the film surface on a transparent synthetic resin substrate.
The present invention relates to an optical recording medium with excellent environmental resistance, which is used for magneto-optical recording in which a recording layer made of a thin film is formed and information is reproduced by the magneto-optic effect.

[従来技術] 光記録媒体は高密曵・大容量の情報記録として硬々の研
究開発が行なわれている。特に情報の追加記録及び消去
可能な光記録媒体は応用分野が広く種々の材料・システ
ムが発表されており、その″実用化が待望されている。
[Prior Art] Optical recording media are being intensively researched and developed as high-density, large-capacity information storage. In particular, various materials and systems have been announced in a wide range of application fields for optical recording media that allow additional information to be recorded and erased, and their practical application is eagerly awaited.

上述の追加記録及び消去可能な光記録材料としては、例
えば、特開昭52−31703号公報記載のF8Tb、
特開昭56−126907@記載のFe Tb Gd 
As the above-mentioned additional recording and erasable optical recording material, for example, F8Tb described in Japanese Patent Application Laid-Open No. 52-31703,
Fe Tb Gd described in JP-A-56-126907@
.

tott昭58−73746号公報記載のFe Tb 
Co 、 FeCo Dy 、国際出願公開W 086
/1835号公報に記載された相転移型のFe Te等
がある。しかし、これらの情報の追加記録及び消去可能
な光記録媒体の記録層を構成する記憶材料の大半は酸化
等の腐蝕を起こしやすい為、実用化にはその耐酸化性を
向上させることが必要と言われている。
FeTb described in Tott Publication No. 58-73746
Co, FeCo Dy, International Application Publication W 086
There is a phase change type FeTe described in Japanese Patent Application No. 1835/1835. However, most of the storage materials that make up the recording layer of optical recording media that allow for additional recording and erasing of information are susceptible to corrosion such as oxidation, so it is necessary to improve their oxidation resistance for practical use. It is said.

これに対して例えば特開昭59−110052号公報に
は、光メモリ素子の記録層を少なくとも一方が誘電体層
である2層の酸素を含有しない股間に挟持することによ
り記録層の酸化を防止することが提案されている。そし
てこの場合においては誘電体層は′R素を含有していな
いことが必要であり、誘電体層としてはAflN、MQ
 F2 、Zn s、CeF3 、AlF2・3Na 
F、Si 3 Ns等の窒化物、弗化物等で形成される
ことが好ましいとされている。しかしこの構成において
は、記録層界面に吸着する酸素による記録界面の劣化、
さらには透明合成樹脂基板を通しての誘電体層、記録層
への酸素の通人による劣化が懸念され、より一層の耐酸
化性の改善が望まれている。
On the other hand, for example, JP-A-59-110052 discloses a method of preventing oxidation of the recording layer of an optical memory element by sandwiching the recording layer between two oxygen-free layers, at least one of which is a dielectric layer. It is proposed that. In this case, it is necessary that the dielectric layer does not contain 'R elements, and the dielectric layer should include AflN, MQ
F2, Zns, CeF3, AlF2・3Na
It is said that it is preferable to use a nitride such as F, Si 3 Ns, or a fluoride. However, in this configuration, deterioration of the recording interface due to oxygen adsorbed to the recording layer interface,
Furthermore, there is a concern that the dielectric layer and the recording layer may be degraded by oxygen passing through the transparent synthetic resin substrate, and further improvement in oxidation resistance is desired.

又、この構成においては、透明誘電体膜として上述の窒
化物、弗化物と同様に広く利用されているSi O,S
i 02 、T! Oz 、Zr z 03等の酸化物
が光記録媒体の透明誘電体膜として適用できないという
制約がある。
In addition, in this configuration, SiO, S, which are widely used as the transparent dielectric film like the above-mentioned nitrides and fluorides, are used.
i 02, T! There is a restriction that oxides such as Oz and Zr z 03 cannot be used as transparent dielectric films for optical recording media.

[発明の目的1 本発明はかかる現状に爲みなされたもので透明合成樹脂
基板上に記録層を有する上述の問題のない光記録媒体を
目的とするものである。すなわち、具体的には前記記録
層界面の安定化をはかり基板側の記録層界面に於ける酸
化反応による劣化を防止することを第1の目的とする。
[Objective of the Invention 1] The present invention was conceived in view of the current situation, and its object is to provide an optical recording medium having a recording layer on a transparent synthetic resin substrate and free from the above-mentioned problems. Specifically, the first objective is to stabilize the recording layer interface and prevent deterioration due to oxidation reaction at the recording layer interface on the substrate side.

また、上記光記録媒体を空気中に放置したときの空気中
の酸素の基板側より記録層への進入による界面に於ける
劣化を防止することを第2の目的とする。
A second purpose is to prevent deterioration at the interface due to oxygen in the air entering the recording layer from the substrate side when the optical recording medium is left in the air.

更に上記光記録媒体の記録層を界面への酸素の吸着を少
なくし、酸化による初期記録特性の低下を防ぐことを第
3の目的とする。
Furthermore, a third object is to reduce adsorption of oxygen to the interface of the recording layer of the optical recording medium to prevent deterioration of initial recording characteristics due to oxidation.

またサーマルショックに対し界面を安定化することを第
4の目的とする。
The fourth purpose is to stabilize the interface against thermal shock.

[発明の構成0作用〕 上述の目的は、以下の本発明により達成される。[Constitution 0 action of invention] The above objects are achieved by the invention as follows.

すなわち本発明は透明合成樹脂よりなる基板上に光によ
り♂き換えできる金属薄膜よりなる記録層を有する光記
録媒体において、前記記録層の少なくと5ζを板側の而
に酸化し易い金属若しくはその合金を含む薄膜の保護層
を設けたことを特徴とする光記録媒体を第1発明とし、
第1発明の光記録媒体を製造するに際し、保護層形成後
、該保護層を大気に曝すことなくその上に配録層を形成
することを特徴とする光記録媒体の製造方法を第2発明
とするものである。
That is, the present invention provides an optical recording medium having a recording layer made of a metal thin film that can be changed by light on a substrate made of a transparent synthetic resin, in which at least 5ζ of the recording layer is made of a metal that is easily oxidized or its like on the plate side. A first invention is an optical recording medium characterized by being provided with a thin protective layer containing an alloy,
A second invention provides a method for manufacturing an optical recording medium, characterized in that, in manufacturing the optical recording medium of the first invention, after forming the protective layer, a recording layer is formed thereon without exposing the protective layer to the atmosphere. That is.

なお、本発明に於ける酸化しやすい金属とは酸化物生成
の自由エネルギー変化(−ΔG:ギブスの自由エネルギ
ー変化)が金属原子当り 120)(cat /mol
e以上である金属で例えばTi、zr。
In addition, in the present invention, metals that are easily oxidized are those whose free energy change (-ΔG: Gibbs free energy change) of oxide formation is 120) (cat/mol) per metal atom.
Examples of metals having a higher than e, such as Ti and zr.

Y、A1.Cr 、MO等である。酸素との反応性より
、より好ましくは自由エネルギー変化が150Kcal
 /mole以上の金属で例えばTi、Zr、Y。
Y, A1. Cr, MO, etc. From the reactivity with oxygen, the free energy change is more preferably 150 Kcal.
/mole or more, such as Ti, Zr, and Y.

A1等である。また、記録層の基板側に設けた保護層は
レーザ光による記録時のビットの2録特性及び形状の検
討によりビット部の熱の散逸を防ぎ良好な記録特性を得
るために熱伝導率が低い金属が好ましい。記録層として
l”e系金属が適用されることが多いことから室温に於
ける熱伝導率が0.1Ca1/(cIR−3eC−de
9)以下の金属、特にTi又はZ「又はこれらの合金が
好ましいことが判明した。
It is A1 etc. In addition, the protective layer provided on the substrate side of the recording layer has low thermal conductivity to prevent heat dissipation in the bit part and obtain good recording characteristics by considering the recording characteristics and shape of the bit during recording with laser light. Metal is preferred. Since l”e metals are often used as the recording layer, the thermal conductivity at room temperature is 0.1Ca1/(cIR-3eC-de
9) It has been found that the following metals are preferred, especially Ti or Z or alloys thereof.

また、基板側から光を入射し、くの反射光により情報を
再生する方式においては好ましくは酸化された場合にお
いてら屈折率の変化が小さく、酸化物の屈折率が1.8
以上であるTi又はZr又はこれらの合金を適用するこ
とが望ましい。。
In addition, in a method in which light is incident from the substrate side and information is reproduced by reflected light, the change in the refractive index is preferably small even when oxidized, and the refractive index of the oxide is 1.8.
It is desirable to use Ti or Zr, or an alloy thereof, which is the above. .

また保護層としては以上の特性を損わない範囲で他の元
素と合金化していてもよい。
Further, the protective layer may be alloyed with other elements as long as the above characteristics are not impaired.

さらに、この上記保護層の膜厚は、光を基板側から保護
層を通過させ記録層に照射し、その反射光を再び保:J
!!層、透明合成樹脂基板を通過させて情報を再生する
方式においては、保護層における光の吸収が多いと再生
系固有の雑音に対する信号強度が減少するため、できる
だけ薄くすることが好ましい。例えばTiを例にとると
光の吸収が20%以下となる50Å以下が好ましく、更
には光の吸収が5%以下となる20Å以下とすることが
好ましい。なお、耐酸化性面から保2!!層は必ずしら
連続?S膜層とする必要はないが、膜厚5Å以上が好ま
しく、更に連続源IF3層を形成することが好ましい。
Furthermore, the film thickness of the above-mentioned protective layer is such that light passes through the protective layer from the substrate side and is irradiated onto the recording layer, and the reflected light is retained again.
! ! In the method of reproducing information by passing the protective layer through a transparent synthetic resin substrate, it is preferable to make the protective layer as thin as possible because if the protective layer absorbs a lot of light, the signal strength against the noise inherent in the reproduction system will decrease. For example, taking Ti as an example, the thickness is preferably 50 Å or less so that the light absorption is 20% or less, and more preferably 20 Å or less so that the light absorption is 5% or less. In addition, in terms of oxidation resistance, it is recommended to keep 2! ! Are the layers necessarily continuous? Although it is not necessary to form the S film layer, a film thickness of 5 Å or more is preferable, and it is further preferable to form three continuous source IF layers.

ところで、上述の本発明において、耐久性向上の面から
は記録層の基板側と反対の面にも保護層を形成すること
が好ましく、更に好ましくは記録層のエツジ部、換言す
れば側部も保護層により被覆することが好ましい。これ
らの構成に於て記録層の基板と反対の面及び側部の保護
層は必ずしも前述の基板側の保護層の如く金属層とする
必要はないが、前述の理由により前述の基板側の保″3
L!iと同じ酸化しやすい金属からなる金属層が好まし
く、特に少なくともTi、Zrの一つが含まれる金属層
であることが好ましい。
By the way, in the above-mentioned present invention, from the viewpoint of improving durability, it is preferable to form a protective layer also on the surface of the recording layer opposite to the substrate side, and more preferably on the edge portion of the recording layer, in other words, on the side portion as well. Preferably, it is covered with a protective layer. In these configurations, the protective layer on the opposite surface and side of the recording layer from the substrate does not necessarily have to be a metal layer like the aforementioned protective layer on the substrate side, but for the reasons mentioned above, the protective layer on the substrate side is ″3
L! A metal layer made of the same easily oxidized metal as i is preferable, and a metal layer containing at least one of Ti and Zr is particularly preferable.

また、本発明の光記録媒体は基板側の保:!1層と基板
との間に誘電体層を設けた構成であることが耐環境性光
磁気媒体に於ける干渉効果の為好ましい。
In addition, the optical recording medium of the present invention has the following properties: A structure in which a dielectric layer is provided between the first layer and the substrate is preferable because of the interference effect in the environment-resistant magneto-optical medium.

以上の本発明においては、透明合成樹脂基板側の記録層
界面に接して酸化しやすい金属、好ましくは記録層より
熱伝達の小さい金属、具体的には少なくともTi、Zr
の一つが含まれている金属薄膜からなる保護層を設けた
構成としているので透明合成樹脂基板側の記録層界面の
酸素は記録層界面に於て保護層と反応して酸化物を形成
する為、記録層の劣化が防止される。これにより基板側
から侵入する酸素、媒体形成時に吸着された酸素等によ
る記録層界面の酸化反応を防止でき、耐@蝕性の優れた
光記録媒体を得ることができる。
In the present invention described above, a metal that is easily oxidized in contact with the recording layer interface on the transparent synthetic resin substrate side, preferably a metal that has lower heat transfer than the recording layer, specifically at least Ti, Zr, etc.
Since the structure includes a protective layer made of a metal thin film containing one of the above, oxygen at the recording layer interface on the transparent synthetic resin substrate side reacts with the protective layer at the recording layer interface to form an oxide. , deterioration of the recording layer is prevented. This makes it possible to prevent oxidation reactions at the interface of the recording layer due to oxygen entering from the substrate side, oxygen adsorbed during medium formation, etc., and it is possible to obtain an optical recording medium with excellent corrosion resistance.

また、透明合成樹脂基板上に記録層を直接積層させる場
合又はさらに誘電体層を介して積層させる場合と本発明
の金属薄膜からなる保護層、ヒに記録層を@層する場合
を比較すると、本発明の構成の方が特にFe Te等の
相変化形金属記録層又はFe Co Tb等の光磁気金
属記録層の場合金属層上に金属を積層するので親和力が
大きく界面に於ける連続層が形成しやすい。
In addition, when comparing the case where the recording layer is directly laminated on the transparent synthetic resin substrate or the case where it is further laminated via a dielectric layer, and the case where the recording layer is layered on the protective layer made of the metal thin film of the present invention, The structure of the present invention is particularly advantageous in the case of a phase-change metal recording layer such as FeTe or a magneto-optical metal recording layer such as FeCoTb, since the metal is laminated on the metal layer, so the affinity is greater and the continuous layer at the interface is better. Easy to form.

また、保、iimとしてTi、Zr又はこれらの合金を
用いた構成に於てはその熱膨張率が「e系の記録層とZ
n S、Ti 02等の誘電体の熱膨張率の中間の値と
なる為、サーマルショックに於ての界面のひずみが緩和
される効果をもち、記録媒体を安定化させる効果をもつ
ことが判明した。
In addition, in a structure using Ti, Zr, or an alloy of these as the material, the coefficient of thermal expansion is similar to that of the e-based recording layer.
Since it has a thermal expansion coefficient between that of dielectric materials such as nS and Ti02, it has been found to have the effect of relieving strain at the interface during thermal shock and stabilizing the recording medium. did.

更には透明合成樹脂基板上に誘電体層を設ける構成にお
いては誘電体層表面に吸着酸素が存在する場合において
も誘電体層りに酸化しやすい金属薄膜からなる保護層を
形成するので誘電体層表面の吸着酸素は保護層を形成す
る際に保護層の金属と反応し除かれる為、保護層上に記
録層を形成する際に記録層界面の劣化による記録特性の
低下を防ぎ秀れた光記録特性が得られる。
Furthermore, in a structure in which a dielectric layer is provided on a transparent synthetic resin substrate, even if adsorbed oxygen exists on the surface of the dielectric layer, a protective layer made of a metal thin film that is easily oxidized is formed on the dielectric layer, so the dielectric layer is When forming the protective layer, adsorbed oxygen on the surface reacts with the metal of the protective layer and is removed. Therefore, when forming the recording layer on the protective layer, it prevents deterioration of recording characteristics due to deterioration of the recording layer interface and provides excellent optical performance. Recording characteristics can be obtained.

特に第2発明、すなわち保2I層形成後保護層を大気等
の酸素雰囲気に曝すことなく保護層上に記録層を形成す
ることにより表面吸@酸素等による記n層の初期劣化が
防止できると共に保護層211厚が薄くでき、生産性面
、光学特性面で大きな効果が得られる。なお、層界面へ
の吸着酸素をな(すという点から全層を大気に曝すこと
なく形成することが好ましい。
In particular, according to the second invention, by forming the recording layer on the protective layer without exposing the protective layer to an oxygen atmosphere such as the atmosphere after forming the protective layer, initial deterioration of the recording layer due to surface absorption of oxygen, etc. can be prevented. The thickness of the protective layer 211 can be reduced, and great effects can be obtained in terms of productivity and optical properties. Note that, from the viewpoint of adsorbing oxygen to the layer interface, it is preferable to form the entire layer without exposing it to the atmosphere.

又、前述の記録層の基板と反対側の面、更にはその側面
をも保護層を設けた構成においては、記録媒体を空気中
に放置した時の空気中の酸素の記録層への進入は、酸素
が保護層の金属と反応して酸化物を形成するため防止さ
れ、より耐蝕性に優れた光記録媒体が得られる。しかし
、これらの部分は記録面の劣化に直結するものではない
ので場合によりこれらの部分の保!!層は省略可能であ
るし、又誘電体層及び/又は樹脂等を保護層に用いて封
止しても良い。
In addition, in the configuration in which a protective layer is provided on the surface of the recording layer opposite to the substrate, and even on the side surface thereof, when the recording medium is left in the air, oxygen in the air will not enter the recording layer. This is prevented because oxygen reacts with the metal of the protective layer to form an oxide, and an optical recording medium with better corrosion resistance can be obtained. However, since these areas are not directly linked to the deterioration of the recording surface, it may be necessary to protect these areas. ! The layer may be omitted, or a dielectric layer and/or a resin may be used as a protective layer for sealing.

以上の本発明は透明合成樹脂基板を用いる光記録媒体全
てに適用できることは本発明の趣旨から明らかである。
It is clear from the gist of the present invention that the present invention described above is applicable to all optical recording media using transparent synthetic resin substrates.

すなわち、透明合成樹脂基板上に直接記録層を形成した
もの、誘電体層を介して記録層を形成したもの、特開昭
59−52443号公報等に開示の金属層、誘電体層、
記録層を順次形成したもの等、更にはこれらを記録層同
志が向い合い基板が外側になるように貼り合わせて両面
記録可能としたもの等種々の積層構成の光記録媒体に適
用できる。
That is, those in which a recording layer is formed directly on a transparent synthetic resin substrate, those in which a recording layer is formed through a dielectric layer, the metal layer and dielectric layer disclosed in JP-A-59-52443, etc.
The present invention can be applied to optical recording media with various laminated structures, such as those in which recording layers are sequentially formed, and those that are bonded together so that the recording layers face each other and the substrate is on the outside to enable double-sided recording.

本発明における合成樹脂基板としてはポリカーボネート
樹脂、アクリル樹脂、エポキシ樹脂、4−メブルーベン
テン樹脂などまたそれらの共重合体などが適用できるが
、機械強度、耐候性、耐熱性、透湿旦の点でポリカーボ
ネート樹脂が好ましい。
As the synthetic resin substrate in the present invention, polycarbonate resins, acrylic resins, epoxy resins, 4-megabentene resins, and copolymers thereof can be used, but they are limited in terms of mechanical strength, weather resistance, heat resistance, and moisture permeability. Polycarbonate resin is preferred.

又記8層としては、金属薄膜よりなり、光を用いて記録
・再生できる壽き替え可能なもの全てが適用できる。か
かる記録層としては、光磁気記録材として公知の、膜面
に垂直な方向に磁化容易方向を有し任意の反転磁区を作
ることにより情報再生可能な磁性金属薄膜、又相転移型
光記録材料として公知の光照射により結晶と非晶′!R
間の可逆の相転移をして反射率が変化する金属薄膜等が
あり、具体的には光磁気記録材料としてはFe Tb合
金系(7)Fe Tb Co合金、Fe Tb Gd合
金等が、又相転移型光記録材nとしてはFc −Te 
、 5n−Te −8e 、Ga −8e−Te等が知
られている。これの中でも鉄を含む金属薄膜よりなる記
録層に本発明は特に有利に適用できる。
As the 8th layer, any reusable material that is made of a metal thin film and that can be recorded and reproduced using light can be used. Such a recording layer may be a magnetic metal thin film known as a magneto-optical recording material, which has an easy magnetization direction perpendicular to the film surface and can reproduce information by creating an arbitrary reversal magnetic domain, or a phase transition type optical recording material. Crystal and amorphous by light irradiation known as '! R
There are metal thin films whose reflectance changes due to a reversible phase transition between them.Specifically, magneto-optical recording materials include Fe-Tb alloys (7) Fe-Tb-Co alloys, Fe-Tb-Gd alloys, etc. As the phase change type optical recording material n, Fc-Te
, 5n-Te-8e, Ga-8e-Te, etc. are known. Among these, the present invention can be particularly advantageously applied to a recording layer made of a metal thin film containing iron.

更に、誘電体層としてはA旦N、MIJF2゜Zn s
、Cc Fe、A1’F3 ・3Na F、S! 3N
a 、 Si O,St Oz 、 Ti 02 、7
r 203などの窒化物、弗化物9M化物などが適用で
きるが好ましくは干渉効果の点よりは屈折率の^いZn
SまたはTi0zが望ましい。
Furthermore, as a dielectric layer, AdanN, MIJF2゜Zn s
, Cc Fe, A1'F3 ・3Na F, S! 3N
a, SiO, StOz, Ti02, 7
Nitride such as r203, fluoride 9M compound, etc. can be used, but Zn, which has a higher refractive index, is preferable from the viewpoint of interference effect.
S or Ti0z is preferable.

本発明における光記録媒体は真空槽内′r−蒸看法。The optical recording medium according to the present invention is produced using the r-steaming method in a vacuum chamber.

スパッタリング法などの物理的薄膜形成法あるいは化学
的IJ151形成法で合成法形成することにより製造さ
れるが、前述の通り、各層の形成侵各層の表面を大気等
の酸素雰囲気に曝すことなく、次層を形成することが好
ましく、具体的には各層は真空槽内で真空を保ったまま
連続的に形成することが好ましい。この方法により各層
の界面特に記録層の界面におりる酸素の存在を減少させ
ることができ、各層の酸化反応を減少できる。
It is manufactured by a physical thin film formation method such as sputtering method or a synthetic method using a chemical IJ151 formation method, but as mentioned above, the formation of each layer is performed without exposing the surface of each layer to an oxygen atmosphere such as the atmosphere. It is preferable to form layers, and specifically, it is preferable to form each layer continuously in a vacuum chamber while maintaining a vacuum. This method can reduce the presence of oxygen at the interface between each layer, particularly at the interface of the recording layer, and can reduce the oxidation reaction of each layer.

[実施例1] 第1図(A)に示す構成、すなわち基板1上に誘電体層
2.第1の保護層3.記録層4.第2の保護層6を順次
積層した光磁気記録媒体を以下のようにして作成した。
[Example 1] The structure shown in FIG. 1(A), that is, a dielectric layer 2. First protective layer 3. Recording layer 4. A magneto-optical recording medium in which the second protective layer 6 was sequentially laminated was prepared as follows.

基板1として20X20am、厚さ 1.2rMmのア
クリル樹脂基板を電子ビーム蒸@装置(アネルバH製E
VD−500A型)の真空槽内に固定し4X10−71
O「「以下になるまで排気する。
As the substrate 1, an acrylic resin substrate of 20 x 20 am and a thickness of 1.2 rMm was heated using an electron beam evaporator (manufactured by Anelva H E).
VD-500A type) fixed in the vacuum chamber of 4X10-71
O: ``Exhaust the air until it drops below.''

尚、この′A画は2元WA着ができるように2つの蒸着
源を有し各蒸着源は6種類の物質をセットし、順次切換
えて真空を破ることなく連続して物質のMMが可能とな
っており、zn s、 ’rr 、 r−eCo合金を
一方の蒸着源に、他方の蒸着源にはTbをセットし、以
下のようにして真空を破ることなく積層体を形成した。
In addition, this 'A picture has two evaporation sources so that two-dimensional WA deposition can be performed, and each evaporation source is set with six types of substances, and by sequentially switching, it is possible to continuously MM the substances without breaking the vacuum. The zns, 'rr, and r-eCo alloys were set as one evaporation source and Tb was set as the other evaporation source, and a laminate was formed without breaking the vacuum as follows.

最初に誘電体層2を形成するため、ZnSを蒸着源とし
、蒸着源に電子ビームを照射する。znSが溶融した後
、蒸発を開始すると同時に堆積速度を約5人/秒になる
ように電子ビームを制御する。1分後にシャッタを開き
アクリル基板上にZnSを約800人堆積して、ZnS
の誘電体層2を形成した。
First, to form the dielectric layer 2, ZnS is used as an evaporation source, and the evaporation source is irradiated with an electron beam. After the znS is melted, evaporation is started and at the same time the electron beam is controlled so that the deposition rate is about 5 people/second. After 1 minute, the shutter was opened and approximately 800 ZnS were deposited on the acrylic substrate.
A dielectric layer 2 was formed.

次いでZnSの誘電体層2上に第1の保護層3を形成す
るために蒸着源をTiに変え、上述と同様の方法により
約0.5人/秒の堆積速度でTiを約10人堆積して、
Tiからなる第1の保護層3を形成した。
Next, in order to form the first protective layer 3 on the ZnS dielectric layer 2, the evaporation source was changed to Ti, and about 10 Ti layers were deposited at a deposition rate of about 0.5 layers/second using the same method as described above. do,
A first protective layer 3 made of Ti was formed.

続いて、記録層4としてFe Tb Coからなる光磁
気記録層を形成するため蒸着源をFeyowt%。
Subsequently, in order to form a magneto-optical recording layer made of FeTbCo as the recording layer 4, the evaporation source was changed to Feyowt%.

CO30wt%の合金とTbの2つとし、上述と同様の
方法で2元蒸着を行なう。このときの堆積速度はF(!
 Co合金が3.5人/秒、Tbが3.2人/秒になる
ように制御した。これによりFeTbC’。
An alloy of 30 wt % CO and Tb are used, and binary vapor deposition is performed in the same manner as described above. The deposition rate at this time is F(!
The Co alloy was controlled to be 3.5 people/second and the Tb was controlled to be 3.2 people/second. This results in FeTbC'.

合金を約1000人堆積し、記録層4を形成した。Approximately 1000 pieces of the alloy were deposited to form the recording layer 4.

−最後に記録層4の露出面を保護する第2の保護層5を
形成するために蒸着源を再びTiに変え、上述と同様の
方法により約0.5人77秒の堆積速度で約1000人
堆積し、第2の保護層5とした。
-Finally, to form the second protective layer 5 that protects the exposed surface of the recording layer 4, the evaporation source is changed to Ti again, and the deposition rate is about 1000 by the same method as described above at a deposition rate of about 0.5 people and 77 seconds. This layer was deposited to form the second protective layer 5.

以上の方法により第1図゛(A)に示す構成のアクリル
樹脂/Zn S/Ti /Fe Tb Co /Tiの
積層体を作製した。
By the above method, a laminate of acrylic resin/Zn S/Ti /Fe Tb Co /Ti having the structure shown in FIG. 1(A) was produced.

この積層体においてアクリル基板側から波長830nm
の光を入射したときの反射率を測定した。
In this laminate, the wavelength is 830 nm from the acrylic substrate side.
The reflectance was measured when the light was incident.

結果を表1の実施例1に示す。The results are shown in Example 1 in Table 1.

次にこの積層体を55℃、60%RHの恒温、恒湿下に
1000時間放置した。その後放置前と同様の方法で波
長830nmにおける反射率を測定した。結果を表1の
実施例1に示す。
Next, this laminate was left at constant temperature and humidity of 55° C. and 60% RH for 1000 hours. Thereafter, the reflectance at a wavelength of 830 nm was measured in the same manner as before standing. The results are shown in Example 1 in Table 1.

[比較例1] 実施例1と同様に電子ビーム蒸着装置により、20X2
0mm、厚さ 1.2履のアクリル基板にZn S。
[Comparative Example 1] Similar to Example 1, 20×2
Zn S on an acrylic substrate with a thickness of 0 mm and a thickness of 1.2 mm.

Fe ”rb Co 、Tiを実施例同様の堆積速度で
それぞれ800人、 1000人、 1000人堆積し
、第1の保護層3を設けない第1図(B)に示すアクリ
ル/Zn S/Fc Tb Co /Tiの積層体を作
製した。
Acrylic/Zn S/Fc Tb shown in FIG. 1(B) was deposited with 800, 1,000, and 1,000 layers of Fe"rb Co and Ti at the same deposition rates as in the example, respectively, and without the first protective layer 3. A Co/Ti laminate was produced.

この積層体において実施例と同様の測定方法で波長83
Qrvにおける反射率を測定した。結束を表1の比較例
1に示す。
In this laminate, wavelength 83 was measured using the same measurement method as in the example.
The reflectance at Qrv was measured. The binding is shown in Comparative Example 1 in Table 1.

次にこの積層体を55℃、60%RHの恒温、恒湿下に
1000時間放置した。その後放置前と同様に波長83
0nI11における反射率を測定した。結果を表1の比
較例1に示す。
Next, this laminate was left at constant temperature and humidity of 55° C. and 60% RH for 1000 hours. After that, wavelength 83 as before leaving
The reflectance at 0nI11 was measured. The results are shown in Comparative Example 1 in Table 1.

表1から明らかな如く本実施例1においては反射率は全
く変化していないのに対し、比較例1においては61%
から54%へ減少した。
As is clear from Table 1, in Example 1, the reflectance did not change at all, whereas in Comparative Example 1, it was 61%.
It decreased from 54% to 54%.

上述の如く本発明のイ1為性が示された。As described above, the merits of the present invention have been demonstrated.

[実施例2] 直径200am’;厚さ 1.2amの円板で2.5μ
mピッチのグループを有するポリカーボネート樹脂(P
C)のディスク基板を3ターゲツトの高周波マグネシロ
ンスバ、ツタ装胃(アネルバ■′I S P F −4
30’ll)の真空槽内゛に固定し、4 x 10−7
 Tor「以下になるまで排気する。このとき基板1は
水冷し、15rpmで回転させた。
[Example 2] Diameter 200 am'; thickness 2.5 μ in a 1.2 am disc
Polycarbonate resin (P
The disk substrate of C) was equipped with a 3-target high-frequency magnetic resonance bar, and a vine-mounted (ANELVA ■'IS P F-4)
Fixed in a vacuum chamber of 4 x 10-7
Tor "was exhausted until it reached below. At this time, the substrate 1 was water-cooled and rotated at 15 rpm.

次にA「ガス(5N)を真空槽内に導入し、圧力1X 
1O−2TOrrになるようにA「ガスの流9を調整し
、直径100#l111.厚さ5MのZnSの円盤をタ
ーゲットとし、放電電力 100W 、放電周波数13
.56 M HZで高周波スパッタリングを行ムい、誘
電体膜2としてZn5lllを約800人堆積した。
Next, A gas (5N) was introduced into the vacuum chamber, and the pressure was 1X.
Adjust the gas flow 9 to 1O-2 TOrr, target a ZnS disk with a diameter of 100 #l and a thickness of 5M, discharge power of 100W, and discharge frequency of 13.
.. About 800 layers of Zn were deposited as the dielectric film 2 by high frequency sputtering at 56 MHz.

′続いて第1の保護層3としてターゲットをT1に変え
上述と同様の放電条件でTi膜を約10人1「積した。
'Subsequently, as the first protective layer 3, the target was changed to T1 and about 10 Ti films were deposited under the same discharge conditions as described above.

更に記録層4としてターゲットをFe1rTb23CO
−8合金(添数字は組成(原子%)を示す)に変え上)
ホと同様のfIl電条件でl”e 7b Co 4金膜
を約1000人堆積した。
Furthermore, as the recording layer 4, the target is Fe1rTb23CO.
-8 alloy (the suffix indicates the composition (atomic %))
Approximately 1,000 l''e 7b Co 4 gold films were deposited under the same conditions as in E.

なお、上述の各膜形成のときZn 81g1. Ti膜
及びFe Tb Co合金膜は直径200.の基板上に
おいて中心から半径90履まで堆積する様にマスクが設
置されている。
In addition, when forming each of the above-mentioned films, Zn 81g1. The Ti film and FeTbCo alloy film have a diameter of 200. A mask is placed on the substrate so that the film is deposited within a radius of 90 mm from the center.

最後にこのマスクを取りはずし基板全面に膜が堆積する
様にし、第2の保護層5としてTiターゲットに変え、
L述と同様の放電条件で−rtsを約200人堆積した
Finally, this mask was removed and a film was deposited on the entire surface of the substrate, and a Ti target was used as the second protective layer 5.
Approximately 200 -rts were deposited under the same discharge conditions as described above.

以上の順序で第2図(A)に示す第2の保:a層5によ
り記録H4を含む全層の側面まで被覆したPC/711
 S/Ti /Fc Tb Co /Tiの積層体すな
わち光磁気記録媒体を得た。
In the above order, the second protection shown in FIG.
A laminate of S/Ti /Fc Tb Co /Ti, that is, a magneto-optical recording medium was obtained.

この積層体のC/N [なお、C/N−8/N+101
oo(l音帯域)/〈分解能帯域幅)]を測定した。こ
の測定は、900rp−でディスクを回転させ1.02
4M HZの信号を3.5mW半導体レーザ光で記録し
たのち、0.8TrLWの半導体レーザ光で読み出した
。印加磁界はIKOe(エルステッド)である。結果を
表2の実施例2に示す。
The C/N of this laminate [in addition, C/N-8/N+101
oo (1 tone band)/<resolution bandwidth)] was measured. This measurement was performed by rotating the disc at 900 rp-1.02
After recording a 4 MHz signal with a 3.5 mW semiconductor laser beam, it was read out with a 0.8 TrLW semiconductor laser beam. The applied magnetic field is IKOe (Oersted). The results are shown in Example 2 in Table 2.

次にこの積層体を45℃、90%RHの恒温、恒湿下に
200時間放置した。その後のC/Nを測定した。結果
を表2の実施例2に示す。
Next, this laminate was left at constant temperature and humidity of 45° C. and 90% RH for 200 hours. The C/N was then measured. The results are shown in Example 2 in Table 2.

[比較例2] 実施例2と同様に高周波マグネトロンスパッタ装隨によ
り第1の保護層3を設けない図2(B)に示すPC/Z
n S/Fe Tb Co /Ti積層体を作製した。
[Comparative Example 2] PC/Z shown in FIG. 2(B) in which the first protective layer 3 is not provided by high-frequency magnetron sputtering as in Example 2
A n S/Fe Tb Co /Ti laminate was produced.

このW4層体のC/Nを測定した。結果を表2の比較例
2に示す。
The C/N of this W4 layered body was measured. The results are shown in Comparative Example 2 in Table 2.

次にこの積層体を45℃、90%RHの恒温恒湿下に2
00時間放置した。その後のC/Nを測定した。
Next, this laminate was kept at constant temperature and humidity at 45°C and 90% RH for 2 hours.
It was left for 00 hours. The C/N was then measured.

結束を表2の比較例2に示す。The binding is shown in Comparative Example 2 in Table 2.

表2から明らかな如く本実施例2においてC/Nは全く
変化していないのに対し、比較IM2においてC/Nは
51 dBから47 d3へ減少した。
As is clear from Table 2, in Example 2, the C/N did not change at all, whereas in Comparative IM2, the C/N decreased from 51 dB to 47 d3.

上述の如く本発明の有為性が示された。As mentioned above, the effectiveness of the present invention was demonstrated.

[実施例3] 真空を破らずに3つの物質のスパッタリングが可能な実
施例2と同じ高周波マグネトロンスパッタリング装置内
に純度99.9%の直!¥!10αのFOツタ−ットと
99.99%の5a11角、  1ai+岸のTeを複
数個分布配置した複合ターゲットとZ「ターゲットを設
けた。さらに厚さ1.2g、 40x40as+角のポ
リカーボネート樹脂基板<PC)をターゲツト面より約
5α離した水冷基板ホルダーに取り付けた。
[Example 3] Direct sputtering with a purity of 99.9% was installed in the same high-frequency magnetron sputtering equipment as in Example 2, which enables sputtering of three substances without breaking the vacuum. ¥! A composite target with a 10α FO target, 99.99% 5a11 square, and 1ai + shore Te and a Z target were provided. In addition, a 1.2 g thick, 40 x 40 as + square polycarbonate resin substrate was prepared. PC) was attached to a water-cooled substrate holder approximately 5α away from the target surface.

真空槽を5 x 10” T orrに排気した後、9
9.999%のA「ガスを1 x 1O−2T orr
 Ia内に導入し、100WのパワーでZ「のスパッタ
リングを行ない、第1の保護層として約20人の厚さの
zr膜層を形成した。さらにその上に200Wのパワー
でl:e Te複合ターゲットよりスパッタリングを行
ない記録層として厚さ約2000人のFejoTeta
g層(添数字前述通り)を形成した。次に再び7rター
ゲツトをスパッタリングし第2の保護層として300人
の層を形成し、PC/Zr /F8ba Tem/Zr
積層体を作成した。
After evacuating the vacuum chamber to 5 x 10” Torr,
9.999% A'gas 1 x 1O-2T orr
A ZR film layer with a thickness of approximately 20 mm was formed as the first protective layer by sputtering Z' at a power of 100 W. On top of that, a ZR film layer with a thickness of approximately 20 mm was formed by sputtering at a power of 100 W. FejoTeta is sputtered from a target to form a recording layer with a thickness of about 2,000 people.
A layer g (subscript numbers as described above) was formed. Next, sputter the 7r target again to form a 300 layer as a second protective layer, PC/Zr/F8ba Tem/Zr
A laminate was created.

この積層体を70℃、90%RHの恒温恒湿に保った加
速劣化試験機(田葉井製作所製PL2E型)に試料を保
持した。試料の劣化を表わす指標として380時間の試
験後の合金の電気抵抗の試験前に対する変化(抵抗比)
の結果を表3の′f、施例3に示す。
The sample was held in an accelerated deterioration tester (Model PL2E manufactured by Tabai Seisakusho), which maintained this laminate at a constant temperature and humidity of 70° C. and 90% RH. As an indicator of sample deterioration, change in electrical resistance of the alloy after 380 hours of testing compared to before testing (resistance ratio)
The results are shown in Table 3, Example 3.

[比較例3] 上述の実施例と同様の方法で保!i層を全く設けないP
 C/ F−e in T etta積層体を作製した
[Comparative Example 3] Protected in the same manner as in the above example! P without any i-layer
A C/Fe in Tetta laminate was produced.

この積層体を70℃、 90%RHの恒温恒湿に保った
加速劣化試験111(田菓井製作所製PL2E’lりに
試料を保持した。試料の劣化を表わす指標として380
@間の試験後の合金の電気抵抗の試験前に対する変化(
抵抗比)の結果を表3の実施例3に示す。
Accelerated deterioration test 111 in which this laminate was kept at a constant temperature and humidity of 70°C and 90% RH (the sample was held in a PL2E'l made by Takai Seisakusho. 380
Change in the electrical resistance of the alloy after the test between @ compared to before the test (
Resistance ratio) results are shown in Example 3 in Table 3.

表  3 表3から明らかな如く本実施例3において抵抗変化は比
較例3に比して小さく本発明の有為性が示された。
Table 3 As is clear from Table 3, the resistance change in Example 3 was smaller than that in Comparative Example 3, demonstrating the effectiveness of the present invention.

[実施例4] 真空を破らず3つの物質を連続的にスパッタリング可能
な実施例2と同じ高周波マグネトロンスパッタ装置内に
2X2cm、厚さ1.1.のガラス基板を設けた。
[Example 4] In the same high-frequency magnetron sputtering apparatus as in Example 2, which can sputter three substances continuously without breaking the vacuum, a 2×2 cm, 1.1. A glass substrate was provided.

次に真空槽内を2 X 1G” T orrまで排気し
た後TiをターゲットとしてOz /Ar −1o v
o1%の混合ガスのf3 x 10−37 orr圧で
スパッタリングを行ない、誘電体層としてTi Oxを
約500人堆積する。その後、放電を止めることなくO
z/ArガスをA「ガスにかえ真空槽内に導入し保護層
としてTiを約1OA堆積し放電を止めた。
Next, the inside of the vacuum chamber was evacuated to 2 x 1G” Torr, and then Ti was used as a target and the atmosphere was evacuated to Oz/Ar −1ov.
Approximately 500 TiOx layers are deposited as a dielectric layer by sputtering at a pressure of f3 x 10-37 orr using a mixed gas of 01%. After that, O without stopping the discharge.
The z/Ar gas was replaced with the A gas, introduced into the vacuum chamber, and about 1 OA of Ti was deposited as a protective layer, and the discharge was stopped.

次にターゲットをFebf Tb 23 Co s合金
に変えT 90WでArガスによりFetf Tbu 
Co 9合金膜を約1000人堆積し、ガラス/TiO
2/Ti/Fc Tb Co積層体を得た。
Next, the target was changed to a Febf Tb 23 Cos alloy, and Fetf Tbu
Approximately 1000 Co 9 alloy films were deposited, and glass/TiO
A 2/Ti/Fc Tb Co laminate was obtained.

次に比較例4として上述と同様の方法で保ff1llの
Ti層を設けないガラス/Tt 02 /FOTbCo
WA層体を得た。
Next, as Comparative Example 4, a glass/Tt 02 /FOTbCo without a Ti layer of ff1ll was prepared in the same manner as described above.
A WA layered body was obtained.

本実施例4の積層体と比較例4の積層体をオージェ電子
分光分析(アネルバIJAES)したところ、比較例4
においては表面からガラス基板に進む稈M素の含有量が
増加しておりFc Tb Co膜中に多くの酸素が混入
していることがわかる。それに比して実施例4ではFe
 Tb Co膜中の酸素は比較例4に比べて大巾に減少
していることが観測された。
When the laminate of Example 4 and the laminate of Comparative Example 4 were subjected to Auger electron spectroscopy (ANELVA IJAES), it was found that Comparative Example 4
It can be seen that the content of culm M elements that proceed from the surface to the glass substrate increases, and that a large amount of oxygen is mixed into the Fc Tb Co film. In contrast, in Example 4 Fe
It was observed that oxygen in the Tb Co film was significantly reduced compared to Comparative Example 4.

1〕述の結果より本発明の有為性が示された。1] The above results demonstrated the effectiveness of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(B>は実施例1.比較例1における積
層体の断面図である。 第2図(A)、(B)は実施例2.比較例2におけるv
4g体の断面図である。 1:基板 2:誘電体層 3:第1の保護層 4:記録層 5:第2の保護層 特許出願人  帝  人  株  式  会  礼式 
 理  人  弁理士  前  1) 純  博(△)
(B) 矛11¥ト り 才り図
Figures 1 (A) and (B) are cross-sectional views of the laminate in Example 1 and Comparative Example 1. Figures 2 (A) and (B) are v in Example 2 and Comparative Example 2.
It is a sectional view of a 4g body. 1: Substrate 2: Dielectric layer 3: First protective layer 4: Recording layer 5: Second protective layer Patent applicant: Teijin Ltd.
Attorney Patent Attorney Former 1) Junhiro (△)
(B) Spear 11¥ Tori Saizuzu

Claims (1)

【特許請求の範囲】 1、透明合成樹脂よりなる基板上に光により書き換えで
きる金属薄膜よりなる記録層を有する光記録媒体におい
て、前記記録層の少なくとも基板側の面に酸化し易い金
属若しくはその合金を含む薄膜の保護層を設けたことを
特徴とする光記録媒体。 2、前記保護層は前記記録層より熱伝導性が低い特許請
求の範囲第1項記載の光記録媒体。 3、前記保護層は少なくともチタニウム又はジルコニウ
ムを含む薄膜である特許請求の範囲第1項又は第2項記
載の光記録媒体。 4、前記保護層の膜厚が50Å以下である特許請求の範
囲第1項〜第3項記載のいずれかの光記録媒体。 5、前記保護層が前記記録層の基板と反対の面にも形成
されている特許請求の範囲第1項〜第4項記載のいずれ
かの光記録媒体。 6、前記保護層が前記記録層のエッジ部を被覆するよう
に形成されている特許請求の範囲第1項〜第5項記載の
いずれかの光記録媒体。 7、前記記録層が光磁気効果により記録される光磁気記
録層である特許請求の範囲第1項〜第6項記載の光記録
媒体。 8、前記記録層と前記基板との間に誘電体層を有する特
許請求の範囲第7項記載の光記録媒体。 9、前記記録層が鉄を含む金属薄膜である特許請求の範
囲第1項〜第8項記載のいずれかの光記録媒体。 10、透明合成樹脂の基板上に光により書き換えできる
金属薄膜よりなる記録層を有し、該記録層の少なくとも
基板側の面に酸化し易い金属又はその合金を含む薄膜の
保護層を形成した光記録媒体の製造方法において、前記
保護層を形成後、該保護層を大気にさらすことなくその
上に前記記録層を形成することを特徴とする光記録媒体
の製造方法。 11、前記保護層及び前記記録層を同一真空槽内で形成
する特許請求の範囲第10項記載の光記録媒体の製造方
法。
[Scope of Claims] 1. In an optical recording medium having a recording layer made of a light-rewritable metal thin film on a substrate made of a transparent synthetic resin, at least the surface of the recording layer on the substrate side contains an easily oxidized metal or an alloy thereof. An optical recording medium characterized by being provided with a thin protective layer containing. 2. The optical recording medium according to claim 1, wherein the protective layer has lower thermal conductivity than the recording layer. 3. The optical recording medium according to claim 1 or 2, wherein the protective layer is a thin film containing at least titanium or zirconium. 4. The optical recording medium according to any one of claims 1 to 3, wherein the protective layer has a thickness of 50 Å or less. 5. The optical recording medium according to any one of claims 1 to 4, wherein the protective layer is also formed on a surface of the recording layer opposite to the substrate. 6. The optical recording medium according to any one of claims 1 to 5, wherein the protective layer is formed to cover an edge portion of the recording layer. 7. The optical recording medium according to claims 1 to 6, wherein the recording layer is a magneto-optical recording layer recorded by a magneto-optical effect. 8. The optical recording medium according to claim 7, further comprising a dielectric layer between the recording layer and the substrate. 9. The optical recording medium according to any one of claims 1 to 8, wherein the recording layer is a metal thin film containing iron. 10. An optical device that has a recording layer made of a thin metal film that can be rewritten by light on a transparent synthetic resin substrate, and a protective layer of a thin film containing an easily oxidized metal or an alloy thereof is formed on at least the surface of the recording layer on the substrate side. A method for manufacturing an optical recording medium, which comprises forming the protective layer and then forming the recording layer thereon without exposing the protective layer to the atmosphere. 11. The method for manufacturing an optical recording medium according to claim 10, wherein the protective layer and the recording layer are formed in the same vacuum chamber.
JP61108663A 1986-05-14 1986-05-14 Optical recording medium and its production Pending JPS62266746A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61108663A JPS62266746A (en) 1986-05-14 1986-05-14 Optical recording medium and its production
DE8787106848T DE3773531D1 (en) 1986-05-14 1987-05-12 MAGNETO-OPTICAL RECORD CARRIER.
EP87106848A EP0245833B1 (en) 1986-05-14 1987-05-12 Magneto-optical recording medium
US08/203,708 US5512364A (en) 1986-05-14 1994-02-28 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108663A JPS62266746A (en) 1986-05-14 1986-05-14 Optical recording medium and its production

Publications (1)

Publication Number Publication Date
JPS62266746A true JPS62266746A (en) 1987-11-19

Family

ID=14490522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108663A Pending JPS62266746A (en) 1986-05-14 1986-05-14 Optical recording medium and its production

Country Status (1)

Country Link
JP (1) JPS62266746A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118205A (en) * 1978-03-06 1979-09-13 Mitsubishi Electric Corp Infomration recording disc
JPS57157790A (en) * 1981-03-24 1982-09-29 Toshiba Corp Information recording member
JPS58203096A (en) * 1982-05-24 1983-11-26 Fujitsu Ltd Optical information recording medium
JPS60133553A (en) * 1983-12-21 1985-07-16 Fujitsu Ltd Optical information recording medium
JPS62139152A (en) * 1985-12-12 1987-06-22 Fujitsu Ltd Optical disk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118205A (en) * 1978-03-06 1979-09-13 Mitsubishi Electric Corp Infomration recording disc
JPS57157790A (en) * 1981-03-24 1982-09-29 Toshiba Corp Information recording member
JPS58203096A (en) * 1982-05-24 1983-11-26 Fujitsu Ltd Optical information recording medium
JPS60133553A (en) * 1983-12-21 1985-07-16 Fujitsu Ltd Optical information recording medium
JPS62139152A (en) * 1985-12-12 1987-06-22 Fujitsu Ltd Optical disk

Similar Documents

Publication Publication Date Title
US5577020A (en) Magneto-optical disc with intermediate film layer between a recording film and a dielectric film
JPH0325737A (en) Magneto-optical recording medium
JPS62267944A (en) Magnetic recording medium
JPS62266746A (en) Optical recording medium and its production
EP0233062A2 (en) Magneto-optic memory medium
JPH0227545A (en) Magneto-optical recording layer and film formation thereof
JPS62275340A (en) Protective film for magneto-optical recording medium
JPH03156753A (en) Optical recording medium
JP2507592B2 (en) Optical recording medium
JP2559432B2 (en) Magneto-optical disk
JPS5871195A (en) Optical information recording medium
JPH03122845A (en) Optical recording medium
JP2503268B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPS6332748A (en) Information recording medium
JPH02128346A (en) Magneto-optical disk
JPH0660452A (en) Magneto-optical recording medium
JPS63269348A (en) Magneto-optical recording medium
JPH03142728A (en) Optical recording medium
JPH02195543A (en) Magneto-optical disk
JPS6353735A (en) Magneto-optical recording medium
JPS63200345A (en) Magneto-optical disk
JPS62298954A (en) Magneto-optical disk
JPS62217444A (en) Photomagnetic disk
JPH01136947A (en) Amorphous alloy thin film
JPH01118244A (en) Magneto-optical recording film