JPS61153829A - Optical information storage device - Google Patents

Optical information storage device

Info

Publication number
JPS61153829A
JPS61153829A JP59274023A JP27402384A JPS61153829A JP S61153829 A JPS61153829 A JP S61153829A JP 59274023 A JP59274023 A JP 59274023A JP 27402384 A JP27402384 A JP 27402384A JP S61153829 A JPS61153829 A JP S61153829A
Authority
JP
Japan
Prior art keywords
recording medium
temperature
recording
light beam
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59274023A
Other languages
Japanese (ja)
Inventor
Sumio Ikegawa
純夫 池川
Yoshiaki Terajima
喜昭 寺島
Noburo Yasuda
安田 修朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59274023A priority Critical patent/JPS61153829A/en
Publication of JPS61153829A publication Critical patent/JPS61153829A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the S/N ratio of reproduction, to speed up recording and erasure, and to prolong the life of a device with simple constitution by using a single-layer crystalline film which has martensite transformation at specific temperature and with specific stress as a recording medium. CONSTITUTION:A preferable recording medium has the reverse transformation of martensite transformation at 150-500 deg.C and has the martensite transformation at -50-120 deg.C. For example, a Cu-Al alloy thin film is used. Then, a light beam is stopped down to about 1mumphi and focused on the recording medium 11 accurately through an objective 15 to heat the medium locally. In this case, a plastic deforming part 3 due to the martensite transformation which is caused locally is used as a recording part and the difference in reflection factor of a light beam between the deforming part 3 and a flat part 4 is detected by a photodetector 17 to reproduce information. When information is erased, the light beam is irradiated so that the temperature of the recording medium 11 is higher than temperature at which the reverse transformation of the martensite transformation occurs, erasing the deformation of the recording part 4. Thus, the performance of the optical information recording device is improved with the simple constitution.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、二進情報を光学的に記録・再生する記憶装
置に係り、特に光学的に記録・消去の繰り返しが可能な
記憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a storage device that optically records and reproduces binary information, and more particularly to a storage device that allows repeated optical recording and erasing.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光学的に情報の記録・再生・消去を行なう記憶装置は、
記録密度が高いこと、及び高速ランダムアクセスが可能
であることから注目されている。
Storage devices that optically record, reproduce, and erase information are
It is attracting attention because of its high recording density and high-speed random access.

このような記憶装置として、希土類及び遷移全屈元素か
ら成る非晶質合金簿囮の光磁気効果を利用した記録媒体
、非晶質と結晶質の間の相転移を利用した記録媒体等を
用いたものが知られている。
As such storage devices, recording media that utilize the magneto-optical effect of amorphous alloy decoys made of rare earth elements and transitional total bending elements, recording media that utilize phase transition between amorphous and crystalline materials, etc. are used. What was there is known.

しかしながら、光磁気記憶装置に於ては、(a)再生原
理が直11[@光の偏光面の高々数置以下の回転を検出
することによっており、光学系が偏光子・検光子等を含
んで複雑になり、かつS/mが゛低−い、(b))希土
類及び遷移金属元素からなる非晶質合金薄膜は、大気中
で容易に酸化され、寿命が短い、(C)希土類元素を用
いるために原料コストが高い、(d)l場を印加する手
段が必要である、といった問題点を有する。
However, in a magneto-optical storage device, (a) the reproduction principle is based on detecting rotation of the polarization plane of light by at most a few orders of magnitude, and the optical system does not include a polarizer, analyzer, etc. (b) Amorphous alloy thin films made of rare earth and transition metal elements are easily oxidized in the atmosphere and have a short lifetime; (C) Rare earth elements There are problems such as high raw material cost due to the use of (d) a means for applying an l field.

又、非晶質と結晶質の間の相転移を利用した記憶装置に
於いては、記録・消去が原理的に原子の拡散移動を伴う
ものであることから、(a)1ビットの情報の記録又は
消去に要する時間が長く1、データ転送速度−を高速に
することに限りがある(b)熱的繰返しに対して徐々に
可逆性が・失われ、消し残りが発生する、といった問題
点を有する。
In addition, in a memory device that utilizes phase transition between amorphous and crystalline materials, recording and erasing basically involves diffusion and movement of atoms, so (a) 1-bit information is The time required for recording or erasing is long (1), and there is a limit to increasing the data transfer rate (b) reversibility is gradually lost due to thermal repetition, resulting in unerased data. has.

この他に、基板上に少なくとも2つの別の層を設け、第
1の層は第2の層を変形させて記録するものであり、第
2の層は室温でマルテンサイト層である可逆可能なメモ
リ構造が提案されている(¥#開昭56−124136
号公報)。この方法では、(a)記録媒体に少なくとも
2つの個別の層が必要であり、更には基板と第1の層の
間、第・1の層と□第2の層の間の付着力を厳密に制御
する必要があることから、製造プロセスが複唯である、
(b)第1の層として島い熱膨張係数をもつ金属′、を
用いた場合、記録後筒1の層は平坦面に戻り、基板面側
から光ビームを入射して情報を両生することが難しい、
(c)第1の層として加熱分解するポリマを用いた場合
、記録・消去の繰返し回数に限りがある、といった問題
点を有する。
Besides this, at least two other layers are provided on the substrate, the first layer deforms and records the second layer, and the second layer is a reversible martensite layer at room temperature. A memory structure has been proposed (¥# Kaisho 56-124136
Publication No.). This method (a) requires at least two separate layers in the recording medium and also requires strict adhesion between the substrate and the first layer, and between the first layer and the second layer. The manufacturing process is complex due to the need to control
(b) When a metal with a low coefficient of thermal expansion is used as the first layer, the layer of the cylinder 1 returns to a flat surface after recording, and a light beam is input from the substrate surface side to generate information. is difficult,
(c) When a thermally decomposed polymer is used as the first layer, there is a problem that the number of times recording and erasing can be repeated is limited.

〔発明の目的〕[Purpose of the invention]

本発明は上記した従来装置の問題点を克服するためにな
されたものであり、従来とは原理的に異なる記憶方式に
より、再生のSlN比の向上と記録・消去の高速化を図
り、単層の記録媒体という単純な構造で寿命が長く原料
がより安Ii!5なものを用いて、かつ光学系が単純で
かっ!!場を印加する手段を用いない、簡単な構成によ
る光学式情報記憶装隨を提供することを目的とする。
The present invention has been made to overcome the problems of the conventional device described above, and uses a storage method that is fundamentally different from the conventional one to improve the SIN ratio for reproduction and speed up recording and erasing. The simple structure of the recording medium has a long life and cheaper raw materials! It uses 5 components and the optical system is simple! ! An object of the present invention is to provide an optical information storage device with a simple configuration that does not use means for applying a field.

〔発明のll要〕[Ill essentials of invention]

本発明は、前記した目的を達成する上で1、特定の温度
・′応力に於いてマルテンサイト変態を起こす単層の結
晶質膜を記録媒体として用いる。マルテンサイト変態と
その逆変態は、原子の拡散移動なしで原子が連携運動を
して結晶構造が変化するものであり、可逆性が高く、か
、つ相転移が高速で行われる。これらの変態は、温度の
上下に対しであるヒステリシスをもって観測されるが、
格子変形であるが故に応力を加える事によっても誘起さ
れる。例えば、所定の特性温度以下では、高温相にある
結晶に応力を加えるとマルテンサイト相になる。これを
応力誘起変態と呼ぶ。応力をかけずに昇温させていった
場合の逆変態の始まる温度をAs、逆変態が終了してす
べて高温相になる温度をA「とすると、A8以下では上
記の応力誘起変態によるマルテンサイト相は安定に存在
する。又、マルテンサイト変態をする物質の多くは、A
rJ:J%下に於いて応力をかけて、応力除去後も残る
ようなひずみ、すなわち変形を与えた場合、At以上に
11ると逆変態に伴ってひずみがゼロに回復するという
現9・が起きる。これを形状記憶効果と呼ぶ。
In order to achieve the above-mentioned objects, the present invention uses, as a recording medium, a single-layer crystalline film that undergoes martensitic transformation at a specific temperature and stress. Martensitic transformation and its reverse transformation change the crystal structure through coordinated movement of atoms without diffusion movement, and are highly reversible, and the phase transition occurs at high speed. These transformations are observed with a certain hysteresis as the temperature rises and falls,
Since it is a lattice deformation, it can also be induced by applying stress. For example, below a predetermined characteristic temperature, when stress is applied to a crystal that is in a high temperature phase, it becomes a martensitic phase. This is called stress-induced transformation. Assuming that the temperature at which reverse transformation begins when the temperature is raised without applying stress is As, and the temperature at which reverse transformation ends and all the components become high-temperature phase is A, then below A8, martensite is formed due to the above stress-induced transformation. The phase exists stably.Also, many of the substances that undergo martensitic transformation are A
If a stress is applied under rJ: J% and a strain, that is, deformation that remains even after the stress is removed, is applied, the strain recovers to zero due to reverse transformation when the temperature exceeds At 11. happens. This is called the shape memory effect.

本発明は、マルテンサイト変態に於ける前記した応力及
び昇温の効果を光ビームを用いた手段により記憶IA置
として実現したものである。すなわち、回折限界近くま
で絞った光ビームを短詩!のパルス幅で記録媒体に照射
して局部的に加熱し、そ8の際発生する局部的な応力に
よ、って塑性変形した状態を例えば記録状態とし、記録
時とは別の調整をした光ビームを用いて局部的応力の小
さい状態で昇温して形状記憶効果によって変形を消去し
、かつ変形部分と平坦面での光の反射率の差を検知して
再生する記憶装置である。さらに本発明では、局1部的
な加熱による記録を可能とするために、面内の熱拡散を
抑制するよう記録媒体を単層構造でWi膜化している。
The present invention realizes the above-described effects of stress and temperature increase in martensitic transformation as a storage IA device by means of using a light beam. In other words, a short poem is created by focusing a light beam close to the diffraction limit! The recording medium is irradiated with a pulse width of This storage device uses a light beam to raise the temperature in a state where local stress is small, erases deformation due to the shape memory effect, and detects and reproduces the difference in light reflectance between the deformed portion and the flat surface. Furthermore, in the present invention, in order to enable recording by localized heating, the recording medium is made of a Wi film with a single layer structure so as to suppress in-plane thermal diffusion.

更にまた、室温に保持して光ビームで記録・消去する実
用的記憶装置では、マルテンサイト変態温度及び逆・変
態温度がそれに適した記録媒体を用いる必要があるが、
従来良く知られているバルクの形状記t!!効果のある
合金では逆変態温度が畠々130℃で、室温以下のもの
が多く使用しにくかった。この要請を本発明では、薄膜
化し、模形成条件を最適化した記録媒体を用いることに
よって克服したものである。即ちこの発明での好ましい
記録媒体としては、150〜500℃でマルテンサイト
変態の逆変態を起こし、−50〜120℃でマルテンサ
イト変態を起こすものを用いる。
Furthermore, in a practical storage device that records and erases information using a light beam while being kept at room temperature, it is necessary to use a recording medium with a martensitic transformation temperature and an inverse/transformation temperature suitable for that purpose.
A well-known bulk shape chart! ! Most of the effective alloys had a reverse transformation temperature of 130°C, making it difficult to use many of them at temperatures below room temperature. This requirement has been overcome in the present invention by using a recording medium that has a thin film and has optimized pattern forming conditions. That is, as a preferred recording medium in the present invention, one that undergoes a reverse transformation of martensitic transformation at 150 to 500°C and undergoes martensitic transformation at -50 to 120°C is used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、(a>原子の拡散移動の無いマルテン
サイト変態を利用するために^速の記録・消去が可能で
あり、かつ可逆性が6い、(b)再生の際偏光子・検光
子を用いる必要がなく、光学系が単純でかつS、/Nが
高い、(C)記録媒体としてCu、 Affi、 N 
i等の元素を使用することができ原料が安価である、(
d)記録媒体として前記のような元素を主成分とするた
めに、希土類元素を使用する場合に比べて耐酸化性、耐
候性に富む、(e)記録媒体が!Illで十分な殿能を
果たし、製造プロセスが単純である。(f)磁場を印加
する手段が必要なく、記憶装置の構成が単純である、と
いった効果が得られる。
According to the present invention, (a) fast recording and erasing is possible by utilizing martensitic transformation without diffusion movement of atoms, and reversibility is high; (b) polarizer and There is no need to use an analyzer, the optical system is simple, and the S/N is high. (C) Cu, Affi, N can be used as the recording medium.
It is possible to use elements such as i, and the raw materials are cheap, (
d) Since the recording medium is mainly composed of the above-mentioned elements, it has better oxidation resistance and weather resistance than when rare earth elements are used. (e) Recording medium! Ill has sufficient performance and the manufacturing process is simple. (f) Effects such as no need for means for applying a magnetic field and a simple configuration of the storage device can be obtained.

〔充用の実7II例〕 第1図は本発明に於ける記録媒体及び基板の一実施例の
断面図である。1は基板であり、ガラス。
[Example 7II of Application] FIG. 1 is a sectional view of an embodiment of a recording medium and a substrate according to the present invention. 1 is the substrate, which is glass.

有機樹脂等より成る。2は記録媒体であり、本発明の場
合単層で十分な機能を果たし1りる。3は本発明に依る
ところの後述する記録手順によって例えば二進情報の1
゛′を記録した記録部分で、4は記録媒体2の白情報“
0パの未記録部分(又は消去済の部分)である。記録媒
体2は、常温Taよりも高温のAs−Arに於いてマル
テンサイト逆変態が起こるよう物質を選びその組成1組
織をamする。更に記録媒体2は、初期状態として第1
図の未記録部分4に示すような平坦面であり、かつ記録
媒体全体を応力がかからない状態でA1以上に昇温して
も^温相は平坦面であり、記録媒体・2の基板1への付
着力は弱い。
Made of organic resin, etc. 2 is a recording medium, and in the case of the present invention, a single layer serves a sufficient function. For example, 1 of the binary information is recorded by the recording procedure described below according to the present invention.
4 is the recorded part where ゛′ is recorded, and 4 is the white information of recording medium 2 “
This is an unrecorded portion (or an erased portion) of 0P. For the recording medium 2, a material is selected so that martensitic reverse transformation occurs in As-Ar at a temperature higher than room temperature Ta, and its composition is am. Furthermore, the recording medium 2 is in the first state as an initial state.
It is a flat surface as shown in the unrecorded area 4 in the figure, and even if the temperature is raised to A1 or higher with no stress applied to the entire recording medium, the temperature phase is a flat surface, and the substrate 1 of the recording medium 2 has weak adhesion.

第2図は、本発明の記録媒体を作成する装置の一例の構
成図である。5は真空容器、6は排気系。
FIG. 2 is a configuration diagram of an example of an apparatus for producing a recording medium according to the present invention. 5 is a vacuum container, and 6 is an exhaust system.

7はセラミック製ルツボ、8はタングステンから成る通
2!加熱用ヒータである。9はガラス、石英。
7 is a ceramic crucible, and 8 is tungsten! It is a heating heater. 9 is glass, quartz.

有機樹脂、Si等のいずれかから成る基板であり、膜を
付着させる間は回転させる。“真空容器5を排気系6で
1×10−・%Torr以下に排気し、ヒータ8で加熱
されたルツボ7よりルツボ7内に充填された蒸発源が蒸
発し、基板9に記録媒体11膜がt1着する。  一 本発明の第1の実施例は、Cu−A多合金wl膜を記録
媒体として用いた場合である。ヒータ8とルツボ7の組
合わせを第2図に示した様に2個用意し、片方にCu、
もう一方にAQを充填して、ヒータ8への供給電力を制
御することによって個々の蒸発量を精密かつ安定に制御
して、基板9にCu−A4合金膜を付着させた。1組成
を変化させて作成したCu−AR合金膜について電気抵
抗の温度変化を測定したところ、Aρ金含有が9〜15
重@ 9(、の場合にマルテンサイト変態をする記録媒
体が青られた。電気抵抗の温度変化の測定は、マルテン
サイト変態の変態温度を知るのに好適の手段である。測
定は交流四端子法により、昇温・冷却の速度は1分あた
り20度とした。
It is a substrate made of organic resin, Si, etc., and is rotated while the film is attached. “The vacuum container 5 is evacuated to 1×10−·% Torr or less by the exhaust system 6, and the evaporation source filled in the crucible 7 is evaporated from the crucible 7 heated by the heater 8, and the recording medium 11 is filmed on the substrate 9. The first embodiment of the present invention is a case where a Cu-A polyalloy wl film is used as a recording medium.The heater 8 and crucible 7 are combined as shown in FIG. Prepare 2 pieces, put Cu on one side,
The other side was filled with AQ, and by controlling the power supplied to the heater 8, the individual evaporation amounts were precisely and stably controlled, and a Cu-A4 alloy film was attached to the substrate 9. 1. When we measured the temperature change in electrical resistance of Cu-AR alloy films created by changing the composition, we found that the Aρ gold content was 9 to 15.
The recording medium that undergoes martensitic transformation is blue in the case of heavy @ 9 (,. Measuring the temperature change of electrical resistance is a suitable means to know the transformation temperature of martensitic transformation. Measurement is performed using an AC four-terminal According to the method, the rate of heating and cooling was set at 20 degrees per minute.

第3図は熱酸化膜付3iウエハー上に厚さ5000人堆
積したCu−Afi合金膜の電気抵抗の温度変化の一例
である。日本金属学会誌25 G39 (1961)に
記載されているようにバルクのCu−AQ金合金場合マ
ルテンサイト変態の温度ヒステリシスは約80度である
。それに対して第3図に示した本発明の記録媒体では温
度ヒステリシスが約250度ある。膜作成条件の最適化
により、冷却時にマルテンサイト変態の始、まる潤度M
sツ、70℃、逆変態を終了する温11Af−300℃
と、後述するように本発明に好適なマルテンサイト変態
を起こし、かつ基板への付着力の強くない記録媒体が得
られた。
FIG. 3 shows an example of the temperature change in electrical resistance of a Cu-Afi alloy film deposited to a thickness of 5000 on a 3i wafer with a thermally oxidized film. As described in Journal of the Japan Institute of Metals 25 G39 (1961), in the case of a bulk Cu-AQ gold alloy, the temperature hysteresis of martensitic transformation is about 80 degrees. In contrast, the recording medium of the present invention shown in FIG. 3 has a temperature hysteresis of about 250 degrees. By optimizing the film creation conditions, the martensitic transformation begins during cooling, and the moisture content M
stsu, 70℃, temperature to complete reverse transformation 11Af-300℃
As described later, a recording medium was obtained which caused martensitic transformation suitable for the present invention and did not have strong adhesion to the substrate.

更に、ガラス基板上に8◇0人堆積したCLJ−A2合
金膜について70℃、85%相対湿度の高温加湿条件下
に於いて加速劣化試験を行なった。劣化の目安として一
定時lI5毎に光学的反射率を測定し・た。第4図がそ
の結果の、−例である。横軸は高温加湿条件下に置いた
時間、縦軸はX時間後の通常用いられている半導体レー
ザーの波長830 nmに於ける反射率をR(X)とし
て。
Furthermore, an accelerated deterioration test was conducted on a CLJ-A2 alloy film deposited on a glass substrate at a high temperature of 70° C. and a relative humidity of 85%. As a measure of deterioration, the optical reflectance was measured at regular intervals of 1I5. FIG. 4 is an example of the result. The horizontal axis is the time under high temperature and humidified conditions, and the vertical axis is the reflectance of a commonly used semiconductor laser at a wavelength of 830 nm after X hours as R(X).

(R(x) −R(o) ) 、’R(o)で定義され
る光学的反射率の変化分である。第4図には比較のため
に同時に行なった光磁気記録媒体として代表的なT−b
 F e非晶質膜、GbCO非晶質膜の結果の一例も記
載した。第4図より明らかなように、Cu−An系合金
薄膜は、希土類元素を用いた光…気配條媒体に比べて高
温加湿条件下に於ける反射率の低下が小さく、格段に耐
酸化性、耐候性に優れている。
(R(x) - R(o) ), 'R(o) is the change in optical reflectance defined. Figure 4 shows a typical T-b as a magneto-optical recording medium that was tested at the same time for comparison.
Examples of results for Fe amorphous films and GbCO amorphous films are also described. As is clear from Fig. 4, the Cu-An alloy thin film has a smaller decrease in reflectance under high temperature and humid conditions than a light distribution medium using rare earth elements, and has much higher oxidation resistance. Excellent weather resistance.

第5図は、前記の樟なマルテンサイト変態を起こす記録
媒体を用い光ビームによって記録・再生・消去をする記
憶装置の一実施例の構成図である・。
FIG. 5 is a block diagram of an embodiment of a storage device that uses a recording medium that undergoes the above-described martensitic transformation and performs recording, reproduction, and erasing using a light beam.

10はガラス若しくは有機樹脂などから成る基板。10 is a substrate made of glass or organic resin.

11は上述した単層薄膜の記録媒体であり、これらは軸
12を中心に回転させる。13は光ビーム発生装置であ
り、照射する光ビームのパルス幅及びパワーを調整する
tiIlをも含む。14は反射鏡。
Reference numeral 11 denotes the single-layer thin film recording medium described above, which is rotated about a shaft 12. Reference numeral 13 denotes a light beam generator, which also includes a tiIl for adjusting the pulse width and power of the irradiated light beam. 14 is a reflective mirror.

15は対物レンズである。対物レンズ15によ゛って絞
り込まれた光ビームが記録媒体11に照射される。16
はハーフミラ−917は光検出器であり、記録媒体11
からの反射光の一部がハーフミラ−16を介して光検出
器17に入射する。
15 is an objective lens. A light beam focused by the objective lens 15 is irradiated onto the recording medium 11 . 16
The half mirror 917 is a photodetector, and the recording medium 11
A part of the reflected light from the photodetector 17 enters the photodetector 17 via the half mirror 16.

情報の記録は、記録媒体を局部的に加熱することにより
行われる。すなわち、対物レン・ズ151.:よって記
録媒体11に正確に焦点を合せ、1μmΦ程度に絞った
光ビームを記録媒体11の面内の熱拡散が問題にならな
い程度のパルス幅、かつ光ビーム照射部分の温度がAr
以上にならないようなパワーで照射することによって記
録ができた。
Information is recorded by locally heating the recording medium. That is, the objective lens 151. : Therefore, the light beam is focused accurately on the recording medium 11 and narrowed down to about 1 μmΦ with a pulse width such that thermal diffusion within the plane of the recording medium 11 does not become a problem, and a temperature of the light beam irradiated part is Ar.
Recording was possible by irradiating with a power that did not exceed the maximum power.

記録した箇所を顕微MII察したところ、第1図に示す
形に変形していることが確認された。
When the recorded area was observed using a microscope MII, it was confirmed that it had deformed into the shape shown in Figure 1.

情報の消去は、記録媒体をAr以上まで昇温させること
により行わ枕る。すなわら、光ビームを記録媒体11の
温度がA「以上になるようなエネルギーで消去したい箇
所に照射した。但し、消去時には不必要な熱応力の集中
を避けるために、記録時よりも長いパルス幅でかつ記録
時よりも太いビーム径の光ビームを照射することによっ
た。第1図の記録部分3は、以上により変形が消失して
平坦面に復すことが確認された。
Information is erased by heating the recording medium to Ar or higher. In other words, a light beam is irradiated onto the area to be erased with energy such that the temperature of the recording medium 11 becomes A' or higher. By irradiating a light beam with a pulse width and a beam diameter larger than that during recording, it was confirmed that the recorded portion 3 in FIG. 1 lost its deformation and returned to a flat surface.

以上の記録及び消去手順は以下のような原理と叩解され
る。記録すべく光ビームを用いて局部的な加熱をした場
合、第、1図に示す記録媒体2の内、光ビームを照射し
た部分には、周囲の未記録部分4によって拘束されるこ
とから以下の内部応力σが発生する。
The above-mentioned recording and erasing procedures are based on the following principles. When local heating is performed using a light beam for recording, the portion of the recording medium 2 shown in FIG. An internal stress σ occurs.

σ−=E’(Δa/2) ここでEはヤング率、Δ℃、/Qは拘束されない場合の
熱膨張による伸び率であり、 Δ2/Q=β(T−Ta) で表わされる。βは熱膨張係数、Taは常温。
σ-=E'(Δa/2) Here, E is Young's modulus, Δ°C, /Q is the elongation rate due to thermal expansion when not restrained, and is expressed as Δ2/Q=β(T-Ta). β is the coefficient of thermal expansion, and Ta is room temperature.

王は光ビーム照射部分の温度である。通常の合金、例え
ばCl−AM系合金に於いて′β〜2xl’−0−5(
IKl、E〜1o11(Pa )である−ことを考慮す
ると、光−ビーム照114部分が常温より150度温度
上昇することにより、σ−31)0(M P a )の
内部応力を発生する。記録媒体2の早椴1への付着力が
弱い場合、この内部応力σが記M’R体2の降伏応力σ
crを超えると光ビーム照射部分は塑性座屈を起こし、
第1図に示す形に変形する。記録時に記録媒体2の温度
がASを超えなければ、本発明に依る記録媒体の場合こ
の変形は、マルテンサイト相が応力誘起づることによる
か、これに加えてマルテンサイト相内の双晶界面の移動
とマルテンサイト兄第品同士の変換によって担われる。
King is the temperature of the part irradiated with the light beam. In normal alloys, such as Cl-AM alloys, 'β~2xl'-0-5 (
Considering that IKl,E~1o11 (Pa), an internal stress of σ-31)0 (MP a ) is generated when the temperature of the light beam irradiated portion 114 rises by 150 degrees from room temperature. When the adhesion of the recording medium 2 to the Hayasu 1 is weak, this internal stress σ is the yield stress σ of the M'R body 2.
If cr is exceeded, the light beam irradiated part will undergo plastic buckling,
It is transformed into the shape shown in FIG. If the temperature of the recording medium 2 does not exceed AS during recording, in the case of the recording medium according to the present invention, this deformation may be due to stress-induced stress in the martensitic phase or, in addition to this, due to the twin interface within the martensitic phase. It is carried out by movement and conversion between martensite brother products.

ここで本発明に依る記録媒体2は常温の初期状態として
高温相であっても良く、また高温相とマルテンサイト相
との混合状態であっても良(、いずれの状態にあるかに
よって上記変形の担われ方が異なってくる。しかしなが
ら、本発明に用いるマルテンサイト変態をする物質では
、Msに於いて降伏応力σC「が最小値(,100M 
pa以下)をとる。又、記録時には、Afを超えない温
度までの局部的加熱による熱応力が降伏応力σcrを超
えることが必要である。従って記録媒体2のAfは15
0℃以上にあり、MSは常温近?、−50−・120℃
にあることが望ましい。この要請により、前記し第3図
に示した一実施例は、本発明にR適な変態温度をもつ記
録媒体である。
Here, the recording medium 2 according to the present invention may be in a high-temperature phase as an initial state at room temperature, or may be in a mixed state of a high-temperature phase and a martensitic phase (depending on which state it is in, the above-mentioned variations may occur). However, in the material that undergoes martensitic transformation used in the present invention, the yield stress σC' is the minimum value (,100 M
(below pa). Further, during recording, it is necessary that the thermal stress caused by local heating to a temperature not exceeding Af exceeds the yield stress σcr. Therefore, Af of recording medium 2 is 15
Is it above 0℃ and MS is near room temperature? , -50-・120℃
It is desirable that the In response to this requirement, the embodiment described above and shown in FIG. 3 is a recording medium having a transformation temperature R suitable for the present invention.

Lス上の手順によって第1図に示す如く塑性座屈によっ
て変形した記録部分3は、温度がAS以下であれば安定
に存在し、これが例えば1°°の記録状態となる。消去
は、既に述べた形状記憶効果による。す<2わら、記録
媒体が昇温すると、温度As〜△[に於いてマルテンサ
イト逆変態が起こる。記録時に、応力誘起されたマルテ
ンサイト相やマルテンサイト相内の双晶界の移動とマル
テンサイト兄第品同士の変換によって担われた変形は、
逆変態して高温相になる際に全てゼロになる。従って記
録媒体2の形状は、元の平坦面となる。この平坦面は消
去用ビーム照射後、常温まで冷却さ[しても安定であり
、以後応力がかからない限り安定である。この消去過程
に於いて、昇温による熱応力が前述の降伏応力σcr以
下である必要がある。
The recording portion 3 that has been deformed by plastic buckling as shown in FIG. 1 by the procedure on the LS exists stably as long as the temperature is below AS, and this results in a recording state of, for example, 1°. Erasing is due to the shape memory effect already mentioned. When the temperature of the recording medium increases, martensitic reverse transformation occurs at a temperature of As to Δ. During recording, the deformation caused by the stress-induced movement of the martensite phase and the twin boundaries within the martensite phase and the transformation of the martensite brother products into each other was
All become zero when reverse transformation occurs and it becomes a high-temperature phase. Therefore, the shape of the recording medium 2 becomes the original flat surface. This flat surface remains stable even when cooled to room temperature after irradiation with the erasing beam, and remains stable as long as no stress is applied thereafter. In this erasing process, it is necessary that the thermal stress caused by the temperature increase be equal to or less than the above-mentioned yield stress σcr.

この要請を、消去用光ビームパルスを記録時よりも長い
パルス幅でかつ長いパルス立ち上がり時間でかつ記録時
よりも太いビーム径とすることにより克服した。ビーム
1¥を太くすることは、B便には対物レンズ15の調整
により、記録時に比へて少し焦点をずらすことによって
実現される。又、記録用とは別に消去用光ビームの光路
を設けてもよい。以上の原理によって消去が完了する。
This requirement was overcome by making the erasing light beam pulse have a longer pulse width and pulse rise time than those used during recording, and a beam diameter larger than those used during recording. Making the beam 1\ thicker is achieved by adjusting the objective lens 15 for flight B and slightly shifting the focus compared to when recording. Further, an optical path for an erasing light beam may be provided separately from that for recording. Erasing is completed by the above principle.

ここで記録過程に於いて熱応力が大きすぎ、変形が応力
誘起マルテンサイト相やマルテンサイト相内の双晶界面
の移動とマルテンサイト兄第品同士の変換以外にすべり
等によって担われた場合、消去が不可能である。従って
、後に消去する可能性のある情報については、すべりに
対する臨界応力σSH(>σcr)以下の熱応力で記録
する必要がある。逆に永久に消去したくない情報につい
てはσ8H以上の熱応力で記録して保存することが可能
である。
Here, in the recording process, if the thermal stress is too large and the deformation is caused by stress-induced martensite phase, movement of the twin interface within the martensite phase, and transformation between martensite older products, etc., the deformation is caused by slipping, etc. It is impossible to erase. Therefore, information that may be erased later needs to be recorded with a thermal stress below the critical stress for slip σSH (>σcr). On the other hand, information that is not desired to be permanently erased can be recorded and stored with a thermal stress of σ8H or more.

記録したfRNの再生は、記録媒一体に光ビームを照射
し、記録部分と未記録部分(又は消去部分)とに於ける
反射光量の差を第5図に示した光検出器17で検知する
ことによって行なう。黒用する光ビームは、反射光量が
光検出器17c検出され1qる程1に大きく、かつ記録
時や消去時よりも小さいパワーとする。第1図に示し如
く変形した記録部分3では、周囲の平坦な未記録部分4
に比較して光が散乱されること、及び基板と記録媒体の
間に空洞が生じるために光学的条件が変化することから
、反射して戻ってくる光量を検知することにより記録の
有無がわかる。この場合照旬光ビームの方向は、記録媒
体面側からでも良いし基板面側からでも良い。消去・記
録用の光ビームの方向も同様である。
To reproduce the recorded fRN, a light beam is irradiated onto the recording medium, and the difference in the amount of reflected light between the recorded part and the unrecorded part (or erased part) is detected by the photodetector 17 shown in FIG. Do it by doing this. The light beam used for black is set to have a power so large that the amount of reflected light is 1 as detected by the photodetector 17c, and a power smaller than that during recording or erasing. In the recorded portion 3 deformed as shown in FIG. 1, the surrounding flat unrecorded portion 4
The presence or absence of recording can be determined by detecting the amount of light that is reflected back, since the optical conditions change due to the fact that the light is scattered compared to the previous one, and a cavity is created between the substrate and the recording medium. . In this case, the direction of the illuminating light beam may be from the recording medium surface side or from the substrate surface side. The same applies to the direction of the erasing/recording light beam.

以上述べた峰に、本発明に依る光学式情報記憶装置は、
磁場を印加する手段や光路中の偏光子等が必要なく、第
5図に示すような単純な構成となる。もちろん、更に実
用的な高密度記憶装置とするには、第5図に示した他に
、通常用いられている基板の案内溝、案内溝に光学系を
追従させる手、段、光学系の自動焦点合せの手段等が必
要となることは言うまでもない。
In addition to the above-mentioned points, the optical information storage device according to the present invention has the following features:
There is no need for means for applying a magnetic field or a polarizer in the optical path, resulting in a simple configuration as shown in FIG. Of course, in order to make a more practical high-density storage device, in addition to the ones shown in Figure 5, there are also guide grooves on the substrate that are commonly used, means for making the optical system follow the guide grooves, steps, and automation of the optical system. Needless to say, a means for focusing etc. is required.

Lス上の実施例で述べたCU−AE系合金を用いた記録
媒体は、本発明の原理として既に記述したように、他の
同様のマルテンサイト変態を起こ寸物質で置き代えるこ
とが可能である。例えば、バルクで形状記憶効果の知ら
れている合金、CLI−A2(9〜15wt%)−Ni
(0〜5wt%)合金。
As already described as the principle of the present invention, the recording medium using the CU-AE alloy described in the example above can be replaced with other similar martensitic transformation enhancing materials. be. For example, CLI-A2 (9 to 15 wt%)-Ni, an alloy known to have a shape memory effect in bulk.
(0-5wt%) alloy.

Ti−Ni’(15〜56W【%)合金、およびこのN
iをCuでO〜30wt%置検した合金、N1−AQ(
19〜23wt%)合金、 Mn−Cu (5〜36w
t%)合金、 C,u−Z n (38〜42wt%)
合金にSi。
Ti-Ni' (15-56W [%) alloy, and this N
Alloy, N1-AQ (
19~23wt%) alloy, Mn-Cu (5~36w
t%) alloy, C, u-Z n (38-42wt%)
Si in the alloy.

3n、An、Ga等、をO〜5原子%添加した合金等の
iJ膜が、本発明の記録媒体として使用し得る。
An iJ film made of an alloy containing O to 5 atomic % of 3n, An, Ga, etc. can be used as the recording medium of the present invention.

前記の実施例では局部的な熱応力を発生させて変形させ
た状態を記録状態、すなわち二進情報の” i ”を表
わすとしたが、逆に51 mさせ変形を消去した後の状
態を記録状態゛′1°°とすることも可能である。この
場合、初期状態が第1図に示した変形部分となり、記録
状態が平11而となる。従って、初期状態として第1図
に示すような変形部分を記録媒体全面に連続的に同心円
状又はスパイラル状に形成することにより、前述した光
学ヘッドをガイドするための案内溝とすることができる
In the above embodiment, the state where local thermal stress is generated and deformed is the recorded state, that is, the binary information "i" is expressed, but conversely, the state after the deformation is erased after being exposed to a distance of 51 m is recorded. It is also possible to set the state to ゛′1°°. In this case, the initial state becomes the deformed portion shown in FIG. 1, and the recorded state becomes the Heisei 11 state. Therefore, by forming a deformed portion as shown in FIG. 1 in an initial state continuously over the entire surface of the recording medium in a concentric or spiral shape, it can be used as a guide groove for guiding the above-mentioned optical head.

こうした場合、基板に案内溝を形成する必要がなく、案
内溝形成の難しいガラス基板等も平坦面のまま高密度記
憶装置に使用し得る。
In such a case, there is no need to form a guide groove on the substrate, and even a glass substrate or the like on which it is difficult to form a guide groove can be used as a high-density storage device with a flat surface.

本発明の記録媒体は単層で十分な機能を果たし阿るが、
例えば記録媒体の基板への付着力を調整したい場合に熱
的に安定な層を記録媒体と基板の間に設ける、又は、更
に耐候性を増すために記録媒体の両面に薄い保F!層を
設ける、等の多層化が可能である。
Although the recording medium of the present invention can function satisfactorily with a single layer,
For example, if you want to adjust the adhesion of the recording medium to the substrate, you can provide a thermally stable layer between the recording medium and the substrate, or you can add a thin F-layer on both sides of the recording medium to further increase weather resistance. Multi-layering is possible, such as by providing layers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の−実り例に於ける記録媒体と基板の断
面図、第2図は本発明に依る記録媒体を作成する装置の
一例の模式図、第3図は本発明に依る記録媒体の一実施
例の電気抵抗の温度変化であり、マルテンサイト変態の
様子を表わした図、第4図はCu−Aβ系合金記録vx
体の耐候性を他の記録媒体と比較して示した図、第5図
は本発明に依る光学式情報記憶装置の一実施例の全体構
成図である。 ′l・・・基板、2・・・記録媒体、5・・・真空容器
、6・・・排気系、7・・・ルツボ、8・・・ヒータ、
9・・・基板、1O・・・基板、11・・・記録媒体、
12・・・回転軸、15・−・対物レンズ、16・・・
ハーフミラ−117・・・光検出器。 出願人代理人 弁理士 鈴江武彦 1111!II 第2図 第3ti!It AM (C’)
FIG. 1 is a sectional view of a recording medium and a substrate in a practical example of the present invention, FIG. 2 is a schematic diagram of an example of an apparatus for producing a recording medium according to the present invention, and FIG. 3 is a recording medium according to the present invention. Figure 4 shows the temperature change in electrical resistance of one example of the medium, showing the state of martensitic transformation.
FIG. 5 is an overall configuration diagram of an embodiment of an optical information storage device according to the present invention. 'l... Substrate, 2... Recording medium, 5... Vacuum container, 6... Exhaust system, 7... Crucible, 8... Heater,
9... Substrate, 1O... Substrate, 11... Recording medium,
12...Rotation axis, 15...Objective lens, 16...
Half mirror 117...photodetector. Applicant's agent Patent attorney Takehiko Suzue 1111! II Figure 2 3ti! It AM (C')

Claims (4)

【特許請求の範囲】[Claims] (1)特定の温度・応力に於いてマルテンサイト変態を
起こす単層の物質膜から成る記録媒体と、この記録媒体
を支持する基板と、光ビームを照射して前記記録媒体を
特性温度以下で加熱してマルテンサイト変態により記録
媒体に変形を与える手段と、光ビームを照射して前記記
録媒体を前記特性温度以上まで昇温してマルテンサイト
変態の逆変態を引き起こして形状を回復させる手段と、
前記記録媒体の変形の有無を光ビームを用いて検知する
手段とを備えたことを特徴とする光学式情報記憶装置。
(1) A recording medium consisting of a single-layer material film that undergoes martensitic transformation at a specific temperature and stress, a substrate that supports this recording medium, and a light beam that irradiates the recording medium to a temperature below a characteristic temperature. a means for applying heat to deform the recording medium through martensitic transformation; and a means for irradiating the recording medium with a light beam to raise the temperature of the recording medium to the characteristic temperature or higher to cause a reverse transformation of the martensitic transformation to recover the shape. ,
An optical information storage device comprising: means for detecting the presence or absence of deformation of the recording medium using a light beam.
(2)前記記録媒体が、150〜500℃でマルテンサ
イト変態の逆変態を起こすことを特徴とする特許請求の
範囲第1項記載の光学式情報記憶装置。
(2) The optical information storage device according to claim 1, wherein the recording medium undergoes a reverse transformation of martensitic transformation at a temperature of 150 to 500°C.
(3)前記記録媒体が、−50〜120℃でマルテンサ
イト変態を起こすことを特徴とする特許請求の範囲第1
項記載の光学式情報記憶装置。
(3) Claim 1, wherein the recording medium undergoes martensitic transformation at -50 to 120°C.
Optical information storage device as described in .
(4)前記記録媒体が、銅を主成分としてアルミニウム
9〜15重量%を含んだ銅−アルミニウム系合金膜から
成る特許請求の範囲第1項記載の光学式情報記憶装置。
(4) The optical information storage device according to claim 1, wherein the recording medium is made of a copper-aluminum alloy film containing copper as a main component and 9 to 15% by weight of aluminum.
JP59274023A 1984-12-27 1984-12-27 Optical information storage device Pending JPS61153829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274023A JPS61153829A (en) 1984-12-27 1984-12-27 Optical information storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274023A JPS61153829A (en) 1984-12-27 1984-12-27 Optical information storage device

Publications (1)

Publication Number Publication Date
JPS61153829A true JPS61153829A (en) 1986-07-12

Family

ID=17535879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274023A Pending JPS61153829A (en) 1984-12-27 1984-12-27 Optical information storage device

Country Status (1)

Country Link
JP (1) JPS61153829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284443A (en) * 1985-10-09 1987-04-17 Matsushita Electric Ind Co Ltd Optical recording medium
JPS6284444A (en) * 1985-10-09 1987-04-17 Matsushita Electric Ind Co Ltd Optical recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284443A (en) * 1985-10-09 1987-04-17 Matsushita Electric Ind Co Ltd Optical recording medium
JPS6284444A (en) * 1985-10-09 1987-04-17 Matsushita Electric Ind Co Ltd Optical recording medium

Similar Documents

Publication Publication Date Title
EP0294932B1 (en) A method for recording and erasing information
JP3268157B2 (en) Optical recording medium
US4860274A (en) Information storage medium and method of erasing information
US4922462A (en) Reversible memory structure for optical reading and writing and which is capable of erasure
EP0237181B1 (en) Information recording medium and information write/read method using the same
JPH03224790A (en) Data recording medium
WO1998038636A1 (en) Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
EP1058247B1 (en) Information recording medium and information recording device
JPS61153829A (en) Optical information storage device
JPH01100745A (en) Information recording medium
Chong et al. Study of the superlattice-like phase change optical recording disks
JP2577349B2 (en) Optical recording medium
JPS61177653A (en) Optical type information memory device
JPS61156546A (en) Storage device
JPH01100748A (en) Information recording medium
JP2588169B2 (en) Optical recording medium
JP3034497B2 (en) Information recording / reproducing / erasing device
JPH05144084A (en) Optical recording medium and production thereof
JP2803245B2 (en) Information recording and playback method
JP3157019B2 (en) Optical recording medium and manufacturing method thereof
JPH10289478A (en) Optical information recording medium and its production
JPS59171689A (en) Optical recording method
JP2974556B2 (en) Information recording method
JPH05159363A (en) Optical recording medium
JP2000187892A (en) Silicon dioxide film, phase change type disk medium and its production