JPS61177653A - Optical type information memory device - Google Patents

Optical type information memory device

Info

Publication number
JPS61177653A
JPS61177653A JP60016761A JP1676185A JPS61177653A JP S61177653 A JPS61177653 A JP S61177653A JP 60016761 A JP60016761 A JP 60016761A JP 1676185 A JP1676185 A JP 1676185A JP S61177653 A JPS61177653 A JP S61177653A
Authority
JP
Japan
Prior art keywords
recording medium
temperature
recording
light beam
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60016761A
Other languages
Japanese (ja)
Inventor
Sumio Ikegawa
純夫 池川
Yoshiaki Terajima
喜昭 寺島
Noburo Yasuda
安田 修朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60016761A priority Critical patent/JPS61177653A/en
Publication of JPS61177653A publication Critical patent/JPS61177653A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the S/N of a reproducing signal by deforming recording media in a martensite phase at the room temperature by stress. CONSTITUTION:Recording media 2 and 11 are formed on substrates 1 and 10. The media 2 and 11 show the martensite phase at the room temperature, and are formed by the substance in which a martensite reverse transformation occurs at the special temperature higher than the room temperature and special stress. The information is recorded by heating locally the media 2 and 11. Name ly, the information is recorded so that in the optical beam irradiated from an optical beam generating device 13, the temperature of the optical beam irradiating part can drop below the above-mentioned specified temperature. The symbol 3 in the figure is the recording part. The information recorded in this way is deleted by irradiating the optical beam to the place hard to be deleted by the energy so that the temperature of the media 2 and 11 can be the above-mentioned special one. Thus, in a recording part 3, the deformation disappears and the flat surface is recovered. The information is reproduced by detecting the difference of the reflecting light quantity by a light detecting device 17.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、情報を光学的に記録・再生する記憶装置に
係り、特に光学的に記録・消去の繰や返しが可能な記憶
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a storage device that optically records and reproduces information, and more particularly to a storage device that allows repeated optical recording and erasing.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光学的に情報の記録・再生・消去を行なう記憶装置は、
記録密度が高いこと、及び^速うンダムアクセスが可能
であることから注目されている。
Storage devices that optically record, reproduce, and erase information are
It is attracting attention because of its high recording density and its ability to be accessed quickly.

このような記憶装置として、希土類及び遷移金属元素か
ら成る非晶質合金薄膜の光磁気効果を利用した記録媒体
や、非晶質と結晶質の間の相転移を利用した記録媒体等
を用いたものが知られている。
Such storage devices include recording media that utilize the magneto-optical effect of amorphous alloy thin films made of rare earth and transition metal elements, and recording media that utilize phase transition between amorphous and crystalline materials. something is known.

しかしながら前者の光磁気記憶装置においては、(a)
再生原理が直線偏光の偏光面の高々数置以下の回転を検
出することによっており、光学系が偏光子・検光子等を
含んで複雑になり、かつS/Nが低い、(b)希土類及
び遷移金属元素からなる非晶質合金薄膜は大気中で容易
に酸化され、寿命が短い、(C)希土類元素を用いるた
めに原料コストが高い、(d)磁場を印加する手段が必
要である。どいつた問題点を有する。
However, in the former magneto-optical storage device, (a)
The reproduction principle is based on detecting the rotation of the polarization plane of linearly polarized light by at most a few orders of magnitude, and the optical system is complicated, including polarizers, analyzers, etc., and the S/N is low. (b) Rare earth and Amorphous alloy thin films made of transition metal elements are easily oxidized in the atmosphere and have a short lifespan; (C) raw material costs are high due to the use of rare earth elements; and (d) a means for applying a magnetic field is required. It has a number of problems.

一方、後者の非晶質と結晶質の間の相転移を利用した記
憶装置においては、記録・消去が原理的に原子の拡散移
動を伴うものであることから、(a)1ビツトの情報の
記録または消去に要する時間が長く、データ転送速度を
高速にすることに限りがある。(b)熱的繰返しに対し
て徐々に可逆性が失われ、消し残りが発生する。といっ
た問題点を有する。
On the other hand, in the latter type of memory device that utilizes phase transition between amorphous and crystalline materials, recording and erasing basically involves diffusion and movement of atoms, so (a) 1-bit information The time required for recording or erasing is long, and there is a limit to increasing the data transfer speed. (b) Reversibility is gradually lost due to thermal repetition, resulting in unerasable residue. It has the following problems.

この他に、基板上に少なくとも2つの別の層を設け、第
1の層は第2の層を変形させて記録するものであり、第
2の層は室温でマルテンサイト層である可逆型メモリ構
造が提案されている(特開昭56−124136号公報
)。この方法では、(a>記録媒体に少なくとも2つの
個別の層が必要であり、更には基板と第1の層との間、
および第1の層と第2の層の間の付着力を厳密に制御す
る必要があることから、製造プロセスが複雑である。(
b)第1の層として高い熱膨張係数をもつ金属を用いた
場合、記録後に第1の層は平坦面に戻り、基板面側から
光ビームを入射して情報を再生することが難しい、(C
)第1の層として加熱分解するポリマを用いた場合、記
録・消去の繰返し回数に限りがある。といった問題点を
有する。
In addition, at least two other layers are provided on the substrate, the first layer deforms the second layer for recording, and the second layer is a reversible memory which is a martensitic layer at room temperature. A structure has been proposed (JP-A-56-124136). This method requires (a> at least two separate layers in the recording medium and further between the substrate and the first layer;
and the need to strictly control the adhesion between the first and second layers, complicating the manufacturing process. (
b) When a metal with a high coefficient of thermal expansion is used as the first layer, the first layer returns to a flat surface after recording, making it difficult to reproduce information by inputting a light beam from the substrate surface side. C
) When a thermally decomposable polymer is used as the first layer, there is a limit to the number of times recording and erasing can be repeated. It has the following problems.

〔発明の目的〕[Purpose of the invention]

本発明は上記した従来装置の問題点を克服するためにな
されたものであり、従来とは原理的に異なる記憶方式に
より再生信号のS/N比の向上と記録・消去の高速化を
図り、また単層という単純な構造で寿命が長く原料がよ
り安価な記録媒体を用いて、かつ光学系が単純でかつ磁
場を印加する手段を必要としない、簡単な構成による光
学式情報記憶装置を提供することを目的とする。
The present invention has been made in order to overcome the problems of the conventional device described above, and aims to improve the S/N ratio of the reproduced signal and speed up recording and erasing by using a storage method that is fundamentally different from the conventional one. In addition, we provide an optical information storage device with a simple structure, using a recording medium with a simple single-layer structure, long life, and cheaper raw materials, a simple optical system, and no means for applying a magnetic field. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明は上記した目的を達成するため、常温でマルテン
サイト相を呈し特定の温度・応力においてマルテンサイ
ト変態を起こす単層の物質膜を記録媒体として用い、そ
のマルテンサイト相内での変形を利用することが骨子で
ある。
In order to achieve the above-mentioned object, the present invention uses a single-layer material film that exhibits a martensitic phase at room temperature and undergoes martensitic transformation at a specific temperature and stress as a recording medium, and utilizes deformation within the martensitic phase. The main point is to do so.

マルテンサイト変態とその逆変態は、原子の拡散移動な
しで原子が連携運動をして結晶構造が変化するものであ
り、可逆性が高く、かつ相転移が高速で行われるという
特徴がある。これらの変態は温度の上下に対して、ある
ヒステリシスをもって観測される。以下では、昇温させ
ていった場合の逆変態の温度をAS、逆変態が終了して
全て高温相になる温度をAfとする。マルテンサイト変
態をする物質の多くは、マルテンサイト相において応力
をかけて応力除去後も残るような歪、すなわち変形を与
えた場合、A1以上に昇温すると逆変態に伴ってひずみ
がゼロに回復するという現象が起きる。これを形状記憶
効果と呼ぶ。
Martensitic transformation and its reverse transformation are characterized by changes in crystal structure due to coordinated movement of atoms without diffusion and movement of atoms, and are highly reversible and phase transitions occur at high speed. These transformations are observed with a certain hysteresis as the temperature rises and falls. In the following, the temperature of reverse transformation when the temperature is increased is assumed to be AS, and the temperature at which the reverse transformation ends and all of the material becomes a high-temperature phase is assumed to be Af. In many materials that undergo martensitic transformation, if stress is applied to the martensitic phase and a strain that remains even after the stress is removed, that is, deformation is applied, when the temperature is raised to A1 or higher, the strain recovers to zero as a result of reverse transformation. A phenomenon occurs. This is called the shape memory effect.

本発明は、この形状記憶効果を光ビームを用いた加熱手
段により制御する構成として記憶装置として実現したも
のである。すなわち、回折限界近くまで絞った光ビーム
を短時間のパルス幅で、上記のマルテンサイト相にある
記録媒体に照射して局部的に加熱し、その際に発生する
局部的な応力によって塑性変形した状態を例えば記録状
態とし、また記録時とは別の調整をした光ビームを用い
て局部的応力の小さい状態で記録媒体を昇温させて形状
記憶効果により変形を消去し、さらに記録媒体の変形の
有無を変形部分と平坦面での光の反射率の差を検知する
ことにより、記録された情報を再生する記憶装置である
。また、本発明では局部的な加熱による記録を可能とす
るために、面内の熱拡散を抑制するよう記録媒体を単層
構造で薄膜化している点も特徴である。
The present invention is realized as a memory device with a configuration in which this shape memory effect is controlled by heating means using a light beam. In other words, a light beam narrowed to near the diffraction limit is irradiated with a short pulse width to the recording medium in the martensitic phase to locally heat it, causing plastic deformation due to the local stress generated at that time. For example, the state is set to a recording state, and the temperature of the recording medium is raised in a state with small local stress using a light beam adjusted differently from that during recording to erase the deformation due to the shape memory effect, and the deformation of the recording medium is further reduced. This is a storage device that reproduces recorded information by detecting the difference in light reflectance between a deformed portion and a flat surface. Another feature of the present invention is that the recording medium is made thin with a single layer structure so as to suppress in-plane thermal diffusion in order to enable recording by localized heating.

なお、記録媒体を常温に保持して光ビームで記録・消去
する実用的記憶装置では、マルテンサイト変態温度およ
び逆変態温度がそれに適した記録媒体を用いる必要があ
る。本発明ではこの観点から、200〜500℃でマル
テンサイト変態の逆変態を起こすものを用いることが望
ましい。
Note that in a practical storage device that records and erases information using a light beam while keeping the recording medium at room temperature, it is necessary to use a recording medium whose martensitic transformation temperature and reverse transformation temperature are suitable. From this point of view, in the present invention, it is desirable to use a material that undergoes a reverse transformation of martensitic transformation at 200 to 500°C.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、<a)原子の拡散移動の無いマルテン
サイト変態を利用するために高速の記録・消去が可能で
あり、かつ可逆性が高い、(b)再生の際に偏光子・検
光子を用いる必要がなく、光学系が単純でかつS/Nが
高い、(C)記録媒体としてCu、AQ、N i等の元
素を主成分としたものを使用することができ原料が安価
である。
According to the present invention, (a) high-speed recording and erasing is possible and highly reversible due to the use of martensitic transformation without diffusion movement of atoms; (b) polarizer and detector are used during reproduction; There is no need to use photons, the optical system is simple and the S/N is high; (C) recording media containing elements such as Cu, AQ, and Ni can be used as main components, and raw materials are inexpensive; be.

(d)記録媒体を上記のような元素を主成分として構成
できるために、光磁気記録媒体のように希土類元素を使
用する場合に比べて耐酸化性、耐候性に冨む、(e)記
録媒体が単層で十分な機能を果たし、製造プロセスが単
純である。(f)磁場を印加する手段が必要でなく、記
憶装置の構成が単純である。といった効果が得られる。
(d) Since the recording medium can be composed mainly of the above elements, it has better oxidation resistance and weather resistance than magneto-optical recording media that use rare earth elements. (e) Recording A single layer of media is sufficient and the manufacturing process is simple. (f) No means for applying a magnetic field is required, and the structure of the storage device is simple. This effect can be obtained.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例における記録媒体および基板
の一実施例の断面図である。基板1はガラス、有機樹脂
等よりなる。この基板1に記録媒体2が形成されている
。この記録媒体2は本発明の場合、単層で十分な機能を
果たし得る。3は本発明によるところの後述する記録手
順によって例えば二値情報の1″を記録した記録部分で
、4は情報“0″の未記録部分くまたは消去済みの部分
)である。記録媒体2は常mTaでマルテンサイト相を
呈し、常ITaよりも高い特定の温度AS〜Afおよび
特定の応力においてマルテンサイト逆変態が起こるよう
物質を選びその組成9組織を調整する。さらに記録媒体
2は、初期状態では第1図の未記録部分4に示すような
平坦面であり、かつ媒体全体を応力がかからない状態で
温度A1以上に昇温しても高温相は平坦面であり、基板
1への付着力は弱い。
FIG. 1 is a sectional view of an embodiment of a recording medium and a substrate in an embodiment of the present invention. The substrate 1 is made of glass, organic resin, or the like. A recording medium 2 is formed on this substrate 1. In the case of the present invention, this recording medium 2 can sufficiently function as a single layer. 3 is a recorded portion in which, for example, binary information 1'' is recorded by the recording procedure described later according to the present invention, and 4 is an unrecorded portion or an erased portion of information “0”.The recording medium 2 is A material is selected and its composition 9 structure is adjusted so that it exhibits a martensitic phase at ordinary mTa and reverse martensitic transformation occurs at a specific temperature AS to Af higher than ordinary ITa and at a specific stress. In this state, the surface is flat as shown in the unrecorded area 4 in FIG. Adherence is weak.

第2図は本発明の記録媒体を作成する装置の一例の構成
図である。5は真空容器、6は排気系。
FIG. 2 is a block diagram of an example of an apparatus for producing a recording medium according to the present invention. 5 is a vacuum container, and 6 is an exhaust system.

7はセラミック製ルツボ、8はタングステンから成る通
電加熱用ヒータである。9はガラス、石英。
7 is a ceramic crucible, and 8 is a heater for electrical heating made of tungsten. 9 is glass, quartz.

有機樹脂、Si等のいずれかから成る基板であり、記録
媒体となる膜を付着させる間は回転させられるものとす
る。真空容器5を排気系6で1×10− ’ Torr
以下に排気し、ヒータ8で加熱されたルツボ7よりルツ
ボ7内に充填された蒸発源が蒸発し、基板9に記録媒体
としての薄膜が付着する。
The substrate is made of organic resin, Si, or the like, and is rotated while the film that will become the recording medium is attached. The vacuum container 5 is heated to 1×10-' Torr by the exhaust system 6.
The evaporation source filled in the crucible 7 is evaporated from the crucible 7 heated by the heater 8, and a thin film as a recording medium is attached to the substrate 9.

本発明の第1の実施例は、Cu−A4合金薄膜を記録媒
体として用いた場合である。ヒータ8とルツボ7の組合
わせを第2図に示したように2個用意し、一方にCU、
もう一方にA℃を充填し、ヒータ8への供給電力を制御
することによって個々の蒸発量を精密かつ安定に制御し
て、基板9上にCu−A4合金膜を付着させた。組成を
変化させて作成した種々のCu−Al2合金膜について
電気抵抗の温度変化を測定したところ、Aj2含有量が
9〜15重1%の場合にマルテンサイト変態をする記録
媒体が得られた。電気抵抗の温度変化の測定は、マルテ
ンサイト変態の変態温度を知るのに好適の手段である。
A first embodiment of the present invention is a case where a Cu-A4 alloy thin film is used as a recording medium. Two combinations of heater 8 and crucible 7 are prepared as shown in Fig. 2, and one is CU,
The other side was filled with A.degree. C., and the amount of evaporation was precisely and stably controlled by controlling the power supplied to the heater 8, and a Cu-A4 alloy film was deposited on the substrate 9. When temperature changes in electrical resistance were measured for various Cu-Al2 alloy films prepared with varying compositions, recording media that underwent martensitic transformation were obtained when the Aj2 content was 9 to 15% by weight. Measuring the change in electrical resistance with temperature is a suitable means for determining the transformation temperature of martensitic transformation.

測定は交流四端子法により行ない、昇温・冷却の速度は
1分あたり20℃とした。
The measurement was carried out by the AC four-terminal method, and the rate of heating and cooling was 20° C. per minute.

従来良く知られているバルクで形状記憶効果のある合金
は、逆変態温度が高々100℃と常温以下のものが多く
、常温下で使用される記録媒体の材料としては都合が悪
い。それに対して、Cu−へ2合金、Ti−Ni−Cu
合金、N1−Affi合金等の薄膜は、150℃程度以
上といった高温で形状が回復するようにすることが容易
であり、常温下で不用意に形状が元に戻ってしまうこと
がなく好都合である。これらの長所を持つ合金1119
1を形成するには、例えば基板を赤外線ランプで加熱し
ながら膜を堆積することが有効である。
Conventionally well-known bulk alloys with a shape memory effect often have a reverse transformation temperature of at most 100° C., which is below room temperature, and are not suitable as materials for recording media used at room temperatures. On the other hand, Cu-2 alloy, Ti-Ni-Cu
Thin films such as alloys and N1-Affi alloys can easily be made to recover their shape at high temperatures of about 150°C or higher, which is advantageous because they do not inadvertently return to their original shape at room temperature. . Alloy 1119 with these advantages
1, it is effective to deposit a film while heating the substrate with an infrared lamp, for example.

第3図は熱酸化膜付き3iウエハを基板とし、基板を3
00℃に加熱しながら厚さ6000人に堆積したCu−
An合金Illの電気抵抗率の温度変化を測定した結果
を示したものである。図に示すように、常温でマルテン
サイト相を呈し、また逆変態の終了する温度はAf−3
80℃であり、かつ基板への付着力の強くない本発明に
好適な記録媒体が得られた。
Figure 3 shows a 3i wafer with a thermal oxide film as a substrate.
Cu deposited to a thickness of 6000 mm while heating to 00℃
This figure shows the results of measuring temperature changes in electrical resistivity of An alloy Ill. As shown in the figure, it exhibits a martensitic phase at room temperature, and the temperature at which reverse transformation ends is Af-3.
A recording medium suitable for the present invention was obtained that had a temperature of 80° C. and did not have strong adhesion to the substrate.

一方、上記と同様の方法でガラス基板上に800人の厚
さに堆積したCu−Afi合金薄膜について70℃、8
5%相対湿度の高温加湿条件下において加速劣化試験を
行なった。劣化の目安として一定時間毎に光学的反射率
を測定した。第4図がその結果の一例である。横軸は高
温・加湿条件下に置いた時間、縦軸はX時間後の通常用
いられている半導体レーザの波長830 nmに於ける
反射率をR(X)として、 (R(x) −R(0) )/R(0)で定義される光
学的反射率の変化分である。第4図には比較のために用
意した光磁気記録媒体として代表的なTbFe、GbC
oの各非晶質合金薄膜についての結果の一例も記載した
。第4図より明らかなように、Cu−Affi系合金薄
膜は、希土類元素を成分とする光磁気記録媒体に比べて
高温加湿条件下における反射率の低下が小さく、格段に
耐酸化性、耐候性に優れている。
On the other hand, regarding a Cu-Afi alloy thin film deposited to a thickness of 800 mm on a glass substrate by the same method as above, the temperature was 80° C.
An accelerated deterioration test was conducted under high temperature humidified conditions of 5% relative humidity. Optical reflectance was measured at regular intervals as a measure of deterioration. Figure 4 shows an example of the results. The horizontal axis is the time under high temperature and humid conditions, and the vertical axis is the reflectance of a commonly used semiconductor laser at a wavelength of 830 nm after X hours as R(X), (R(x) - R (0) )/R(0) is the change in optical reflectance. Figure 4 shows typical TbFe, GbC and magneto-optical recording media prepared for comparison.
An example of the results for each amorphous alloy thin film of o. As is clear from Figure 4, compared to magneto-optical recording media containing rare earth elements, the Cu-Affi alloy thin film exhibits less decline in reflectance under high temperature and humid conditions, and has much better oxidation resistance and weather resistance. Excellent.

第5図は上述した記録媒体を用い光ビームによって記録
・再生・消去をする本発明に基く記憶装置の一実施例の
構成図である。ガラス基板10上に上述した単層薄膜の
記録媒体11が形成されており、これらは軸12を中心
に回転させられる。
FIG. 5 is a block diagram of an embodiment of a storage device according to the present invention that uses the above-mentioned recording medium and performs recording, reproduction, and erasing using a light beam. The above-described single-layer thin film recording medium 11 is formed on a glass substrate 10, and is rotated about an axis 12.

光ビーム発生装置13は例えば半導体レーザを用いて構
成され、照射する光ビームのパルス幅およびパワーを調
整する機構をも含む。14は反射鏡。
The light beam generator 13 is configured using, for example, a semiconductor laser, and also includes a mechanism for adjusting the pulse width and power of the irradiated light beam. 14 is a reflective mirror.

15は対物レンズである。対物レンズ15によって絞り
込まれた光ビームが記録媒体11に照射される。16は
ハーフミラ−117は光検出器であり、記録媒体11か
らの反射光の一部がハーフミラ−16を介して光検出器
17に入射する。
15 is an objective lens. A light beam focused by the objective lens 15 is irradiated onto the recording medium 11 . A half mirror 117 16 is a photodetector, and a part of the reflected light from the recording medium 11 enters the photodetector 17 via the half mirror 16 .

情報の記録は、記録媒体を局部的に加熱することにより
行なわれる。すなわち、対物レンズ15によって記録媒
体11に正確に焦点を合わせ、1μmφ程度に絞った光
ビームを記録媒体11の面内の熱拡散が問題にならない
程度のパルス幅で、かつ光ビーム照射部分の温度がA1
以上にならないようなパワーで照射することによって記
録ができた。記録した個所を顕微鏡で観察したところ、
第1図に示す形に変形していることが確認された。
Information is recorded by locally heating the recording medium. That is, the objective lens 15 is used to accurately focus a light beam on the recording medium 11, and the light beam is narrowed down to about 1 μmφ with a pulse width that does not cause problems with thermal diffusion within the plane of the recording medium 11, and at a temperature of the light beam irradiated area. is A1
Recording was possible by irradiating with a power that did not exceed the maximum power. When the recorded areas were observed under a microscope,
It was confirmed that it had deformed into the shape shown in Figure 1.

こうして記録された情報の消去は、記録媒体を温度Af
以以上で昇温させることにより行なわれる。すなわち、
光ビームを記録媒体11の温度がA1以上になるような
エネルギーで消去したい個所に照射した。但し、消去時
には不必要な熱応力の集中を避けるために、記録時より
も長いパルス幅でかつ記録時よりも太いビーム径の光ビ
ームを照射した。これにより、第1図の記録部分3は変
形が消失して平坦面に復すことが確認された。
To erase the information recorded in this way, the recording medium is heated to a temperature of Af.
This is done by raising the temperature above or above. That is,
A light beam was irradiated onto the portion to be erased with such energy that the temperature of the recording medium 11 became A1 or higher. However, during erasing, in order to avoid unnecessary concentration of thermal stress, a light beam was irradiated with a pulse width longer than that during recording and a beam diameter larger than that during recording. As a result, it was confirmed that the deformation of the recorded portion 3 in FIG. 1 disappeared and it returned to a flat surface.

以上の記録および消去は次のような原理と理解される。The above recording and erasing is understood to be based on the following principle.

記録すべく光ビームを用いて局部的な加熱をした場合、
第1図に示す記録媒体2のうち、光ビームを照射した部
分は、周囲の未記録部分4によって拘束されることから
、以下の内部応力σが発生する。
When localized heating is performed using a beam of light for recording,
Since the portion of the recording medium 2 shown in FIG. 1 that is irradiated with the light beam is restrained by the surrounding unrecorded portion 4, the following internal stress σ is generated.

σ−E(Δ(1/12> Eはヤング率、Δβ/2は拘束されない場合の熱膨張に
よる伸び率であり、 Δ2/2−β(T−Ta) で表わされる。βは熱膨張係数、Taは常温、■は光ビ
ーム照射部分の温度である。通常の合金、例えばCu−
An系合金においてはβ〜2×10−’  [1/K]
、E 〜10”  [Pa]rあることを考慮すると、
光ビーム照射部分が常温より150℃温度上昇すること
により、σ−300[MPa]の内部応力を発生する。
σ-E (Δ(1/12> E is Young's modulus, Δβ/2 is the elongation rate due to thermal expansion when not restrained, and is expressed as Δ2/2-β(T-Ta). β is the thermal expansion coefficient , Ta is room temperature, and ■ is the temperature of the part irradiated with the light beam.Usual alloys, such as Cu-
In An-based alloys, β~2×10-' [1/K]
, E ~10" [Pa]r,
When the temperature of the light beam irradiated portion rises by 150° C. from room temperature, an internal stress of σ-300 [MPa] is generated.

記録媒体2の基板1への付着力が弱い場合、この内部応
力σが記録媒体2の降伏応力σcrを越えると光ビーム
照射部分は塑性座屈を起こし、第1図に示す形に変形す
る。
When the adhesion of the recording medium 2 to the substrate 1 is weak, when this internal stress σ exceeds the yield stress σcr of the recording medium 2, the portion irradiated with the light beam undergoes plastic buckling and deforms into the shape shown in FIG.

本発明に係る記録媒体2は常温でマルテンサイト相にあ
るから、記録時に記録媒体2の温度がAsを越えない限
り、この変形はマルテンサイト相内の双晶界面の移動と
マルテンサイト兄第晶同士の変換によって担われる。こ
れらのメカニズムによって担われた変形は、局部的加熱
終了後、即ち応力除去後も安定に存在する。
Since the recording medium 2 according to the present invention is in the martensitic phase at room temperature, unless the temperature of the recording medium 2 exceeds As during recording, this deformation is caused by the movement of the twin interface within the martensite phase and the martensite older brother crystal. It is carried out by the conversion between them. The deformation caused by these mechanisms remains stable even after the local heating ends, that is, after the stress is removed.

上述したように本発明に係る記録媒体は常温でマルテン
サイト相にあるが、マルテンサイト相は母相に比べて軟
らかく、上記メカニズムによって変形し易く、降伏応力
σcrが150 [MPa]程度以下である。記録時に
は、Afを越えない温度までの局部加熱による熱応力が
σcrを越えることが必要である。従って、記録媒体の
Afは記録を確実なものとするために200℃以上が望
ましい。
As described above, the recording medium according to the present invention is in the martensite phase at room temperature, but the martensite phase is softer than the parent phase and easily deforms due to the above mechanism, and the yield stress σcr is about 150 [MPa] or less. . During recording, it is necessary that the thermal stress due to local heating to a temperature not exceeding Af exceeds σcr. Therefore, the Af of the recording medium is preferably 200° C. or higher to ensure reliable recording.

但し、現在実用化されている光学式情報記憶装置に使用
し得るコンパクトな半導体レーザ等の出力を考慮すると
、Afの下限は500’C以下が望ましい。なお、冷却
時にマルテンサイト変態の終了する温度Mfは、常温以
上であればどのような値でもよい。
However, considering the output of compact semiconductor lasers etc. that can be used in optical information storage devices currently in practical use, the lower limit of Af is preferably 500'C or less. Note that the temperature Mf at which martensitic transformation ends during cooling may be any value as long as it is equal to or higher than room temperature.

以上の手順によって第1図に示す如く塑性座屈によって
変形した記録部分3は、温度がAS以下であれば安定に
存在し、これが例えばパ1nの記録状態となる。消去は
、既に述べた形状記憶効果による。すなわち、記録媒体
が昇温すると温度AS〜Afにおいてマルテンサイト逆
変態が起こる。
Through the above procedure, the recorded portion 3 deformed by plastic buckling as shown in FIG. 1 exists stably as long as the temperature is below AS, and this becomes, for example, the recorded state of Pa 1n. Erasing is due to the shape memory effect already mentioned. That is, when the temperature of the recording medium increases, martensitic reverse transformation occurs at temperatures AS to Af.

記録時にマルテンサイト相内の双晶界面の移動とマルテ
ンサイト兄第晶同士の変換によって担われた変形は、逆
変態して高温相になる際に全て零になる。従って、記録
媒体2の形状は元の平坦面となる。この平坦面は消去用
光ビーム照射後、常温まで冷却されても安定であり、以
後応力がかからない限り安定である。この消去過程にお
いて、昇温による熱応力が前述の降伏応力σcr以下で
ある必要がある。この要請は、消去用光ビームを記録時
よりも長いパルス幅で、かつ長いパルス立ち上がり時間
で、さらには記録時よりも太いビーム径とすることによ
り克服される。ビーム径を太くすることは、簡便には対
物レンズ15の調整により、記録時に比べて少し焦点を
ずらすことによって実現される。また、記録用とは別に
消去用光ビームの光路を設けてもよい。以上の原理によ
って消去が完了する。
The deformation carried out by the movement of the twin interface within the martensite phase and the transformation of the martensite elder crystals during recording becomes zero when the martensite undergoes reverse transformation and becomes a high-temperature phase. Therefore, the shape of the recording medium 2 becomes the original flat surface. This flat surface remains stable even when cooled to room temperature after irradiation with the erasing light beam, and remains stable as long as no stress is applied thereafter. In this erasing process, it is necessary that the thermal stress caused by the temperature increase be equal to or less than the above-mentioned yield stress σcr. This requirement can be overcome by making the erasing light beam have a longer pulse width and a longer pulse rise time than during recording, and a beam diameter larger than that during recording. Increasing the beam diameter is simply achieved by adjusting the objective lens 15 and shifting the focus a little compared to when recording. Furthermore, an optical path for an erasing light beam may be provided separately from that for recording. Erasing is completed by the above principle.

ここで、記録過程において熱応力が大き過ぎ、変形がマ
ルテンサイト相内の双晶界面の移動とマルテンサイト兄
第晶同士の変換以外の要因、例えばすべり等によって担
われた場合、消去が不可能である。従って、後に消去す
る可能性のある情報については、すべりに対する臨界応
力σ88 (>σcr)以下の熱応力で記録する必要が
ある。逆に永久に消去したくない情報についてはσ8H
以上の熱応力で記録して保存することが可能である。
Here, if the thermal stress is too large during the recording process and the deformation is caused by factors other than the movement of the twin interface within the martensite phase and the transformation of the martensite elder crystals, such as slipping, erasure is impossible. It is. Therefore, information that may be erased later needs to be recorded with a thermal stress below the critical stress for slip σ88 (>σcr). On the other hand, for information that you do not want to permanently erase, use σ8H.
It is possible to record and preserve data under thermal stress above.

記録された情報の再生は、記録媒体に光ビームを照射し
、記録部分と未記録部分(または消去部分)とにおける
反射光量の差を第5図に示した光検出器17で検知する
ことによって行なう。照射する光ビームは、反射光量が
光検出器17で検出され得る程度に大きく、かつ記録時
や消去時よりも小さいパワーとする。第1図に示した如
く変形した記録部分3では、周囲の平坦な未記録部分4
に比較して光が散乱されること、および基板と記録媒体
の間に空洞が生じるために光学的条件が変化することか
ら、反射して戻ってくる光量を検知することにより記録
の有無がわかる。この場合、再生用光ビームの入射方向
は記録媒体面側からでも良いし、基板面側からでも良い
。消去・記録用の光ビームの入射方向も同様である。
The recorded information is reproduced by irradiating the recording medium with a light beam and detecting the difference in the amount of reflected light between the recorded area and the unrecorded area (or erased area) using the photodetector 17 shown in FIG. Let's do it. The irradiated light beam has a power so large that the amount of reflected light can be detected by the photodetector 17, and a power smaller than that used during recording or erasing. In the recorded portion 3 deformed as shown in FIG. 1, the surrounding flat unrecorded portion 4
The presence or absence of recording can be determined by detecting the amount of light that is reflected back, since the optical conditions change due to the fact that the light is scattered compared to the previous one, and a cavity is created between the substrate and the recording medium. . In this case, the direction of incidence of the reproducing light beam may be from the recording medium surface side or from the substrate surface side. The same applies to the direction of incidence of the light beam for erasing and recording.

なお、本発明における記録原理は常温でマルテンサイト
相にある記録媒体を応力によって変形させるものである
から、上記した再生信号の反射光量差は第1図に示した
平坦面の変形に起因するもののみである。従って、再生
信号のS/Nの観点から記録媒体を設計する場合、変形
の形状とその度合いのみを考慮すればよいという有利さ
がある。
Note that the recording principle in the present invention is to deform the recording medium, which is in the martensitic phase at room temperature, by stress, so the difference in the amount of reflected light of the reproduced signal described above is due to the deformation of the flat surface shown in FIG. Only. Therefore, when designing a recording medium from the viewpoint of S/N of a reproduced signal, there is an advantage that only the shape and degree of deformation need to be considered.

以上述べたように、本発明による光学式情報記憶装置は
光磁気記憶装置で必要とするような磁場を印加する手段
や光路中の偏光子等が必要でなく、第5図に示すような
単純な構成となる。但し、本発明の装置をさらに実用的
な高密度情報記憶装置とするには、第5図に示した構成
要素の他に、基板に形成したトラッキング用案内溝に光
学系を追従させるトラッキングサーボ手段や、光学系の
焦点合せのためのフォーカシングサーボ手段等が必要と
なることは言うまでもない。
As described above, the optical information storage device according to the present invention does not require a means for applying a magnetic field or a polarizer in the optical path, which is required in a magneto-optical storage device, and it is possible to use a simple optical information storage device as shown in FIG. The structure is as follows. However, in order to make the device of the present invention a more practical high-density information storage device, in addition to the components shown in FIG. Needless to say, a focusing servo means for focusing the optical system is required.

本発明は上記した実施例に限定されるものではなく、例
えば実施例で挙げたCU−Aj2系合金を用いた記録媒
体は、他の同様のマルテンサイト変態を起こす物質で置
き換えることが可能である。
The present invention is not limited to the embodiments described above; for example, the recording medium using the CU-Aj2 alloy mentioned in the embodiments can be replaced with other similar substances that cause martensitic transformation. .

例えばバルクで形状記憶効果の知られている合金。For example, alloys that are known to have a shape memory effect in bulk.

T i −N i (15〜56wt%)合金のNiを
CuでO〜30wt%il換した合金、 N 1−An
 (19〜23wt%)合金、 Mn−Cu (5〜3
6wt%)合金W+7)il膜が、本発明の記録媒体と
して使用し得る。
T i -N i (15 to 56 wt%) alloy in which Ni is replaced with O to 30 wt% il by Cu, N 1-An
(19-23 wt%) alloy, Mn-Cu (5-3
6wt%) alloy W+7)il film can be used as the recording medium of the present invention.

また、実施例では局部的な熱応力を発生させて変形させ
た状態を記録状態、すなわち二値情報の“1″を表わす
としたが、逆に昇温させ変形を消去した後の状態を記録
状態1パとすることも可能である。この場合、初期状態
が第1図に示した変形部分となり、記録状態が平坦面と
なる。従って、初期状態として第1図に示すような変形
部分を記録媒体全面に連続的に同心円状またはスパイラ
ル状に形成することにより、光学系をガイドするための
トラッキング用案内溝の機能を持たせることができる。
In addition, in the example, the state where local thermal stress is generated and the deformation is generated is the recorded state, that is, the binary information "1" is expressed, but conversely, the state after the deformation is erased by increasing the temperature is recorded. It is also possible to set the state to 1pa. In this case, the initial state becomes the deformed portion shown in FIG. 1, and the recorded state becomes a flat surface. Therefore, by forming deformed portions as shown in FIG. 1 in an initial state continuously over the entire surface of the recording medium in a concentric or spiral shape, it is possible to provide the function of a tracking guide groove for guiding the optical system. I can do it.

その場合、基板に物理的に案内溝を形成する必要がなく
、案内溝形成の難しいガラス基板等も平坦面のまま高密
度記憶装置に使用できるという利点がある。
In this case, there is no need to physically form guide grooves on the substrate, and there is an advantage that glass substrates, etc., on which it is difficult to form guide grooves, can be used as high-density storage devices with their flat surfaces.

さらに、本発明の記録媒体は単層で十分な機能を果たし
得るが、例えば記録媒体の基板への付着力を調整したい
場合に熱的に安定な層を記録媒体と基板の間に設けたり
、または耐候性をさらに増すために記録媒体の両面に薄
い保護層を設ける、等の多層化を適宜採用することは全
く差支えなく、本発明の効果を損うものではない。
Further, although the recording medium of the present invention can function satisfactorily with a single layer, for example, when it is desired to adjust the adhesion of the recording medium to the substrate, a thermally stable layer may be provided between the recording medium and the substrate. Alternatively, in order to further increase the weather resistance, there is no problem in appropriately employing multilayering, such as providing a thin protective layer on both sides of the recording medium, and this does not impair the effects of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における記録媒体と基板の断
面図、第2図は本発明に係る記録媒体を作成する装置の
一例の模式図、第3図は本発明に係る記録媒体のマルテ
ンサイト変態の様子を説明するための電気抵抗率の温度
変化を示す図、第4図はCu−Affi系合金薄膜から
なる記録媒体の耐候性を他の記録媒体と比較して示した
図、第5図は本発明に係る光学式情報記憶装置の一実施
例の全体構成図である。 1・・・基板、2・・・記録媒体、5・・・真空容器、
6・・・排気系、7・・・ルツボ、8・・・ヒータ、9
・・・基板、10・・・基板、11・・・記録媒体、1
2・・・回転軸、15・・・対物レンズ、16・・・ハ
ーフミラ−117・・・光検出器。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 温度ピC〕 第4図 手続補正書 60.4.25 昭和  年  月  日 特許庁長官 志 賀   学  殿 1、事件の表示 特願昭60−16761号 2、発明の名称 光学式情報記憶装置 3、補正をする者 事件との関係 特許出願人 (307)  株式会社 東芝 4、代理人 東京都港区虎ノ門1丁目26番5号 第17森ビル〒1
05  電話 03 (502)3181 (大代表)
6、補正の対象 7、補正の内容 (1)特許請求の範囲の記載を別紙の通り訂正する。 (2)J  明細書第5頁第11行の「逆変態の温度」
を「逆変態の開始温度」と訂正する。 (a 明細書第7頁第14行〜第17行の[単純である
・・・断面図である。」を下記の通り訂正する。 記 単純である。といった効果が得られる。 〔発明の実施例〕 第1図は本発明の一実施例における記録媒体および基板
の一実施例の断面図である。 2、特許請求の範囲 (1)常温でマルテンサイト相を呈し特定の温度・応力
においてマルテンサイト変態を起こす単層の物質膜から
なる記録媒体と、この記録媒体を支持する基板と、この
記録媒体を光ビームの照射により特性温度以下11局部
的に加熱することにより生じる応力で記録媒体に変形を
与える手段と、前記記録媒体を光ビームの照射により前
記特性温度以上まで昇温してマルテンサイト変態の逆変
態を引き起こせしめて形状を回復させる手段と、前記記
録媒体の変形の有無を光ビームを用いて検知する手段と
を備えたことを特徴とする光学式情報記憶装置。 (2)前記記録媒体が200〜500℃でマルテンサイ
ト変態の逆変態を起こすものであることを特徴とする特
許請求の範囲第1項記載の光学式情報記憶装置。 (3trJ記記録媒体が銅を主成分としてアルミニウム
を9〜15重量%を含んだ銅−アルミニウム系合金膜か
らなるものであることを特徴とする特許請求の範囲第1
項記載の光学式情報記憶装置。
FIG. 1 is a sectional view of a recording medium and a substrate according to an embodiment of the present invention, FIG. 2 is a schematic diagram of an example of an apparatus for producing a recording medium according to the present invention, and FIG. 3 is a schematic diagram of an example of a recording medium according to the present invention. FIG. 4 is a diagram showing temperature changes in electrical resistivity to explain the state of martensitic transformation; FIG. 4 is a diagram showing the weather resistance of a recording medium made of a Cu-Affi alloy thin film in comparison with other recording media; FIG. 5 is an overall configuration diagram of an embodiment of an optical information storage device according to the present invention. 1... Substrate, 2... Recording medium, 5... Vacuum container,
6... Exhaust system, 7... Crucible, 8... Heater, 9
... Substrate, 10... Substrate, 11... Recording medium, 1
2...Rotation axis, 15...Objective lens, 16...Half mirror 117...Photodetector. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Temperature Pi C] Figure 4 Procedural Amendment 60.4.25 1920/1935 Commissioner of the Japan Patent Office Manabu Shiga 1, Patent Application for Indication of Case No. 60-16761 2, Name of the invention Optical information storage device 3, Relationship to the amended case Patent applicant (307) Toshiba Corporation 4, Agent 1-26-5 Toranomon, Minato-ku, Tokyo No. 17 Mori Building 〒1
05 Telephone 03 (502) 3181 (main representative)
6. Subject of amendment 7. Contents of amendment (1) The description of the claims shall be corrected as shown in the attached sheet. (2) "Temperature of reverse transformation" on page 5, line 11 of J specification
is corrected as "the starting temperature of reverse transformation". (a) "It is simple...It is a cross-sectional view." on page 7, line 14 to line 17 of the specification is corrected as follows. The following effect can be obtained. [Practice of the invention] Example] Figure 1 is a cross-sectional view of an embodiment of a recording medium and a substrate according to an embodiment of the present invention. 2. Claims (1) It exhibits a martensitic phase at room temperature and changes to martensite at a specific temperature and stress. A recording medium consisting of a single-layer material film that undergoes site transformation, a substrate that supports this recording medium, and a stress generated by locally heating this recording medium below a characteristic temperature by irradiation with a light beam. means for deforming the recording medium; means for raising the temperature of the recording medium to a temperature higher than the characteristic temperature by irradiating the recording medium with a light beam to cause a reverse transformation of the martensitic transformation to recover the shape; An optical information storage device characterized by comprising: means for detecting using a beam. (2) The recording medium undergoes a reverse transformation of martensitic transformation at 200 to 500°C. An optical information storage device according to claim 1. (Characterized in that the 3trJ recording medium is made of a copper-aluminum alloy film containing copper as a main component and 9 to 15% by weight of aluminum. Claim 1:
Optical information storage device as described in .

Claims (3)

【特許請求の範囲】[Claims] (1)常温でマルテンサイト相を呈し特定の温度・応力
においてマルテンサイト変態を起こす単層の物質膜から
なる記録媒体と、この記録媒体を支持する基板と、この
記録媒体を光ビームの照射により特性温度以下で局部的
に加熱することにより生じる応力で記録媒体に変形を与
える手段と、前記記録媒体を光ビームの照射により前記
特性温度以上まで昇温してマルテンサイト変態の逆変態
を引き起こせしめて形状を回復させる手段と、前記記録
媒体の変形の有無を光ビームを用いて検知する手段とを
備えたことを特徴とする光学式情報記憶装置。
(1) A recording medium consisting of a single-layer material film that exhibits a martensitic phase at room temperature and undergoes martensitic transformation at a specific temperature and stress, a substrate that supports this recording medium, and a substrate that supports this recording medium by irradiating the recording medium with a light beam. A means for deforming a recording medium by stress generated by locally heating it below a characteristic temperature, and a means for heating the recording medium to a temperature above the characteristic temperature by irradiating the recording medium with a light beam to cause a reverse transformation of the martensitic transformation. An optical information storage device comprising: means for tightening the recording medium to restore its shape; and means for detecting whether or not the recording medium has been deformed using a light beam.
(2)前記記録媒体が200〜500℃でマルテンサイ
ト変態の逆変態を起こすものであることを特徴とする特
許請求の範囲第1項記載の光学式情報記憶装置。
(2) The optical information storage device according to claim 1, wherein the recording medium undergoes a reverse transformation of martensitic transformation at 200 to 500°C.
(3)前記記録媒体が銅を主成分としてアルミニウムを
9〜15重量%を含んだ銅−アルミニウム系合金膜から
なるものであることを特徴とする特許請求の範囲第1項
記載の光学式情報記憶装置。
(3) Optical information according to claim 1, wherein the recording medium is made of a copper-aluminum alloy film containing copper as a main component and 9 to 15% by weight of aluminum. Storage device.
JP60016761A 1985-01-31 1985-01-31 Optical type information memory device Pending JPS61177653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016761A JPS61177653A (en) 1985-01-31 1985-01-31 Optical type information memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016761A JPS61177653A (en) 1985-01-31 1985-01-31 Optical type information memory device

Publications (1)

Publication Number Publication Date
JPS61177653A true JPS61177653A (en) 1986-08-09

Family

ID=11925213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016761A Pending JPS61177653A (en) 1985-01-31 1985-01-31 Optical type information memory device

Country Status (1)

Country Link
JP (1) JPS61177653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284444A (en) * 1985-10-09 1987-04-17 Matsushita Electric Ind Co Ltd Optical recording medium
JPS6284443A (en) * 1985-10-09 1987-04-17 Matsushita Electric Ind Co Ltd Optical recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284444A (en) * 1985-10-09 1987-04-17 Matsushita Electric Ind Co Ltd Optical recording medium
JPS6284443A (en) * 1985-10-09 1987-04-17 Matsushita Electric Ind Co Ltd Optical recording medium

Similar Documents

Publication Publication Date Title
EP0288354A2 (en) Process for manufacturing an optical recording medium
JP2574325B2 (en) Optical information recording medium
WO2001082297A1 (en) Optical recording medium and use of such optical recording medium
US4860274A (en) Information storage medium and method of erasing information
US4922462A (en) Reversible memory structure for optical reading and writing and which is capable of erasure
US6660451B1 (en) Optical information recording medium
JP2987223B2 (en) Optical recording medium
TW200300931A (en) Optical recording medium and optical recording method
JPS61177653A (en) Optical type information memory device
JP2577349B2 (en) Optical recording medium
JP3801612B2 (en) Information recording medium
JPS61153829A (en) Optical information storage device
JP2506772B2 (en) Optical information recording member
KR930004333B1 (en) Optical information recording material
JPH0695389B2 (en) Optical recording medium
JP3034497B2 (en) Information recording / reproducing / erasing device
JPH05144084A (en) Optical recording medium and production thereof
JPH10289478A (en) Optical information recording medium and its production
JP3157019B2 (en) Optical recording medium and manufacturing method thereof
JP2903970B2 (en) Optical recording medium and recording / reproducing method using the same
JPS61156546A (en) Storage device
JPS63167440A (en) Method for recording or recording and erasing information
Lee et al. Blu-ray type super-resolution near-field phase change disk with In2Ge8Sb85Te5 mask layer
JP2000187892A (en) Silicon dioxide film, phase change type disk medium and its production
KR19980026723A (en) Phase change optical disk structure