JPS60182808A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS60182808A
JPS60182808A JP59039617A JP3961784A JPS60182808A JP S60182808 A JPS60182808 A JP S60182808A JP 59039617 A JP59039617 A JP 59039617A JP 3961784 A JP3961784 A JP 3961784A JP S60182808 A JPS60182808 A JP S60182808A
Authority
JP
Japan
Prior art keywords
level
mos
transistor
trs
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59039617A
Other languages
Japanese (ja)
Other versions
JPH0339404B2 (en
Inventor
Hidekata Asai
浅井 秀容
Shigeru Maruyama
繁 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP59039617A priority Critical patent/JPS60182808A/en
Publication of JPS60182808A publication Critical patent/JPS60182808A/en
Publication of JPH0339404B2 publication Critical patent/JPH0339404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Amplifiers (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To attain stable operation by providing MOS transistors (TR) of one conduction type respectively connected to the 1st and 2nd MOS TRs of one conduction type whose sources are connected in common as loads. CONSTITUTION:N-channel MOS TRs 6, 7 are connected between outputs 1, 2 and a power supply V and each gate is connected to common. Supose that a level of the output 2 is decreased to a level of (power level - VTN) due to variation of TRs, the TR7 at the output side 2 of the TRs 6, 7 is conductive, the capability as a load is increased equivalently, the on-resistance is decreased and the reduction of a level VB at a connecting point B is prevented, then a level difference between the input 1 and the level VB of the connecting point B is lower than a threshold voltage VTNof the TR2, and the TR2 keeps the off- state. Thus, even if the capability of the TRs is in variation, the circuit is operated normally without incurring the decrease in the level difference between the outputs 1 and 2 and inversion.

Description

【発明の詳細な説明】 (技術分野) 本発明は相補型MOSトランジスタを使用した差動アン
プの構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to the configuration of a differential amplifier using complementary MOS transistors.

(発明の背景) 近年、集積回路の大規模化に伴い消費電力の増大が問題
となり、相補型MO8)?ンジスタ回路の低消費電力性
に注目し、各種集積回路への相補型MO8)ランジスタ
回路の適用が進められているO しかし、相補型MO8)ランジスタ回路は二種 類のM
OS)ランジスタ、すなわち、Pチャンネル型およびN
チャンネル型のMOSトランジスタを用いることが必要
である。これらの素子は同一基板上に集積化したとして
も各々の特性(閾値電圧や、電流供給能力など)を決定
するパラメータの一部が独立であるために、能力比など
において同一チャンネルのMOSトランジスタのみを用
いたものに比べてバラツキが大きいなどの欠点がらり、
差動アンプなどの設計の困難さの原因となっている。
(Background of the invention) In recent years, with the increase in the scale of integrated circuits, increased power consumption has become a problem, and complementary MO8)? Focusing on the low power consumption of transistor circuits, the application of complementary MO8) transistor circuits to various integrated circuits is progressing.However, there are two types of complementary MO8) transistor circuits.
OS) transistors, i.e. P channel type and N
It is necessary to use a channel type MOS transistor. Even if these elements are integrated on the same substrate, some of the parameters that determine their characteristics (threshold voltage, current supply capacity, etc.) are independent, so in terms of performance ratio, only MOS transistors on the same channel There are disadvantages such as greater variation compared to those using
This causes difficulty in designing differential amplifiers, etc.

(発明の目的) 本発明の目的はこのような差動アンプの設計の困難性を
改善することにある。
(Object of the Invention) An object of the present invention is to improve the difficulty in designing such a differential amplifier.

(発明の構成) 本発明によれば、互いにソース電極が共通接続された一
導電型の第1および第2のM08トランジスタと、これ
ら第1および第2のMOS)ランジスタにそれぞれ負荷
として接続された一導電型のMOS)ランジスタの並列
接続体からな石第1および第2の負荷とを有する差動ア
ンプを備えた半導体集積回路を得る0 次に図面を8照して本発明をより詳細に説明する。
(Structure of the Invention) According to the present invention, first and second M08 transistors of one conductivity type whose source electrodes are commonly connected to each other, and a transistor connected to each of the first and second MOS transistors as a load are provided. Obtaining a semiconductor integrated circuit equipped with a differential amplifier having first and second loads made of a parallel connection of MOS transistors of one conductivity type. Next, the present invention will be described in more detail with reference to the drawings. explain.

(従来技術) まず、第1図を用いて、従来の半導体集積回路における
相補型MO8)ランジスタを用いた差動アンプの一例に
ついて説明する。定電流源としてゲートが電源■に接続
されたNチャンネル型MOSトランジスタlが用いられ
ている。このMOSトランジスタ1のソースは接地され
、ドレインにはそれぞれゲートが入力lおよび入力2に
接続されたNチャンネル型/MOSトランジスタ2.3
のソースが接続され、これらMOS)ランジスタ2.3
のドレインにはそれぞれゲートが接地されたPチャンネ
ル型MO8トランジスタ4.5のソースが負荷として接
続されている。MOS)ランジスタ1のソースが接地さ
れ、MO811ンジスタ4,5のドレインに電源Vが接
続されている。
(Prior Art) First, an example of a differential amplifier using complementary MO8 transistors in a conventional semiconductor integrated circuit will be described with reference to FIG. As a constant current source, an N-channel MOS transistor 1 whose gate is connected to a power supply 1 is used. The source of this MOS transistor 1 is grounded, and the drain is an N-channel type/MOS transistor 2.3 whose gate is connected to input 1 and input 2, respectively.
The sources of these MOS) transistors 2.3
The sources of P-channel MO8 transistors 4.5 whose gates are grounded are connected as loads to the drains of the transistors. The source of the MO811 transistor 1 is grounded, and the drains of the MO811 transistors 4 and 5 are connected to a power supply V.

MOS)ランジスタ2と4の接続点およびMOSトラン
ジスタ3と5の接続点からそれぞれ出力1゜出力2が取
り出されている。
Output 1° and output 2 are taken out from the connection point between MOS transistors 2 and 4 and the connection point between MOS transistors 3 and 5, respectively.

今、説明のためにPチャンネル型およびNチャンネル型
のMOS)ランジスタの閾値電圧をそれソt’LVTp
 e VTN% 又MO8) ’)ンシスfi 1 、
2.3の接続点であるB点の電位をV、とする。入力l
に低レベルの入力電圧が、また人力2に高レベルの入力
電圧が与えられているものと仮定する。人力lが低レベ
ルであるので、MOS)ランジスタ2がオフとなり、M
OSトランジスタ2のドレイン−ソース間の抵抗が無限
大に近くなるので、出力lはほぼ電源レベル■となる。
Now, for the purpose of explanation, the threshold voltage of the transistor (P-channel type and N-channel type MOS) is t'LVTp.
e VTN% Also MO8)')nsisfi 1,
Let the potential of point B, which is the connection point of 2.3, be V. input l
It is assumed that a low-level input voltage is applied to 2, and a high-level input voltage is applied to human power 2. Since the human power l is at a low level, MOS) transistor 2 is turned off, and M
Since the resistance between the drain and source of the OS transistor 2 approaches infinity, the output l becomes approximately the power supply level ■.

一方、入力2には低レベルの入力端子が与えられている
ので、MOSトランジスタ3がオンとなり、出力20レ
ベルはMOS)ランジスタ1,3および5のオン抵抗の
比により決定される低レベルの出力値となる。
On the other hand, since a low-level input terminal is given to input 2, MOS transistor 3 is turned on, and the output 20 level is a low-level output determined by the ratio of the on-resistances of transistors 1, 3, and 5. value.

ここでMOSトランジスタのバラツキなどの原因により
、Nチャンネル型のMOS)ランジスタ1.2.3の電
流供給能力が大きくなってそれらの閾値電圧VTNが小
さくなシ、Pチャンネル型のMOS)ランジスタ4.5
の電流供給能力が小さくなってそれらの閾値電圧VTP
が大となると、B点のレベルVBが下がる。この時、差
動入力信号の低レベル側がなんらかの原因で電源電位V
K近づき、しかも(VB+VTN)よシも大となると、
Nチャンネル型のMOS)ランジスタ2.3がともに導
通して、高レベルの出力が出力されるべき出力1の電圧
レベルが低下し、出力lと2との出力電圧のレベル差が
減少するのみならず、逆転を招き正常動作が不可能とな
る。
Here, due to causes such as variations in MOS transistors, the current supply capabilities of N-channel type MOS transistors 1, 2, and 3 become large, and their threshold voltages VTN become small. 5
As the current supply capability of VTP decreases, their threshold voltage VTP
When becomes large, the level VB at point B decreases. At this time, for some reason, the low level side of the differential input signal becomes lower than the power supply potential V
When K approaches and (VB + VTN) Yoshi also becomes large,
If both N-channel type MOS) transistors 2 and 3 become conductive, the voltage level of output 1, which should output a high-level output, decreases, and the level difference between the output voltages of outputs 1 and 2 decreases. This causes a reverse rotation and normal operation becomes impossible.

(発明の実施例) 以下に本発明の実施例を示しこれについて説明する。(Example of the invention) Examples of the present invention will be shown and explained below.

第2図に本発明の一実施例を示す。この第2図において
第1図と同様の箇所には同じ記号と参照符号とを用いて
いる。出力1と2と電源Vとの間には更にNチャンネル
型のMO8O8トランジスタ7が接続されている。これ
らMOS)ランジスタロ、7のゲートは接地されている
FIG. 2 shows an embodiment of the present invention. In FIG. 2, the same symbols and reference numerals are used for the same parts as in FIG. 1. An N-channel MO8O8 transistor 7 is further connected between the outputs 1 and 2 and the power supply V. The gates of these MOS transistors 7 are grounded.

今、MO811ンジスタのバラツキなどによりの出力2
側のMOS)ランジスタフが導通し、等測的に負荷とし
ての能力を上げ、オン抵抗を減らし、接続点Bのレベル
VBの低下を防ぐことにより、入力1と接続点Bのレベ
ル■1とのレベル差はMO8トランジスタ20閾値電圧
VT)J以下となり、MOS)ランジスタ2はオフ状態
を保つ。このように、MOS)ランジスタの能力がばら
ついた場合でも出力lと2のレベル差の減少や逆転を招
くことなく正常動作できるようになる。
Now, output 2 due to variations in MO811 register etc.
MOS) on the side becomes conductive, increases the capacity as a load isometrically, reduces the on-resistance, and prevents the level VB of the connection point B from decreasing, thereby reducing the difference between the input 1 and the level of the connection point B 1. The level difference becomes less than the threshold voltage VT)J of the MO8 transistor 20, and the MOS) transistor 2 remains in the off state. In this way, even if the capabilities of the MOS transistors vary, normal operation can be achieved without reducing the level difference between the outputs 1 and 2 or causing a reversal.

上述のように本願発明を用いれば、相補型MOSトラン
ジスタを用いた安定な差動アンプを提供できる。
As described above, by using the present invention, a stable differential amplifier using complementary MOS transistors can be provided.

又、本願は入力MO8トランジスタおよび電流源として
のMOS)ランジスタをNチャンネル型のMOS)ラン
ジスタを用いて説明してきたが、Pチャンネル型のMO
Sトランジスタを用いることができることは自明である
。又、電流源としてのMOS)ランジスタ1のゲート電
圧として、電源電圧を印加して説明してきたが、MOB
ト9ンジスタ1のゲートへの印加信号を制御することK
より動作時のみ電力を消費するようにすることなどの変
更を施すこともできる。
Also, in this application, the input MO8 transistor and the MOS) transistor as a current source have been explained using an N-channel type MOS) transistor, but a P-channel type MOS) transistor is used.
It is obvious that an S transistor can be used. In addition, although the explanation has been made by applying the power supply voltage as the gate voltage of transistor 1 (MOS) as a current source, MOB
Controlling the signal applied to the gate of transistor 1
It is also possible to make changes such as consuming power only during operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の相補型MOSトランジスタを使用した差
動アンプを示す回路図、第2図は本発明の一実施例を示
す回路図である。 4.5・・・・・・Pチャンネル型MO8)?ンジスタ
、1.2,3,6.7・・・・・・Nチャンネル型MO
Sトランジスタ、B・・・・・・接続点、■・・・・・
・電源。
FIG. 1 is a circuit diagram showing a differential amplifier using conventional complementary MOS transistors, and FIG. 2 is a circuit diagram showing an embodiment of the present invention. 4.5...P channel type MO8)? transistor, 1.2, 3, 6.7...N channel type MO
S transistor, B... Connection point, ■...
·power supply.

Claims (1)

【特許請求の範囲】[Claims] 二個の一導電型のMOSトランジスタのソースを互いに
接続した差動アンプ動作部と、前記−導電型のMOS)
ランジスタと他の導電型のMOSトランジスタとを並列
接続した構造の前記差動アンプの負荷部とを有すること
を特徴とする半導体集積回路。
a differential amplifier operating section in which the sources of two MOS transistors of one conductivity type are connected to each other; and the MOS transistor of the -conductivity type;
A semiconductor integrated circuit comprising a load section of the differential amplifier having a structure in which a transistor and a MOS transistor of another conductivity type are connected in parallel.
JP59039617A 1984-03-01 1984-03-01 Semiconductor integrated circuit Granted JPS60182808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59039617A JPS60182808A (en) 1984-03-01 1984-03-01 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59039617A JPS60182808A (en) 1984-03-01 1984-03-01 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS60182808A true JPS60182808A (en) 1985-09-18
JPH0339404B2 JPH0339404B2 (en) 1991-06-13

Family

ID=12558066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59039617A Granted JPS60182808A (en) 1984-03-01 1984-03-01 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS60182808A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010904A (en) * 1983-06-30 1985-01-21 Toshiba Corp Differential amplifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010904A (en) * 1983-06-30 1985-01-21 Toshiba Corp Differential amplifier

Also Published As

Publication number Publication date
JPH0339404B2 (en) 1991-06-13

Similar Documents

Publication Publication Date Title
US4506168A (en) Schmitt trigger circuit
US20050007182A1 (en) Resistance load source follower circuit
JPH09261036A (en) Level conversion circuit and semiconductor integrated circuit
JPH02188024A (en) Level shifting circuit
JPH07193488A (en) Level shifter circuit
JPH04284021A (en) Output circuit
JP3502320B2 (en) Schmitt trigger circuit
JP2001127615A (en) Division level logic circuit
JPS60182808A (en) Semiconductor integrated circuit
JP2500791B2 (en) Operational amplifier circuit
JPS594890B2 (en) digital circuit
JPS61237515A (en) Inverter circuit
JPH03179814A (en) Level shift circuit
JP2550942B2 (en) CMOS type logic integrated circuit
JPH0575205B2 (en)
JP3811300B2 (en) CMOS buffer circuit
JP3077664B2 (en) Input circuit
JPH02145018A (en) Level shift circuit
JP2541289B2 (en) Output circuit
JPS62114317A (en) Schmitt trigger circuit
JP2803633B2 (en) Semiconductor integrated circuit
JPS6025323A (en) Semiconductor integrated circuit
JPS62222713A (en) Cmos inverter circuit for delay
JPH0225108A (en) Semiconductor integrated circuit
JPS58196727A (en) Logical circuit