JPS60180330A - Cmos ratio circuit and its using method - Google Patents

Cmos ratio circuit and its using method

Info

Publication number
JPS60180330A
JPS60180330A JP59036502A JP3650284A JPS60180330A JP S60180330 A JPS60180330 A JP S60180330A JP 59036502 A JP59036502 A JP 59036502A JP 3650284 A JP3650284 A JP 3650284A JP S60180330 A JPS60180330 A JP S60180330A
Authority
JP
Japan
Prior art keywords
circuit
level
turned
load
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59036502A
Other languages
Japanese (ja)
Inventor
Tojiro Takegawa
武川 藤次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59036502A priority Critical patent/JPS60180330A/en
Publication of JPS60180330A publication Critical patent/JPS60180330A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/096Synchronous circuits, i.e. using clock signals
    • H03K19/0963Synchronous circuits, i.e. using clock signals using transistors of complementary type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To attain a circuit with less number of connecting wires and power consumption and low voltage and high speed operation by providing a logical circuit whose terminal is connected to a load MOS transistor (TR) and consisting of the one conduction channel load MOS TR and an MOS TR of the opposite conduction channel and an inverter circuit. CONSTITUTION:Suppose that a control signal phi is an active high level and input signals IN1, IN2 are at a low level at first, a PMOS TRQp2 is turned on, and NMOS TRs Qn3, Qn4 are turned off, then an output signal OUT1 is at a high level and an output signal OUT2 is at a low level. When the control signal is at an inactive low level, the NMOS TRQn1 is turned off next. When the input signal IN2 reaches a high level, the NMOS TRQn4 is turned off. Since the NMOS TRQn3 is turned off, the level of the output signal OUT1 is unchanged. When the input signal IN1 reaches a high level and the NMOS TRQn3 is turned on, the level of the output signal OUT1 is lowered, the level of the output signal OUT2 is increased, the PMOS TRQp2 is turned off and the power consumption is nearly zero.

Description

【発明の詳細な説明】 (技術分野) 本発明は、CMOSレシオ回路及びその使用方法に関す
る。
TECHNICAL FIELD The present invention relates to CMOS ratio circuits and methods of using the same.

(彷来技術) 一般に、Nチャネル型とPチャネル型の2種類の絶縁ゲ
ート電界効果トランジスタ(以下、MO8Tという。)
から構成された相補IW OS T を含む半導体集積
1川路(以下、CI’JO8という。)において、低消
費重力でかり構成素子数が少くその素子間接続配線数の
少ない高速動作の論理回路が要求されている。
(Hakirai Technology) Generally, there are two types of insulated gate field effect transistors (hereinafter referred to as MO8T): N-channel type and P-channel type.
In a semiconductor integrated circuit (hereinafter referred to as CI'JO8) including a complementary IWOS T constructed from has been done.

従来、0MO8レシオ回路は、Nチャネル型のMO8T
 (以下、NMO8Tという。)からなるNMO8レシ
オ回路に比較して、Pチ¥ネル型のMO8T(以下、P
MO8Tという。)とNMO8Tのゲートを接続するの
と、1個の負荷用PMO8’Tの代りρ、NMO8Tと
同数のPMO8T’i接続するために、約2倍の接続配
線数が必要であると共に、素子数及び消費電力の増大と
動作速度の低壬を招ねいていた。
Conventionally, the 0MO8 ratio circuit is an N-channel type MO8T.
(hereinafter referred to as NMO8T), P channel type MO8T (hereinafter referred to as P
It's called MO8T. ) and the gate of NMO8T, and in order to connect the same number of PMO8T'i as ρ and NMO8T instead of one load PMO8'T, approximately twice the number of connection wiring is required, and the number of elements is also increased. This results in an increase in power consumption and a decrease in operating speed.

これに対し、0MO8の低消費電力朱I性を生かし、か
つ高速性と素子数並びに接続配線久文の低減を図ったド
ミノ回路が提案された。しかしこのドミノ回路はダイナ
ミック回路でチャーンンエアがあるために、動作マージ
ンが狭く、似′巾圧動作もできないという問題点がある
In response, a domino circuit has been proposed that takes advantage of the low power consumption characteristics of 0MO8 and aims to achieve high speed, reduce the number of elements, and reduce the length of connection wiring. However, since this domino circuit is a dynamic circuit and has churn air, it has a narrow operating margin and cannot operate at similar width pressures.

(発明の目的) 本発明の目的は1、上記問題点金解消することにより、
素子数従って、接続配線数及び消買電力が少く、かつ低
電圧で高速動作がi■能なCMOS レシオ回路とその
使相方法金提供することにるる。
(Objective of the invention) The object of the present invention is 1. By solving the above problems,
The object of the present invention is to provide a CMOS ratio circuit which has a small number of elements, a small number of connected wires, and a small number of power consumption, and which is capable of high-speed operation at low voltage, and a method for using the same.

(発明の構成) 本発明の0MO8レシオ回路は、1個の一得竜チャネル
型の負荷用MO8)ランジスタと、反対碑電チャネル型
のMO8)ランジスタからなり一喘カ助記負荷用MOS
トランジスタに他端が接地電位にそれぞれ接続された論
理回路と、入力がiil記論理回路とfiii記負何用
M、OSトランジスタとの接続点に出力が011記負荷
用MO8)う/ジスタのゲートにそれぞれ接続されたイ
ンバータ回路と、該インバータ回路及び前記負荷用MO
Sトランジスタ又は酊1記論理回路の少くとも一方に設
けられた前ツ〈ヒし一フの 、ヒーγ−−ノ 記負荷用M、08トランジスタを制御信号によりオン状
態にセットするセット手段と金含むことから構成される
(Structure of the Invention) The 0MO8 ratio circuit of the present invention is composed of one single channel type load MO8 transistor and an opposite voltage channel type MO8 transistor.
A logic circuit whose other end is connected to the ground potential of the transistor, an input of the logic circuit (iii) and the logic circuit (fiii), and an output (011) at the connection point between the OS transistor and the gate of the transistor (MO8) for the load. an inverter circuit connected to the inverter circuit and the load MO
A setting means for setting the load M and 08 transistors of the front transistors provided in at least one of the S transistors or the logic circuits 1 and 1 to the on state by a control signal; consists of containing.

又、本発明のeMOsレシオ回路の使用方法は、本発明
の1り記CMOSレシオ回路において、前記制御信号が
アクティブのときはn11記論理回路の入力を低ンペル
にぽち、前記制御信号がインアクティブのときに11j
記論理回路での論理ぴ林を行うことから構成される。
Further, in the CMOS ratio circuit of the present invention, when the control signal is active, the input of the n11 logic circuit is set to a low level, and the control signal is inactive. 11j when
It consists of performing a logic computation on a logic circuit.

(実施例) 以下、本発明の実施例について図面をト照して説、明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described and explained with reference to the drawings.

第1図は不発1!11のCMO8レシオ回路の第1の実
施例を示す(し、1路図である。
FIG. 1 shows a first embodiment of a CMO8 ratio circuit with a misfire of 1!11.

水弟1の実施例は、ソースが電源VDにドレインが出力
やIMMOU ’1” 、にぞれそれ接続された負荷用
PMO8TQp□と、NM(JSTω’n3r Qn4
の鞭続接6:からなり一端がP MOS T Ql)2
に他端が接地電位にそれぞれ接、%“1.さえしたN 
Al’J 1)回路1と、入力が論理回路1とPMO8
’I’ Qn2との接続点4に出力が出力端子5並びに
PMO8T Qn2のゲートにそれぞれ接続され電源V
Dと接地電位間に仲人されザMO8TQp□とNMO8
T Qn2からなるインバータ回路と、このインバータ
回路に設けられた負荷用PMOS T Qn2を導通状
態にセットするセット手段としてのドレイ/、ソースが
それぞれNMOS T Qn2のドレイン。
In the embodiment of Mizui 1, the source is the power supply VD, the drain is connected to the output and IMMOU '1', and the load PMO8TQp□ and NM(JSTω'n3r Qn4
Whip connection 6: Consists of one end of PMOS T Ql)2
The other end is connected to the ground potential, and the N
Al'J 1) Circuit 1, input is logic circuit 1 and PMO8
'I' The output is connected to the connection point 4 with Qn2 and is connected to the output terminal 5 and the gate of PMO8T Qn2, respectively, and the power supply V
The MO8TQp□ and NMO8 are intermediaries between D and ground potential.
An inverter circuit consisting of TQn2, and a drain/source serving as a setting means for setting the load PMOS TQn2 provided in this inverter circuit to a conductive state are the drains of the NMOS TQn2.

ソースにゲートが制御信号端子6にそれぞれ接続された
NMO8T Qnlとを含んで構成される。なお、ここ
でP MOS T Ql)2とNMO8TQn3.Qn
4とはレシオ回路を構成している。又2,3はNAND
回路1の入力端子でそれぞれNMO8T Qna r 
Qn<のゲートに接続される。
NMO8T Qnl whose source and gate are respectively connected to the control signal terminal 6. In addition, here, PMOS TQl)2 and NMO8TQn3. Qn
4 constitutes a ratio circuit. Also 2 and 3 are NAND
At the input terminal of circuit 1, each NMO8T Qnar
Connected to the gate of Qn<.

吹に、水弟−の実施例の動作を第3図に示すその動作タ
イミングチャートを用いて説明する。
First, the operation of the embodiment of the water tester will be explained using the operation timing chart shown in FIG.

入力端子1.2及び制御信号端子6に、それぞれ弗2図
に示す電4圧波形の入力信号IN、、IN2及び制御信
号φを与えると、接続点4及び出力端子5にそれぞれ第
3図に示す波形の出力信号0UT1及びOUT 2が出
力される。
When the input signals IN, , IN2 and the control signal φ having the voltage waveforms shown in Fig. 2 are applied to the input terminal 1.2 and the control signal terminal 6, respectively, the output signals shown in Fig. 3 are applied to the connection point 4 and the output terminal 5, respectively. Output signals 0UT1 and OUT2 having the waveforms shown are output.

初めに、制御信号φがアクティブの^レベル。Initially, the control signal φ is at the active level.

入力信号IN、 、 IN2が低レベルとすると、PM
O8TQpzがオン状態で、NMO8T Qna r 
Qn4がオフ状態なので、出力信号OUT、は高レベル
出力イa号0UT2は低レベルとなっている。次に、制
御信号φがインアクティブの低レベルとなると、Nfv
108T Qn□はオフ状態となる。次に、入力信号■
N2 が高レベルになるとN MOS T Qn 4は
オン状態となる。しかしN MOS T Qnaはオフ
状態なので、出力信号0UT1のレベルは変らない。次
に、入力信号IN1 が高いレベルになりN M O’
S ’I’ Qnaがオン状態となると、出力信号OU
i’lのレベルは低下し、出カイd号OUi’2のレベ
ルは高くなり、PMO8TQpzはオフ状態となる。P
MO8TQp2がオフすると、第1図に示す回路の消冒
電力はほぼ零になる。
When the input signals IN, , IN2 are at low level, PM
When O8TQpz is on, NMO8T Qna r
Since Qn4 is in the off state, the output signal OUT is at a high level and the output signal a0UT2 is at a low level. Next, when the control signal φ becomes an inactive low level, Nfv
108T Qn□ is turned off. Next, input signal ■
When N2 becomes high level, NMOS T Qn 4 is turned on. However, since NMOS T Qna is in the off state, the level of the output signal 0UT1 does not change. Next, the input signal IN1 becomes high level and N M O'
When S 'I' Qna turns on, the output signal OU
The level of i'l decreases, the level of output number d OUi'2 increases, and PMO8TQpz turns off. P
When MO8TQp2 is turned off, the power consumption of the circuit shown in FIG. 1 becomes almost zero.

尚び坦]飢侶号φが商レベルになり、入力信号■へ1゜
■へ2 がイUレベルとなると、N #1.OS T 
Qnlがオ/状Jルとなり、P MOS ’1’ Qp
tとN MOS ’I” Qn iが、薗当なレシオを
収ってあれは、出カイ1号0UT2は但ルベルとなり、
出力信号OUT 1はl斬しベルとなる。
When the starvation number φ becomes the quotient level and the input signal 1° to 2 becomes the U level, N #1. O.S.T.
Qnl becomes O/Jru, P MOS '1' Qp
If t and N MOS 'I' Qn i have a reasonable ratio, output number 1, 0UT2, however, becomes a level.
The output signal OUT 1 becomes the l-cut bell.

さらに入力信号IN1又は1へ2のいづれか電力が高レ
ベルとなっても出力信号0UT1は変化せず、出力信号
C1[J’I’2も変化しない。
Further, even if the power of either the input signal IN1 or IN2 becomes high level, the output signal 0UT1 does not change, and the output signal C1[J'I'2 also does not change.

第2図は本発明の第2の実施例を示す回路図である。第
2図は第1図のNMO8T Qnxを取除き、代りにP
MO8TQp3のソースを電源VDに、ドレインを接続
点4に、ゲート金制値]信号端子6′に接続したもので
ある。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention. Figure 2 removes the NMO8T Qnx in Figure 1 and replaces it with P
The source of MO8TQp3 is connected to the power supply VD, the drain to the connection point 4, and to the gate control value] signal terminal 6'.

次に、水弟2の実施例の動作を第3図の動作タイミング
チャートと用いて説明する。
Next, the operation of the embodiment of Sui-Tei 2 will be explained using the operation timing chart of FIG. 3.

初めに、制御信号7をアクティブの低レベルに、入カイ
h号IN1.IN2も低レベルとすると、PMO8’J
’Q、paはオン状態、NMO8TQn3.Qn4はオ
フ状態なので、出力信号0[JT、は商レベル、出力信
号0UT2はイバレベルとなっており、PM O8T 
Ql)2はオン状態になっている。制御信号■がインア
クティブの高レベルとなり、順次大カイー号IN2.I
N□が商レベルとなると、出力信号OUT、が低レベル
になり、出力信号0UT2が高レベルとなるので、P 
MOS T Ql[)2はオフ状態となる。再び制御信
号¥が低レベルになりPMOS T Qpaがオン状態
となり、出力信号OUT、が高レベルになると、出力信
号OUi’2が低レベルとなり、PMO8T Qp2は
オン状態となる。ここでPMO8TQp3のオン抵抗は
NMO8’11’ Qna 、 Qn4 のオン抵抗よ
り充分小さくなる様にする。
First, the control signal 7 is set to an active low level, and the input signals IN1. If IN2 is also at a low level, PMO8'J
'Q, pa are on, NMO8TQn3. Since Qn4 is in the off state, the output signal 0 [JT, is at the quotient level, and the output signal 0UT2 is at the interrupt level, so PM O8T
Ql)2 is in the on state. The control signal ■ becomes an inactive high level, and the large Kaii IN2. I
When N□ reaches the quotient level, the output signal OUT becomes low level and the output signal 0UT2 becomes high level, so P
MOS T Ql[)2 is turned off. When the control signal ¥ becomes low level again and PMOS T Qpa turns on, and the output signal OUT becomes high level, the output signal OUi'2 becomes low level and PMOS T Qp2 turns on. Here, the on-resistance of PMO8TQp3 is made to be sufficiently smaller than the on-resistance of NMO8'11'Qna, Qn4.

第4図は不発1弟3の実施例を示す回路図である。水弟
3の実施例の回路は、第1図と第2図に示した回路を合
成したもので、7はインバータ回路である。制御信号φ
、¥によりPM O8T Q、T)2をオン状態とする
高速化ケ計っている。
FIG. 4 is a circuit diagram showing an embodiment of the unexploded 1st brother 3. The circuit of the embodiment of Mizui 3 is a combination of the circuits shown in FIGS. 1 and 2, and 7 is an inverter circuit. Control signal φ
, ¥ is designed to speed up PM O8T Q, T)2 by turning it on.

第5図は本発明の第4の実施例を示す回路図である。庫
第4の実施例の1υ1路は、第4図の回路の変形例でN
MOS T Qo、の代りに、ゲートが制御11号7に
ソースが論理回路1の出力にドレインが接なお、上記の
実施例においては、論理回路1としてNANI)回路を
示しだが、第6図(a)、(b)に示すように、NOR
回路(同図(a))や、NANI)回路とNOR回路の
組合せ回路(同図(b))からなる論理回路1′、1“
金剛いることもできる。なお、IN、〜IN7は入力信
号である。
FIG. 5 is a circuit diagram showing a fourth embodiment of the present invention. The 1υ1 path of the fourth embodiment of the refrigerator is a modification of the circuit shown in FIG.
In place of the MOS T Qo, the gate is connected to the control No. 11, the source is connected to the output of the logic circuit 1, and the drain is connected to the output of the logic circuit 1 in the above embodiment. As shown in a) and (b), NOR
Logic circuits 1' and 1'' consisting of a circuit ((a) in the same figure) and a combination circuit ((b) in the same figure) of a NANI) circuit and a NOR circuit
Kongo can also exist. Note that IN, to IN7 are input signals.

μ上説明したとおり、これら実施例の回路は、1個のP
チャネル型の負荷用MOSトランジスタと、それに接続
されたNチャネル型のMOSトランジスタからなる論理
回路と、インバータ回路と、僅かに付加された制御用の
MOSトランジスタとから構成されるので、素子数従っ
て接続点数が少い。又負荷用M、08トランジスタと同
時にオン、状態となり電、源VDと接地電位間に電流が
流れないように制御されるので、消費電力も少く低電圧
で口fj1作する。
μAs explained above, the circuits of these embodiments have one P
It consists of a channel-type load MOS transistor, a logic circuit consisting of an N-channel MOS transistor connected to it, an inverter circuit, and a small number of control MOS transistors, so the connections can be made depending on the number of elements. Score is low. In addition, since it is turned on at the same time as the load transistors M and 08 and is controlled so that no current flows between the power source VD and the ground potential, power consumption is low and low voltage is used.

さらに、本発明のCMOSレシオ回路とその使用方法に
よると、制御信号により一定期間出力信号0UT2が低
レベルとなり、又その期間には入力信号INも低レベル
である必要がある。しかし、このために論理演算は、商
レベルから低レベルのレシオ回路では、高速度なスイッ
チング状態のみを使用し、ドミノ回路と同様に次々に伝
搬するので高速な回路を、本発明のCMOSレシオ回路
を2個以上接続し上記の使用力′F1iを用いて構成で
きる。
Further, according to the CMOS ratio circuit and method of using the same of the present invention, the control signal causes the output signal 0UT2 to be at a low level for a certain period of time, and the input signal IN must also be at a low level during that period. However, for this purpose, logical operations are performed in a ratio circuit from the quotient level to a low level, using only high-speed switching states, and propagating one after another like a domino circuit. It can be configured by connecting two or more of them and using the above working force 'F1i.

又、本発明のCMOSレシオ回路は論理回路部分のトラ
ンジスタが多い程入力端子当りのトランジスタ数が少く
てすむので、デコーダ、ROM。
Furthermore, the CMOS ratio circuit of the present invention requires fewer transistors per input terminal as the number of transistors in the logic circuit increases.

PL八等の規則性の尚い回路や、多入力のゲートの繰り
返しが多いLSIに用いてゲートの段数ケ減することで
命令処理スピードを高めることができる。
The instruction processing speed can be increased by reducing the number of gate stages when used in circuits with less regularity, such as PL8, or LSIs in which multiple input gates are often repeated.

(発明の効宋) 以上、詳細説明したとおり、本発明のCMOSレシオ回
路とその使用方法によれは、上記の構成により、素子数
従って接続配線数及び消賀電力が少くかつ低電圧で高速
動作が可能なCMOSレシオ回路とその使用方法が得ら
れる。
(Effects of the Invention) As explained above in detail, the CMOS ratio circuit of the present invention and its method of use have the above structure, which reduces the number of elements, the number of connected wires, and the consumed power, and operates at high speed at low voltage. A CMOS ratio circuit and its usage method are obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明のCM、OSレシオ回路の第1
.第2の実施、例を示す回路図、第3図はそれらの動作
タイミングチャート、第4図、第5図は本発明のCMO
8レシオ回路の第3.第4の実施例を示す回路図、第6
図(a)、(b)はこれら実施例に用いられる論理回路
例を示す回路図である。 箱。子、7・・・・・・インバータ、IN、IN1〜I
N7・・・・・・入力信号、0UT1,0UT2・・・
・・・出力信号、Qpt〜Qpa・・・・・・Pチャネ
ル型MOSトランジスタ、Qnt〜Qns・・・・・・
Nチャネル型MOSトランジスタ、VD・・・・・・電
源、φ、7・・・・・・制御信号。 付拐 隼2回 λ 乎5個 v−4訂
Figures 1 and 2 show the first CM and OS ratio circuit of the present invention.
.. The second embodiment is a circuit diagram showing an example, FIG. 3 is an operation timing chart thereof, and FIGS. 4 and 5 are CMOs of the present invention.
The third part of the 8 ratio circuit. Circuit diagram showing the fourth embodiment, No. 6
Figures (a) and (b) are circuit diagrams showing examples of logic circuits used in these embodiments. box. Child, 7...Inverter, IN, IN1~I
N7... Input signal, 0UT1, 0UT2...
...Output signal, Qpt-Qpa...P-channel MOS transistor, Qnt-Qns...
N-channel MOS transistor, VD...power supply, φ, 7...control signal. Abduction Hayabusa 2 times λ 乎5 pieces v-4 edition

Claims (2)

【特許請求の範囲】[Claims] (1)1個の一導電チャネル型の負荷用MOSトランジ
スタと、反対導電1チヤネル型のMOSトランジスタか
らなり一端が前記負荷用MO8)ランジスタに他端が接
地電位にそれぞれ接続された論理回路と、人力が前記論
理回路と前記負荷用Mos トランジスタとの接続点に
出力がh11記負荷用MOSトランジスタのゲートにそ
れぞれ接続されたインバータ回路と、該インバータ回路
及び前記負荷用IVI OS )ランジスタ又はh11
記論理回路の少くとも一方に設けられた前記負荷用へa
osトランジスタを少くとも一つの制御信号によりオン
状態にセットするセット手段とを含むことr%徴とする
0MO8レシオ回路。
(1) a logic circuit consisting of one conductive channel type load MOS transistor and an opposite conductive one channel type MOS transistor, one end of which is connected to the load transistor, and the other end of which is connected to the ground potential; An inverter circuit whose output is connected to the gate of the load MOS transistor h11 at the connection point between the logic circuit and the load MOS transistor, and the inverter circuit and the load IVI OS transistor or h11
a for the load provided on at least one side of the logic circuit;
and setting means for setting the os transistor to an on state by at least one control signal.
(2)1個の一導電チャネル型の負荷用MO#トランジ
スタと、反対導電チャネル型のMOSトランジスタから
なり一端が前記負荷用MOSトランジスタに他端が接地
電位にそれぞれ接続された論理(ロ)路と、入力がRj
l記論理論地回路J己負荷用MOSトランジスタとの接
続点に出力が前1己負荷用MOSトランジスタのゲート
にそれぞれ接続されたインバータ回路と、該インノく一
夕回路及び前記負荷用MOSトランジスタ又は前記態に
セットするセット手段とを含むことからなる0MO8レ
シオ回路において、Mil記制御信号がアクティブのと
きは前記論理回1路の入力を低レベルに保ち、前記制御
信号がインアクテイフ。 のと酉に前記論理回路での論理演算を行うことを特徴と
するCMOSレシオ回路の使用方法。
(2) A logic (b) path consisting of one conductive channel type load MO# transistor and an opposite conductive channel type MOS transistor, with one end connected to the load MOS transistor and the other end connected to the ground potential. and the input is Rj
An inverter circuit whose output is connected to the gate of each of the first and second load MOS transistors at a connection point with the logic ground circuit and the load MOS transistor; In the 0MO8 ratio circuit, the input of the logic circuit 1 is kept at a low level when the Mil control signal is active, and the control signal is inactive. A method of using a CMOS ratio circuit, characterized by performing logical operations in the logic circuit.
JP59036502A 1984-02-28 1984-02-28 Cmos ratio circuit and its using method Pending JPS60180330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59036502A JPS60180330A (en) 1984-02-28 1984-02-28 Cmos ratio circuit and its using method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59036502A JPS60180330A (en) 1984-02-28 1984-02-28 Cmos ratio circuit and its using method

Publications (1)

Publication Number Publication Date
JPS60180330A true JPS60180330A (en) 1985-09-14

Family

ID=12471595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59036502A Pending JPS60180330A (en) 1984-02-28 1984-02-28 Cmos ratio circuit and its using method

Country Status (1)

Country Link
JP (1) JPS60180330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278098A (en) * 1999-03-24 2000-10-06 Texas Instr Japan Ltd Ratio circuit, latch circuit and mos transistor
WO2001067608A3 (en) * 2000-03-07 2002-03-07 Honeywell Int Inc Domino logic family

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115038A (en) * 1980-02-18 1981-09-10 Nec Corp Logic circuit
JPS5725726A (en) * 1980-07-22 1982-02-10 Seiko Epson Corp Synchronous decoder
JPS589355A (en) * 1981-07-08 1983-01-19 Seiko Epson Corp Dynamic decoder circuit
JPS58123230A (en) * 1982-01-18 1983-07-22 Seiko Epson Corp Dynamic decoder circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115038A (en) * 1980-02-18 1981-09-10 Nec Corp Logic circuit
JPS5725726A (en) * 1980-07-22 1982-02-10 Seiko Epson Corp Synchronous decoder
JPS589355A (en) * 1981-07-08 1983-01-19 Seiko Epson Corp Dynamic decoder circuit
JPS58123230A (en) * 1982-01-18 1983-07-22 Seiko Epson Corp Dynamic decoder circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278098A (en) * 1999-03-24 2000-10-06 Texas Instr Japan Ltd Ratio circuit, latch circuit and mos transistor
WO2001067608A3 (en) * 2000-03-07 2002-03-07 Honeywell Int Inc Domino logic family

Similar Documents

Publication Publication Date Title
JPH10303736A (en) Logic circuit formed of mosfet differing in threshold voltage
JPH11103227A (en) Output amplitude adjusting circuit
JPS60180330A (en) Cmos ratio circuit and its using method
JPH08181600A (en) Level shift circuit
JPH0348520A (en) Analog switch circuit
JPS58209225A (en) Tristate output circuit
JPH0275219A (en) Latch circuit
JPH0237833A (en) Output circuit
JPH05191239A (en) Multiplexer circuit
JP2527199Y2 (en) IC test mode setting circuit
JPH05160706A (en) Cmos output buffer circuit
JPS5990426A (en) Tri-state buffer circuit
JP2674910B2 (en) Three-state buffer circuit
JPS6094740A (en) Master slice ic
JPH04343111A (en) Intermediate level generation circuit
JP2752778B2 (en) Semiconductor integrated circuit
JPH01165225A (en) Cmos circuit
JPS6290020A (en) Semiconductor integrated circuit
JP3939041B2 (en) CMOS buffer circuit
JPS59205818A (en) Output circuit
JPS62194737A (en) Semiconductor integrated circuit
JPS61216518A (en) Tri-state circuit
JPH04213919A (en) Semiconductor integrated circuit
JPH05252011A (en) Output buffer circuit
JPH01272229A (en) Cmos input circuit