JPS6017004A - Operating method of blast furnace - Google Patents

Operating method of blast furnace

Info

Publication number
JPS6017004A
JPS6017004A JP12387683A JP12387683A JPS6017004A JP S6017004 A JPS6017004 A JP S6017004A JP 12387683 A JP12387683 A JP 12387683A JP 12387683 A JP12387683 A JP 12387683A JP S6017004 A JPS6017004 A JP S6017004A
Authority
JP
Japan
Prior art keywords
coke
furnace
iron raw
raw material
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12387683A
Other languages
Japanese (ja)
Other versions
JPS6141963B2 (en
Inventor
Katsuya Ono
斧 勝也
Kenji Tamura
健二 田村
Morimasa Ichida
一田 守政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12387683A priority Critical patent/JPS6017004A/en
Publication of JPS6017004A publication Critical patent/JPS6017004A/en
Publication of JPS6141963B2 publication Critical patent/JPS6141963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Abstract

PURPOSE:To provide an operating method of a blast furnace without decreasing the void volume in the mixed layer formed near the furnace wall part by charging an iron raw material and coke having the smallest possible difference in grain size to the periphery of the furnace within a specific distance from the furnace wall. CONSTITUTION:An iron raw material 10 or coke 11 deposited on a large bell 7 is charged by a movable armor 9 into a furnace with, for example, a bell-type charger. The material 10 and the coke 11 to be charged to the peripheral part of the furnace within 1m from the furnace wall are charged into the wall after the grain size thereof is so adjusted as to attain 0.5-1.5 average grain size ratio thereof, i.e., after the grain size difference between both is minimized. The slip in the mixed layer of the material 10 and the coke 11 is thus considerably decreased, because the formation of the mixed layer having small void volume is substantially obviated and the elimination of the factors for growing deposit is made possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高炉の操業方法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a method of operating a blast furnace.

従来技術 近年・特にオールコークス操業に移行し、高炉炉壁部す
(傍におけるガス流れのコントロールが重要度を増して
いる。例えば、炉壁温度の異常低下を伴々う炉下部不活
性現象、シャフトサンプリング時VCおける焼結粉の存
在、シャフト上部での炉壁損耗等多くの現象が炉壁部近
傍での鉄原料およびコークスの降下挙動、およびガス流
れに深く関連している。従って高炉の安定操業を維持す
る為には、炉壁部近傍におシする鉄原料およびコークス
の充填構造を適確にとらえることが重要となっている。
Prior Art In recent years, especially with the shift to all-coke operation, the importance of controlling gas flow near the blast furnace wall has increased. Many phenomena, such as the presence of sintered powder in the VC during shaft sampling and furnace wall wear at the upper part of the shaft, are deeply related to the descending behavior of iron raw materials and coke near the furnace wall, and to the gas flow. In order to maintain stable operation, it is important to accurately understand the filling structure of the iron raw material and coke near the furnace wall.

川、状では、プロフィルメーター、層厚H士等種々の検
出端が聞覚・使用され、炉壁部近傍での鉄原料およびコ
ークスの降下速度2層厚情報を得ることが可能となって
きている。そしてこれらの情報により、炉壁部近傍にお
ける鉄原料とコークスの混合層の存在が確認されている
。この混合層の存在については、既に神々の高炉解体調
査においても確認されているが、この混合層の充填構造
については不り」彦部分が多い。
In the river, various detection devices such as profile meters and layer thickness sensors are used to sense and use, and it has become possible to obtain information on the falling speed and layer thickness of iron raw material and coke near the furnace wall. There is. Based on this information, the existence of a mixed layer of iron raw material and coke near the furnace wall has been confirmed. The existence of this mixed layer has already been confirmed in the dismantling survey of the Gods' blast furnace, but there are many questions about the filling structure of this mixed layer.

そこで本発明者等は、第1図に示す高炉シャフト部の冷
間2次元模型を使用し、層状に装入された鉄原料とコー
クスを降下させて炉壁部近傍に混合層を形成させ、その
充填構造を調査した。
Therefore, the present inventors used a cold two-dimensional model of the blast furnace shaft shown in Fig. 1 to lower the iron raw material and coke charged in layers to form a mixed layer near the furnace wall. The filling structure was investigated.

第2図i/(−例として炉壁部近傍に発生したイ均粒径
13.8論の焼結鉱と平均粒径50隅のコークスの混合
層の空隙率と焼結鉱の1量比率の関係を示す。
Figure 2 i/(- As an example, the porosity of a mixed layer of sintered ore with an average grain size of 13.8 mm and coke with an average grain size of 50 corners generated near the furnace wall and the ratio of 1 volume of sintered ore shows the relationship between

第2図よりわかる様に、炉壁部近傍に発生した混合層の
空隙率の多くが0.30〜0.35と極めて小さく、通
気性が悪くなっている。
As can be seen from FIG. 2, most of the porosity of the mixed layer generated in the vicinity of the furnace wall was extremely small, ranging from 0.30 to 0.35, resulting in poor air permeability.

」二連の混合層の生成要因としては、シャフト部の炉壁
状態、鉄原料とコークスの平均粒径の差(現状では鉄原
料]5〜25 min +コークス50〜55爺)、お
よび鉄原料とコークスの密度の差(鉄原本−13,0〜
4゜o f / cnl + コークス0.9〜コ−、
ofZ/ca)が考えられ、結果的に粒径の異なる2種
の粒子が混合した場合と同様、その空隙率の低下となっ
ている。
The factors contributing to the formation of the double mixed layer include the condition of the furnace wall in the shaft section, the difference in average particle size between iron raw material and coke (currently iron raw material] 5-25 min + coke 50-55 min), and iron raw material and coke density difference (iron original -13,0 ~
4゜of/cnl + coke 0.9 ~ coke,
ofZ/ca), and as a result, the porosity is reduced, similar to when two types of particles with different particle sizes are mixed.

実炉におけるこの様な空隙率の小さい混合層の生成は、
混合層を通過するガス量の減少、ひいては混合層の昇温
速度の遅れとなり、炉壁部近傍での低温シー7 (40
0℃〜600’C)生成の一要因になっていると考えら
れる。
The generation of such a mixed layer with a small porosity in an actual furnace is
The amount of gas passing through the mixed layer decreases, and the temperature rise rate of the mixed layer is delayed, resulting in a low temperature sea near the furnace wall.
0°C to 600'C).

従って混合層を生成させない高炉操業法が重要性を増し
てくるが、現状の高炉の炉壁構造(レンガ積み)でi/
;j:、炉壁部が摩耗し、混合層の生成は避けられない
ものとなっている。従って、混合層の問題点如]、空隙
率が小さいという充填構造にあることを考慮すると、生
成した混合層の空隙率が小きくならない様な操業方法を
考案することがそ 3−− の解決策につながる。
Therefore, blast furnace operating methods that do not generate a mixed layer are becoming increasingly important, but the current blast furnace wall structure (brickwork)
;j: The furnace wall is worn, and the formation of a mixed layer is unavoidable. Therefore, considering that the mixed layer has a packed structure with a small porosity, the solution to this problem is to devise an operating method that will prevent the porosity of the produced mixed layer from becoming small. This will lead to strategies.

発明の目的 てこで、本発明は前記の従来のl’i41題を解決する
ために、炉壁部近傍に生成する混合層の空隙率を低下さ
せない畠炉操業方法を提供することにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention provides a method for operating a furnace that does not reduce the porosity of the mixed layer formed near the furnace wall.

発明の構成 本発明の要旨は、粒度差の極力少ない鉄原料とコークス
を具体的にけ鉄原料とコークスの平均粒度の比りが0.
5〜]5の軸回にはいるように炉壁より]−m以内の炉
の周辺へ装入することにより、生成した混合層の空隙率
の低下を極力抑制することを可能とする置炉操業法であ
る。
Structure of the Invention The gist of the present invention is to specifically prepare iron raw material and coke with as little difference in particle size as possible so that the average particle size ratio between the iron raw material and coke is 0.
Furnace installation operation that makes it possible to suppress the decrease in porosity of the generated mixed layer as much as possible by charging around the furnace within ]-m from the furnace wall so as to enter the axial rotation of 5 to 5. It is the law.

本発明の目的を達成するための具体的な方法としては、
以下の3通りの方法がある。即ち、0粒径の小さいコー
クス、好ましくはコ−Omn+〜30胴の小径コークス
を炉壁の周辺部へ装入し、鉄原料との粒度差を小さくす
る方法 0粒径の大きい鉄原料、奸才しくけ20mn以上−4〜 を炉壁周辺部へ装入し、コークスとの粒度差を小さくす
る方法 ・ ■ヨー2フ粒j長:と鉄原料粒度の双方を調整して粒度
差を小さくする方法がある。なお、■の方法は、従来未
使用であった小径コークスを使用することにより、コー
クスの歩留アップにもつながる。
A specific method for achieving the purpose of the present invention is as follows:
There are three methods as follows. That is, a method of charging small coke of 0 particle size, preferably small diameter coke of coke Omn+ to 30 cylinders to the peripheral part of the furnace wall to reduce the difference in particle size with the iron raw material. A method of charging 20 mm or more of -4~ to the periphery of the furnace wall to reduce the particle size difference with coke. ・ ■ Adjusting both the yaw 2f grain j length: and the iron raw material particle size to reduce the particle size difference There is a way to do it. Note that method (2) also leads to an increase in coke yield by using small-diameter coke, which has not been previously used.

実施例 以下、実施例に基づき、本発明を詳述する。Example Hereinafter, the present invention will be explained in detail based on Examples.

第3図、第4図は、本発明に基づく鉄原料およびコーク
ス装入法の実施例を示すもので、第3図はベル式装入装
置・第4図はベルレス装入装置を有する開戸の上部断面
構造図である。第3図における大ベル7あるいは、第4
.図における固定ホッパー13上に堆積された鉄原料1
1.あるいはコークス10は1ムーバブルアーマ−9、
あるいは炉内シュート12により炉内に装入される。
Figures 3 and 4 show examples of the iron raw material and coke charging method based on the present invention. FIG. Big bell 7 or the 4th bell in Figure 3
.. Iron raw material 1 deposited on fixed hopper 13 in the figure
1. Or coke 10 is 1 movable armor 9,
Alternatively, it is charged into the furnace through the in-furnace chute 12.

本発明において、前h1の■の場合にはコークスを、前
記の■の場合には鉄原料を、所定粒度の大径と小径に予
め分別しておいて、装入時に■の場合には小径コークス
を、■の場合には大径鉄原料を炉の周辺部に装入し、又
■の場合には前記小径コークスと平均粒径20〜30叫
の大径鉄原料を装入して混合層生成時における混合層の
空隙率低下の抑制効果を狙っている。
In the present invention, in the case of (2) in the previous h1, the coke and in the case of the above (2), the iron raw material are separated in advance into large and small diameter particles of a predetermined particle size, and at the time of charging, in the case (3), the small diameter coke is separated. In the case of (2), a large-diameter iron raw material is charged into the peripheral area of the furnace, and in the case of (2), the small-diameter coke and the large-diameter iron raw material with an average particle size of 20 to 30 mm are charged to form a mixed layer. The aim is to suppress the decrease in porosity of the mixed layer during formation.

第5図に、本発明を実施したA高炉での前後の操業結果
の一例を示す。A高炉は内容積2800靜の中型高炉で
ある。ここで本発明実施例■は、第31表に示すコーク
ス、鉄原料を予め準備し、粒径の小さい]O〜”0ff
llHの小径コークスを、炉壁より約1mの範囲内には
いる炉周辺部に装入し、炉周辺部におけるコークスと鉄
原料の平均粒度の差を小さくした操業法であり、本実施
例では、タコ周辺部での鉄原料とコークスの平均粒度の
比ヲ0.8〜1.5としている。本発明実施例Iは、第
2表に示すコークス、鉄原料を予め準備し、粒径の太き
い20調以上の鉄原料を炉周辺部へ装入し、炉周辺部に
おけるコークスと鉄原料の平均粒度の差を小さくした操
業法であり、本実施例では、炉周辺1昂での鉄原料とコ
ークスの平均粒度の比を0.5〜0.8としている。な
お、操業上の観点から言うと粒度差を小さくする場合の
平均粒度比りは0.8〜]、2が好捷しい。
FIG. 5 shows an example of the results of operation before and after the blast furnace A in which the present invention was implemented. Blast furnace A is a medium-sized blast furnace with an internal volume of 2,800 m. Here, in Example 2 of the present invention, the coke and iron raw materials shown in Table 31 are prepared in advance, and the particle size is
This is an operation method in which small-diameter coke of 11H is charged into the periphery of the furnace within a range of about 1 m from the furnace wall, and the difference in average particle size between the coke and the iron raw material in the periphery of the furnace is reduced. The ratio of the average particle size of iron raw material and coke around the octopus is set to 0.8 to 1.5. In Embodiment I of the present invention, the coke and iron raw materials shown in Table 2 are prepared in advance, and the iron raw materials with large grain sizes of 20 or more are charged to the peripheral area of the furnace, and the coke and iron raw materials in the peripheral area of the furnace are This is an operation method in which the difference in average particle size is reduced, and in this example, the ratio of the average particle size of iron raw material and coke in one stage around the furnace is set to 0.5 to 0.8. From an operational point of view, the average particle size ratio when reducing the particle size difference is preferably 0.8 to 2.

第1表  7− 第 2 表 発明の効果 第5図かられかる様に、本発明法の実施により、スリッ
プ回数の著しい低減が認められる。これは、空隙率の小
さい混合層の生成がほぼ皆無となり、付着物への成長要
因を除去することが可能となった結果である。そして・
第6図に示す様に尚炉操業の安定効果の結果として、約
10 gg/ tの燃料比低減を達成した。
Table 1 7-Table 2 Effects of the Invention As can be seen from FIG. 5, the number of slips is significantly reduced by implementing the method of the present invention. This is due to the fact that the formation of a mixed layer with a low porosity is almost completely eliminated, making it possible to eliminate the factors that cause deposits to grow. and·
As shown in Figure 6, as a result of the stabilizing effect of furnace operation, a fuel ratio reduction of approximately 10 gg/t was achieved.

【図面の簡単な説明】[Brief explanation of drawings]

 8− 第1図は、高炉シャフト部の冷間2次元模型・第2図は
、第1図の試験装置を使用した場合の、サンプリング単
位における装入物(焼結鉱十コークス)の空隙率と焼結
鉱の重量比率との関係図、第3図および第4図は本発明
実施例1.■に示す鉄原料およびコークス装入法を説明
するための高炉の上部断面構造図、但し第3図はベル式
装入装置を有する高炉、紀4図はベルレス式装入装置を
有する高炉、第5図、第6図は、本発明を実施した前後
の高炉の操業結果の一例である。。 1・・・・・・シャフト部炉壁 2・・ ・・・・可動底部 3・・・・・・駆動装置 4・・ ・・・・焼結鉱 5・・・・・・コークス 6・・・・・・尚炉本体 7・・・・・・大ベル 8・・・・・・小ベル 9・・・・・・ム〜ハフルアーマー 10・・ ・・鉄原料 10−]・・・・大径鉄原料 10−2・・・・小径鉄原料 11・ ・・・・コークス 11−1・・・・小径コークス 11−2・ ・・・大径コークス 12・・・・・炉内シュート 13・・・・・固定ホッパー 出 願 人 新日本−!J!鐵株式会社第1図 11− 第2図
8- Figure 1 shows a cold two-dimensional model of the blast furnace shaft. Figure 2 shows the porosity of the charge (ten coke of sintered ore) in the sampling unit when the test equipment shown in Figure 1 is used. FIGS. 3 and 4 are graphs showing the relationship between the weight ratio of sintered ore and the weight ratio of sintered ore. Figure 3 is a cross-sectional structural diagram of the upper part of a blast furnace to explain the iron raw material and coke charging method shown in Figure 3. FIG. 5 and FIG. 6 are examples of the operational results of the blast furnace before and after implementing the present invention. . 1...Shaft section furnace wall 2...Movable bottom 3...Drive device 4...Sintered ore 5...Coke 6... ...Furnace body 7...Large bell 8...Small bell 9...Mu~Haful Armor 10...Iron raw material 10-]...・Large diameter iron raw material 10-2...Small diameter iron raw material 11...Coke 11-1...Small diameter coke 11-2...Large diameter coke 12...Furnace chute 13...Fixed hopper applicant New Japan-! J! Tetsu Co., Ltd. Figure 1 11- Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)鉄原料とコークスを炉頂より順次層状に装入し、
精錬を行々う高炉操業法において、炉壁より]、m以内
の炉周辺部に装入する鉄原料およびコークスの平均粒度
比L(L−鉄原料の平均粒径/コークスの平均粒径)が
0.5〜1.5になるように粒度を調整して装入し、操
業することを特徴とする高炉操業法
(1) Iron raw materials and coke are sequentially charged in layers from the top of the furnace,
In the blast furnace operation method that performs refining, the average particle size ratio L of iron raw material and coke charged to the periphery of the furnace within m from the furnace wall (L - average particle size of iron raw material / average particle size of coke) A blast furnace operating method characterized by charging and operating after adjusting the particle size so that the particle size is 0.5 to 1.5.
(2) コークスの粒度を調整する特許請求の範囲第1
項記載の尚炉操業法
(2) Claim 1 which adjusts the particle size of coke
Furnace operation method described in section
(3)鉄原料の粒度を調整する特許請求の範囲第1項記
載の高炉操業法
(3) The blast furnace operating method according to claim 1, which adjusts the particle size of the iron raw material.
(4) コークス粒度と鉄原料粒度の双方を調整する特
許請求の範囲第1項記載の高炉操業法
(4) The blast furnace operating method according to claim 1, which adjusts both the coke particle size and the iron raw material particle size.
JP12387683A 1983-07-07 1983-07-07 Operating method of blast furnace Granted JPS6017004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12387683A JPS6017004A (en) 1983-07-07 1983-07-07 Operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12387683A JPS6017004A (en) 1983-07-07 1983-07-07 Operating method of blast furnace

Publications (2)

Publication Number Publication Date
JPS6017004A true JPS6017004A (en) 1985-01-28
JPS6141963B2 JPS6141963B2 (en) 1986-09-18

Family

ID=14871555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12387683A Granted JPS6017004A (en) 1983-07-07 1983-07-07 Operating method of blast furnace

Country Status (1)

Country Link
JP (1) JPS6017004A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770258A (en) * 1980-10-18 1982-04-30 Kawasaki Steel Corp Cold rolled steel sheet to be drawn excellent in seizing harden ability and manufacture thereor
JPS62112731A (en) * 1985-11-11 1987-05-23 Kawasaki Steel Corp Manufacture of steel sheet hardenable by baking and having superior deep drawability
JPH0313513A (en) * 1989-06-08 1991-01-22 Kobe Steel Ltd Method for operating blast furnace
JP2012172225A (en) * 2011-02-23 2012-09-10 Nippon Steel Corp Method for charging raw material into blast furnace
CN103820591A (en) * 2014-03-03 2014-05-28 攀钢集团攀枝花钢钒有限公司 Bell type blast furnace smelting method by using small-size sinters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174403A (en) * 1981-04-21 1982-10-27 Nippon Steel Corp Operation method for blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174403A (en) * 1981-04-21 1982-10-27 Nippon Steel Corp Operation method for blast furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770258A (en) * 1980-10-18 1982-04-30 Kawasaki Steel Corp Cold rolled steel sheet to be drawn excellent in seizing harden ability and manufacture thereor
JPS6017004B2 (en) * 1980-10-18 1985-04-30 川崎製鉄株式会社 Manufacturing method of cold-rolled steel sheet for drawing with excellent bake hardenability
JPS62112731A (en) * 1985-11-11 1987-05-23 Kawasaki Steel Corp Manufacture of steel sheet hardenable by baking and having superior deep drawability
JPH0542486B2 (en) * 1985-11-11 1993-06-28 Kawasaki Steel Co
JPH0313513A (en) * 1989-06-08 1991-01-22 Kobe Steel Ltd Method for operating blast furnace
JP2012172225A (en) * 2011-02-23 2012-09-10 Nippon Steel Corp Method for charging raw material into blast furnace
CN103820591A (en) * 2014-03-03 2014-05-28 攀钢集团攀枝花钢钒有限公司 Bell type blast furnace smelting method by using small-size sinters
CN103820591B (en) * 2014-03-03 2015-07-22 攀钢集团攀枝花钢钒有限公司 Bell type blast furnace smelting method by using small-size sinters

Also Published As

Publication number Publication date
JPS6141963B2 (en) 1986-09-18

Similar Documents

Publication Publication Date Title
JPS6017004A (en) Operating method of blast furnace
Yu et al. Theoretical calculation and validation of burden trajectory in bell-less top blast furnace
CN110172535A (en) A kind of blast furnace drop stockline to bosh replacement cooling wall binder and answer wind distribution
JP4765723B2 (en) Method of charging ore into blast furnace
JP2792382B2 (en) Blast furnace operation method
WO2019187997A1 (en) Method for loading raw materials into blast furnace
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JP3603776B2 (en) Blast furnace operation method
BRPI0306668B1 (en) method and apparatus for making a sintering material.
JP4599737B2 (en) Granulation method of sintering raw material
JP2931502B2 (en) Blast furnace operation method
JP3572645B2 (en) Raw material charging method for vertical smelting furnace
JPH06228617A (en) Two step shaft blast furnace
JPH02250909A (en) Method for charging raw material in blast furnace
JP3835041B2 (en) Blast furnace raw material charging method
JPS56142810A (en) Device for charging raw materials into reducing shaft furnace
JPS63317605A (en) Method for charging raw material in blast furnace
JPS621809A (en) Method for operating blast furnace
JP2006104560A (en) Method for operating blast furnace
JPH04304305A (en) Method for charging raw material in blase furnace
JPS5499102A (en) Method of feeding coal into coke furnace
JP2006131979A (en) Method for charging coke into bell-less blast furnace
JPS55113811A (en) Blast furnace operation method
RU2001116C1 (en) Burden material charging method
JPH11217605A (en) Method for charging charging material into blast furnace