JPS6141963B2 - - Google Patents

Info

Publication number
JPS6141963B2
JPS6141963B2 JP58123876A JP12387683A JPS6141963B2 JP S6141963 B2 JPS6141963 B2 JP S6141963B2 JP 58123876 A JP58123876 A JP 58123876A JP 12387683 A JP12387683 A JP 12387683A JP S6141963 B2 JPS6141963 B2 JP S6141963B2
Authority
JP
Japan
Prior art keywords
coke
particle size
raw material
iron raw
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58123876A
Other languages
Japanese (ja)
Other versions
JPS6017004A (en
Inventor
Katsuya Ono
Kenji Tamura
Morimasa Ichida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12387683A priority Critical patent/JPS6017004A/en
Publication of JPS6017004A publication Critical patent/JPS6017004A/en
Publication of JPS6141963B2 publication Critical patent/JPS6141963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高炉の操業方法に関するものである。 (従来の技術) 近年、特にオールコークス操業に移行し、高炉
炉壁部近傍におけるガス流れのコントロールが重
要度を増している。例えば、炉壁温度の異常低下
を伴なう炉下部不活性現象、シヤフトサンプリン
グ時における焼結粉の存在、シヤフト上部での炉
壁損耗等多くの現象が炉壁部近傍での鉄原料およ
びコークスの降下挙動、およびガス流れに深く関
連している。従つて高炉の安定操業を維持する為
には、炉壁部近傍における鉄原料およびコークス
の充填構造を適確にとらえることが重要となつて
いる。 現状では、プロフイルメーター、層厚計等種々
の検出端が開発・使用され、炉壁部近傍での鉄原
料およびコークスの降下速度、層厚情報を得るこ
とが可能となつてきている。そしてこれらの情報
により、炉壁部近傍における鉄原料とコークスの
混合層の存在が確認されている。この混合層の存
在については、既に種々の高炉解体調査において
も確認されているが、この混合層の充填構造につ
いては不明な部分が多い。 そこで本発明者等は、第1図に示す高炉シヤフ
ト部の冷間2次元模型を使用し、層状に装入され
た鉄原料とコークスを降下させて炉壁部近傍に混
合層を形成させ、その充填構造を調査した。 第2図に一例として炉壁部近傍に発生した平均
粒径13.8mmの焼結鉱と平均粒径50mmのコークスの
混合層の空隙率と焼結鉱の重量比率の関係を示
す。 第2図よりわかる様に、炉壁部近傍に発生した
混合層の空隙率の多くが0.30〜0.35と極めて小さ
く、通気性が悪くなつている。 上述の混合層の生成要因としては、シヤフト部
の炉壁状態、鉄原料とコークスの平均粒径の差
(現状では鉄原料15〜25mm、コークス50〜55mm)、
および鉄原料とコークスの密度の差(鉄原料3.0
〜4.0g/cm3、コークス0.9〜1.0g/cm3)が考えら
れ、結果的に粒径の異なる2種の粒子が混合した
場合と同様、その空隙率の低下となつている。 実炉におけるこの様な空隙率の小さい混合層の
生成は、混合層を通過するガス量の減少、ひいて
は混合層の昇温速度の遅れとなり、炉壁部近傍で
の低温ゾーン(400℃〜600℃)生成の一要因にな
つていると考えられる。 従つて混合層を生成させない高炉操業法が重要
性を増してくるが、現状の高炉の炉壁構造(レン
ガ積み)では、炉壁部が摩耗し、混合層の生成は
避けられないものとなつている。従つて、混合層
の問題点は、空隙率が小さいという充填構造にあ
ることを考慮すると、生成した混合層の空隙率が
小さくならない様な操業方法を考案することがそ
の解決策につながる。 (発明が解決しようとする問題点) そこで、本発明は前記の従来の問題を解決する
ために、炉壁部近傍に生成する混合層の空隙率を
低下させない高炉操業方法を提供することにあ
る。 (問題点を解決するための手段) 本発明の要旨は、粒度差の極力少ない鉄原料と
コークスを具体的には鉄原料とコークスの平均粒
度の比Lが0.5〜1.5の範囲にはいるように炉壁よ
り1m以内の炉の周辺へ装入することにより、生
成した混合層の空隙率の低下を極力抑制すること
を可能とする高炉操業法である。 本発明の目的を達成するための具体的な方法と
しては、以下の2通りの方法にある。即ち、 (1) 粒径の大きい鉄原料、好ましくは平均粒度30
mm以上を炉壁周辺部へ装入し、コークスとの粒
度差を小さくする方法 (2) 鉄原料粒度とコークス粒度の双方を調整して
粒度差を小さくする方法がある。 (実施例) 以下、実施例に基づき、本発明を詳述する。 第3図、第4図は、本発明に基づく鉄原料およ
びコークス装入法の実施例を示すもので、第3図
はベル式装入装置、第4図はベルレス装入装置を
有する高炉の上部断面構造図である。第3図にお
ける大ベル7あるいは、第4図における固定ホツ
パー13上に堆積された鉄原料11、あるいはコ
ークス10は、ムーバブルアーマー9、あるいは
炉内シユート12により炉内に装入される。 本発明において、前記の(1)の場合には鉄原料を
所定の大径と小径に予め分別しておいて、装入時
に平均粒度が従来より大径の鉄原料を炉の周辺部
に装入し、又(2)の場合には鉄原料とコークス双方
を所定の平均粒度が従来より大径と小径に予め分
別しておいて、従来より大径の鉄原料と小径のコ
ークスを炉の周辺部に装入して混合層生成時にお
ける混合層の空隙率低下の抑制効果を狙つてい
る。 第5図に、本発明を実施したA高炉での前後の
操業結果の一例を示す。A高炉は内容積2800m3
中型高炉である。ここで本発明実施例は、第1
表に示す鉄原料、コークスを予め準備し、粒径の
大きい平均粒度30〜40mmの大径鉄原料と従来使用
されている平均粒度50〜55mmの大径コークスを炉
壁より約1mの範囲内にはいる炉周辺部へ装入
し、炉周辺部におけるコークスと鉄原料の平均粒
度の差を小さくした操業法であり、本実施例で
は、炉周辺部での鉄原料とコークスの平均粒度の
比を0.5〜0.8としている。本発明実施例は、第
2表に示すコークス、鉄原料を予め準備し、粒径
の大きい平均粒度27〜45mmの大径鉄原料と粒径の
小さい平均粒度30〜45mmの小径コークスを炉周辺
部へ装入し、炉周辺部におけるコークスと鉄原料
の平均粒度の差を小さくした操業法であり、本実
施例では、炉周辺部での鉄原料とコークスの平均
粒度の比を0.6〜1.5としている。なお、操業上の
観点から言うと粒度差を小さくする場合の平均粒
度比Lは0.8〜1.2が好ましい。
(Industrial Application Field) The present invention relates to a method of operating a blast furnace. (Prior Art) In recent years, especially with the transition to all-coke operation, the importance of controlling the gas flow near the wall of a blast furnace has increased. For example, many phenomena such as the inertness phenomenon in the lower part of the furnace accompanied by an abnormal drop in furnace wall temperature, the presence of sintered powder during shaft sampling, and the wear and tear of the furnace wall in the upper part of the shaft are caused by the loss of iron raw materials and coke near the furnace wall. It is closely related to the falling behavior of the gas and the gas flow. Therefore, in order to maintain stable operation of a blast furnace, it is important to accurately understand the filling structure of iron raw materials and coke near the furnace wall. Currently, various detection devices such as profile meters and layer thickness gauges have been developed and used, and it has become possible to obtain information on the falling speed and layer thickness of iron raw materials and coke near the furnace wall. Based on this information, the existence of a mixed layer of iron raw material and coke near the furnace wall has been confirmed. The existence of this mixed layer has already been confirmed in various blast furnace dismantling surveys, but much remains unknown about the packing structure of this mixed layer. Therefore, the present inventors used a cold two-dimensional model of the blast furnace shaft shown in FIG. 1, and allowed the iron raw material and coke charged in layers to fall to form a mixed layer near the furnace wall. The filling structure was investigated. Figure 2 shows, as an example, the relationship between the porosity of a mixed layer of sintered ore with an average grain size of 13.8 mm and coke with an average grain size of 50 mm generated near the furnace wall and the weight ratio of the sintered ore. As can be seen from FIG. 2, most of the porosity of the mixed layer generated near the furnace wall was extremely small, ranging from 0.30 to 0.35, resulting in poor air permeability. The above-mentioned factors for the formation of the mixed layer include the condition of the furnace wall in the shaft section, the difference in average particle size between iron raw material and coke (currently iron raw material is 15-25 mm, coke 50-55 mm),
and the difference in density between iron raw material and coke (iron raw material 3.0
~4.0 g/cm 3 and coke 0.9 ~ 1.0 g/cm 3 ), resulting in a decrease in the porosity, similar to when two types of particles with different particle sizes are mixed. The formation of such a mixed layer with a small porosity in an actual furnace causes a decrease in the amount of gas passing through the mixed layer, which in turn delays the temperature rise rate of the mixed layer, resulting in a low-temperature zone (400°C to 600°C) near the furnace wall. It is thought that this is one of the factors in the formation of Therefore, blast furnace operating methods that do not generate a mixed layer are becoming increasingly important, but with the current blast furnace wall structure (brick masonry), the furnace wall wears out and the formation of a mixed layer becomes unavoidable. ing. Therefore, considering that the problem with the mixed layer is that it is a packed structure with a small porosity, the solution is to devise an operating method that does not reduce the porosity of the produced mixed layer. (Problems to be Solved by the Invention) Therefore, in order to solve the above-mentioned conventional problems, the present invention provides a blast furnace operating method that does not reduce the porosity of the mixed layer formed near the furnace wall. . (Means for Solving the Problems) The gist of the present invention is to use iron raw material and coke with as little difference in particle size as possible, specifically, so that the ratio L of the average particle size of iron raw material and coke is in the range of 0.5 to 1.5. This is a blast furnace operating method that makes it possible to suppress a decrease in the porosity of the generated mixed layer as much as possible by charging the blast furnace around the furnace within 1 m from the furnace wall. There are two specific methods for achieving the object of the present invention as follows. (1) Iron raw material with a large particle size, preferably an average particle size of 30
There is a method to reduce the difference in particle size from coke by charging 1 mm or more to the periphery of the furnace wall (2) There is a method to reduce the difference in particle size by adjusting both the particle size of the iron raw material and the coke particle size. (Examples) Hereinafter, the present invention will be described in detail based on Examples. Figures 3 and 4 show examples of the iron raw material and coke charging method based on the present invention. It is an upper sectional structure diagram. The iron raw material 11 or coke 10 deposited on the large bell 7 in FIG. 3 or the fixed hopper 13 in FIG. In the present invention, in the case of (1) above, the iron raw material is sorted in advance into a predetermined large diameter and small diameter, and at the time of charging, the iron raw material with a larger average particle size than the conventional one is charged to the peripheral area of the furnace. However, in the case of (2), both the iron raw material and the coke are separated in advance into those with a predetermined average particle size larger and smaller than before, and the iron raw material with a larger diameter and the coke with a smaller diameter are separated from the surrounding area of the furnace. The aim is to suppress the decrease in porosity of the mixed layer during the formation of the mixed layer. FIG. 5 shows an example of the results of operation before and after the blast furnace A in which the present invention was implemented. Blast furnace A is a medium-sized blast furnace with an internal volume of 2800 m3 . Here, in the embodiment of the present invention, the first
Prepare the iron raw materials and coke shown in the table in advance, and place the large diameter iron raw materials with a large average particle size of 30 to 40 mm and the conventionally used large diameter coke with an average particle size of 50 to 55 mm within a range of about 1 m from the furnace wall. This is an operation method in which coke is charged to the periphery of the furnace to reduce the difference in average particle size between coke and iron raw material in the periphery of the furnace. The ratio is set at 0.5 to 0.8. In the embodiment of the present invention, the coke and iron raw materials shown in Table 2 are prepared in advance, and a large diameter iron raw material with a large average particle size of 27 to 45 mm and a small diameter coke with a small average particle size of 30 to 45 mm are placed around the furnace. This is an operation method in which the difference in average particle size between coke and iron raw material in the area around the furnace is reduced. It is said that From an operational standpoint, the average particle size ratio L is preferably 0.8 to 1.2 when reducing the particle size difference.

【表】【table】

【表】 (発明の効果) 第5図からわかる様に、本発明法の実施によ
り、スリツプ回数の著しい低減が認められる。こ
れは、空隙率の小さい混合層の生成がほぼ皆無と
なり、付着物への成長要因を除去することが可能
となつた結果である。そして、第6図に示す様に
高炉操業の安定効果の結果として、約10Kg/tの燃
料比低減を達成した。
[Table] (Effects of the Invention) As can be seen from FIG. 5, the number of slips is significantly reduced by implementing the method of the present invention. This is the result of almost no generation of a mixed layer with a low porosity, making it possible to eliminate the factors that cause deposits to grow. As shown in Figure 6, as a result of stabilizing blast furnace operation, a fuel ratio reduction of approximately 10 kg/t was achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高炉シヤフト部の冷間2次元模型、
第2図は、第1図の試験装置を使用した場合の、
サンプリング単位における装入物(焼結鉱+コー
クス)の空隙率と焼結鉱の重量比率との関係図、
第3図および第4図は本発明実施例、に示す
鉄原料およびコークス装入法を説明するための高
炉の上部断面構造図、但し第3図はベル式装入装
置を有する高炉、第4図はベルレス式装入装置を
有する高炉、第5図、第6図は、本発明を実施し
た前後の高炉の操業結果の一例である。 1……シヤフト部炉壁、2……可動底部、3…
…駆動装置、4……焼結鉱、5……コークス、6
……高炉本体、7……大ベル、8……小ベル、9
……ムーバブルアーマー、10……鉄原料、10
−1……大径鉄原料、10−2……小径鉄原料、
11……コークス、11−1……小径コークス、
11−2……大径コークス、12……炉内シユー
ト、13……固定ホツパー。
Figure 1 shows a cold two-dimensional model of the blast furnace shaft.
Figure 2 shows the results when using the test equipment in Figure 1.
Relationship diagram between the porosity of the charge (sintered ore + coke) and the weight ratio of the sintered ore in the sampling unit,
3 and 4 are upper cross-sectional structural views of a blast furnace for explaining the iron raw material and coke charging method shown in the embodiment of the present invention. However, FIG. The figure shows a blast furnace having a bellless charging device, and FIGS. 5 and 6 show examples of the operational results of the blast furnace before and after implementing the present invention. 1...Shaft part furnace wall, 2...Movable bottom part, 3...
... Drive device, 4 ... Sintered ore, 5 ... Coke, 6
...Blast furnace body, 7...Large bell, 8...Small bell, 9
...Movable armor, 10...Iron raw material, 10
-1...Large diameter iron raw material, 10-2...Small diameter iron raw material,
11...Coke, 11-1...Small diameter coke,
11-2...Large diameter coke, 12...Furnace chute, 13...Fixed hopper.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄原料とコークスを炉頂より順次層状に装入
し、精錬を行なう高炉操業法において、炉壁より
1m以内の炉周辺部に装入する鉄原料およびコー
クスの平均粒度比L(L=鉄原料の平均粒径/コ
ークスの平均粒径)が0.5〜1.5になるように鉄原
料の粒度を調整もしくはコークス粒度と鉄原料粒
度の双方を調整して装入し、操業することを特徴
とする高炉操業法。
1 In a blast furnace operation method in which iron raw materials and coke are charged in layers from the top of the furnace and refined, the average particle size ratio L (L = iron It is characterized by adjusting the particle size of the iron raw material or adjusting both the coke particle size and the iron raw material particle size so that the ratio (average particle size of raw material / average particle size of coke) is 0.5 to 1.5, and then charging and operating. Blast furnace operation method.
JP12387683A 1983-07-07 1983-07-07 Operating method of blast furnace Granted JPS6017004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12387683A JPS6017004A (en) 1983-07-07 1983-07-07 Operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12387683A JPS6017004A (en) 1983-07-07 1983-07-07 Operating method of blast furnace

Publications (2)

Publication Number Publication Date
JPS6017004A JPS6017004A (en) 1985-01-28
JPS6141963B2 true JPS6141963B2 (en) 1986-09-18

Family

ID=14871555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12387683A Granted JPS6017004A (en) 1983-07-07 1983-07-07 Operating method of blast furnace

Country Status (1)

Country Link
JP (1) JPS6017004A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017004B2 (en) * 1980-10-18 1985-04-30 川崎製鉄株式会社 Manufacturing method of cold-rolled steel sheet for drawing with excellent bake hardenability
JPS62112731A (en) * 1985-11-11 1987-05-23 Kawasaki Steel Corp Manufacture of steel sheet hardenable by baking and having superior deep drawability
JP2724208B2 (en) * 1989-06-08 1998-03-09 株式会社 神戸製鋼所 Blast furnace operation method
JP5601243B2 (en) * 2011-02-23 2014-10-08 新日鐵住金株式会社 Raw material charging method to blast furnace
CN103820591B (en) * 2014-03-03 2015-07-22 攀钢集团攀枝花钢钒有限公司 Bell type blast furnace smelting method by using small-size sinters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174403A (en) * 1981-04-21 1982-10-27 Nippon Steel Corp Operation method for blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174403A (en) * 1981-04-21 1982-10-27 Nippon Steel Corp Operation method for blast furnace

Also Published As

Publication number Publication date
JPS6017004A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
JPS6141963B2 (en)
Yu et al. Theoretical calculation and validation of burden trajectory in bell-less top blast furnace
JPH0733528B2 (en) Blast furnace operation method
JP6102462B2 (en) Raw material charging method to blast furnace
CN104302788A (en) Method for loading raw material into blast furnace
JP2005290511A (en) Method for operating blast furnace
CN206926049U (en) A kind of two-tube explosive compaction ceramic powders device
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
JPS63140006A (en) Method for charging raw material into blast furnace
JP2015193898A (en) Method for charging sintering blending raw material comprising magnetization component raw material
JP5884208B1 (en) Raw material charging method to blast furnace
US1020345A (en) Metalliferous ore product.
JP4599737B2 (en) Granulation method of sintering raw material
JPH08120311A (en) Method for charging raw material of blast furnace
JPS59153815A (en) Feeding device of raw material to melt-reducing furnace
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JPH0421724B2 (en)
JPH075941B2 (en) Blast furnace charging method
RU2001116C1 (en) Burden material charging method
JP2931502B2 (en) Blast furnace operation method
JP2808344B2 (en) Blast furnace charging method
JPH0754023A (en) Operation of blast furnace
JPH058245B2 (en)
JPH02179804A (en) Method for operating blast furnace
JPH09256016A (en) Improver for conveyability of pulverized fine coal