JPH08120311A - Method for charging raw material of blast furnace - Google Patents

Method for charging raw material of blast furnace

Info

Publication number
JPH08120311A
JPH08120311A JP27720194A JP27720194A JPH08120311A JP H08120311 A JPH08120311 A JP H08120311A JP 27720194 A JP27720194 A JP 27720194A JP 27720194 A JP27720194 A JP 27720194A JP H08120311 A JPH08120311 A JP H08120311A
Authority
JP
Japan
Prior art keywords
furnace
charging
fine
ore
sintered ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27720194A
Other languages
Japanese (ja)
Inventor
Takashi Orimoto
隆 折本
Masaki Yano
正樹 矢野
Masaaki Naito
誠章 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27720194A priority Critical patent/JPH08120311A/en
Publication of JPH08120311A publication Critical patent/JPH08120311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE: To enable use of a large quantity of fine grain sintered ores while maintaining high iron tapping rate by mixing a specific quantity of the fine grain sintered ores having a specific size into charging coke at the first batch of each charging cycle and charging into the peripheral part of a furnace. CONSTITUTION: After charging the coke into the blast furnace continuously in one or more batches, the ore is charged to execute the charge of raw material as one cycle. In this raw material charging method into the blast furnace, the fine grain sintered ore having 1-5mm size is mixed by 3-20wt.% of the total quantity of charging ore in each cycle into the charging coke at the first batch in each cycle and charged into the peripheral part in the furnace, desirably, in the range from the furnace wall to 1/3 of the furnace radius in the furnace center direction. By this method, the flowing of the fine grain sintered ore into the furnace center part and the lowering of void ratio are prevented and the increase of gas ventilating resistance in the furnace is restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、細粒焼結鉱を使用する
高炉操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace operating method using fine-grained sintered ore.

【0002】[0002]

【従来の技術】通常、高炉に装入する焼結鉱のサイズは
5〜50mmであり、焼結鉱歩留りは70〜90%であ
る。ここで、1〜5mmの細粒焼結鉱が高炉で使用でき
れば焼結鉱歩留りの向上になり、経済的効果は非常に大
きい。しかし、細粒焼結鉱の装入により炉内の通気抵抗
が増大するため、高出銑比を維持しながら細粒焼結鉱を
多量に使用することは困難である。
2. Description of the Related Art Usually, the size of sinter ore charged into a blast furnace is 5 to 50 mm, and the sinter ore yield is 70 to 90%. Here, if fine-grained sintered ore of 1 to 5 mm can be used in a blast furnace, the yield of the sintered ore will be improved, and the economic effect will be very large. However, it is difficult to use a large amount of fine-grained sintered ore while maintaining a high pig iron ratio, because the ventilation resistance in the furnace is increased by charging the fine-grained sintered ore.

【0003】高炉で細粒焼結鉱を使用する技術として、
炉周辺部の粗粒鉱石層上へ細粒焼結鉱を装入する方法
(ISIJ,Vol.7(1994),p.158),
炉周辺部のコークス層上へ細粒焼結鉱を装入する方法
(特公昭59−41482号公報),粗粒鉱石と混合
して炉周辺部または炉周辺部から炉中間部に装入する方
法(鉄と鋼,78(1992),p.1330),等が
ある。
As a technique for using fine-grained sintered ore in a blast furnace,
A method of charging fine-grained ore onto the coarse-grained ore layer around the furnace (ISIJ, Vol. 7 (1994), p. 158),
A method of charging fine-grained sintered ore onto the coke layer in the peripheral part of the furnace (Japanese Patent Publication No. 59-41482), mixing it with coarse-grained ore, and charging it into the middle part of the furnace from the peripheral part of the furnace or from the peripheral part of the furnace. Method (iron and steel, 78 (1992), p. 1330), etc.

【0004】[0004]

【発明が解決しようとする課題】従来技術では、炉周
辺部に細粒焼結鉱を装入しても、次バッチのコークス装
入の際に炉中心部への細粒焼結鉱の流れ込みや細粒焼結
鉱の円周方向のバランス崩れが生じ、中心ガス流の阻害
や周辺ガス流の不均一を招き易いという問題がある。ま
た、従来技術では、と同様に炉中心部への細粒焼結
鉱の流れ込みが起き易いことに加え、細粒焼結鉱単独装
入の場合、周辺ガス流が強いため細粒焼結鉱が吹き飛ば
され易く所定の位置に装入することが困難である。さら
に、粒径の小さい細粒焼結鉱が粒径の大きいコークスの
間に入り込む、いわゆる浸透により、コークス層の空隙
率を低下させる場合がある。そして、従来技術の場
合、鉱石層の空隙率が低下するため、通気抵抗の増大に
よる還元率の低下を招き易い。
In the prior art, even if the fine-grained sintered ore is charged in the peripheral portion of the furnace, the fine-grained sintered ore flows into the central portion of the furnace during the next batch of coke charging. In addition, there is a problem in that the balance of the fine-grained sintered ore becomes unbalanced in the circumferential direction and the central gas flow is obstructed and the peripheral gas flow is likely to be non-uniform. In addition, in the prior art, in the same manner as in, in addition to the fact that the fine-grained sintered ore is likely to flow into the center of the furnace, and when the fine-grained sintered ore is separately charged, the surrounding gas flow is strong and Are easily blown off and it is difficult to insert them in a predetermined position. Further, the fine porosity of the coke layer may be reduced due to so-called infiltration, in which fine-grained sintered ore having a small grain size enters between cokes having a large grain size. In the case of the conventional technique, since the porosity of the ore layer is reduced, the reduction rate is likely to be reduced due to the increase in ventilation resistance.

【0005】以上の理由により、細粒焼結鉱を多量に使
用した場合、安定した高炉操業を行うことが困難であっ
た。このため本発明では、細粒焼結鉱の炉中心部への流
れ込みを防止し、且つ細粒焼結鉱の装入により空隙率低
下を極力抑制すること、さらに、炉周辺部に細粒焼結鉱
を確実に装入することにより、炉内通気抵抗の増大を抑
制し、高炉での細粒焼結鉱の多量使用を可能とすること
を目的としている。
For the above reasons, it was difficult to perform stable blast furnace operation when a large amount of fine-grained sintered ore was used. Therefore, in the present invention, it is possible to prevent the fine grain sintered ore from flowing into the center of the furnace, and to suppress the decrease in the porosity as much as possible by charging the fine grain sintered ore. The purpose of the present invention is to suppress the increase of ventilation resistance in the furnace and to enable the large amount of fine-grained sintered ore to be used in the blast furnace by reliably charging the sinter.

【0006】[0006]

【課題を解決するための手段】以上の課題を解決するた
め、本発明は、コークスを1バッチ以上連続して高炉へ
装入した後、鉱石を装入することを1サイクルとする原
料装入方法において、各サイクルの最初のバッチの装入
コークスに1〜5mmの細粒焼結鉱を各サイクルの全装
入鉱石量の3〜20wt%混合して炉内周辺部に装入す
ることにより、前記細粒焼結鉱を前記炉内周辺部に堆積
させることを特徴とする。また、炉内周辺部が炉壁から
炉中心方向に炉半径の1/3までの範囲であることを特
徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a raw material charging in which one or more batches of coke are continuously charged into a blast furnace and then an ore is charged as one cycle. In the method, the charging coke of the first batch of each cycle is mixed with 1 to 5 mm of fine-grained sintered ore in an amount of 3 to 20 wt% of the total amount of charged ore of each cycle and charged into the periphery of the furnace. The fine-grained sintered ore is deposited on the peripheral portion of the furnace. Further, the inside of the furnace is characterized in that it extends from the furnace wall toward the center of the furnace to 1/3 of the radius of the furnace.

【0007】[0007]

【作用】高炉操業を安定に行うためには炉内の通気抵抗
を減じ、炉中心部のガス流を確保する必要がある。高炉
への細粒焼結鉱の装入により、細粒焼結鉱が粒径の大き
いコークス層及び粗粒鉱石層の空隙に入り込み混合層を
形成し、層の空隙率を低下させるため通気抵抗を増大さ
せる。しかし、コークス層または粗粒鉱石層と混合する
ことなく細粒焼結鉱だけから構成される層にすることに
より、空隙率を混合層の場合よりも確保することがで
き、通気抵抗を混合層の場合よりも小さくすることがで
きる。従って、炉周辺部に細粒焼結鉱単味の層を形成す
ることができれば炉中心部のガス流を確保し、且つ炉全
体の通気抵抗を増大させない操業が可能である。
In order to operate the blast furnace stably, it is necessary to reduce the ventilation resistance in the furnace and secure the gas flow in the center of the furnace. When fine sinter ore is charged into the blast furnace, the fine sinter enters the voids of the coke layer and coarse ore layer with large grain size to form a mixed layer, which reduces the porosity of the layer and thus the ventilation resistance. Increase. However, by forming a layer composed of only fine-grained sintered ore without mixing with the coke layer or coarse-grained ore layer, the porosity can be secured more than in the case of the mixed layer, and the ventilation resistance can be improved. Can be smaller than Therefore, if a layer of fine-grained sintered ore can be formed in the periphery of the furnace, the gas flow in the center of the furnace can be secured and the operation can be performed without increasing the ventilation resistance of the entire furnace.

【0008】通常高炉に装入するコークスのサイズは2
5〜75mmであり、かさ密度は約0.5t/m3 であ
る。細粒焼結鉱のサイズは1〜5mmであり、かさ密度
は約2t/m3 であるため、炉頂ホッパー中で細粒焼結
鉱をC1(コークスと鉱石装入の1サイクルの1バッチ
目のコークス装入)に混合すると、C1装入時に、粒径
・密度の差により細粒焼結鉱はホッパー下部に、コーク
スはホッパー上部に自然に分級されるため、高炉に外周
から装入すれば、最初に細粒焼結鉱が装入される結果、
細粒焼結鉱は炉周辺部に、コークスは炉中心部から炉周
辺部にわたって堆積する。
The size of the coke usually charged into the blast furnace is 2
It is 5 to 75 mm and the bulk density is about 0.5 t / m 3 . Since the size of the fine-grained sinter is 1 to 5 mm and the bulk density is about 2 t / m 3 , the fine-grained sinter is mixed with C1 (one batch of one cycle of charging coke and ore in the furnace top hopper. When mixed into the coke), the fine-grained sintered ore is naturally classified in the lower part of the hopper and the coke in the upper part of the hopper due to the difference in particle size and density during C1 charging. Then, as a result of initially charging the fine-grained sinter,
Fine-grained sinter deposits around the furnace, and coke deposits from the center of the furnace to the periphery of the furnace.

【0009】細粒焼結鉱の装入量は全装入鉱石量の20
wt%以下なので、コークス比が400kg/t−pi
g前後の通常操業においては炉頂ホッパー中のコークス
と細粒焼結鉱の混合比を任意にしても、十分分離するこ
とが可能である。この場合、細粒焼結鉱とコークスの混
合により細粒焼結鉱の飛散量は極めてわずかなものであ
る。装入中、細粒焼結鉱は粒径の大きいコークス層中を
浸透しさらに下方に移動するが、その下層にある粗粒鉱
石(サイズは5〜50mm)層は粒子間の空隙が小さい
ため浸透することができず、この上に留まり細粒焼結鉱
層を形成する。
The charging amount of fine-grained sintered ore is 20% of the total charging ore amount.
Since it is less than wt%, the coke ratio is 400 kg / t-pi.
In a normal operation of about g, even if the mixing ratio of the coke in the furnace top hopper and the fine-grained sintered ore is arbitrary, sufficient separation is possible. In this case, the amount of the fine-grained sintered ore scattered by mixing the fine-grained sintered ore and coke is extremely small. During the charging, the fine-grained sinter penetrates into the coke layer with a large grain size and moves further downward, but the coarse-grained ore layer (5 to 50 mm in size) in the lower layer has small voids between the grains. It cannot penetrate, and stays on it to form a fine-grained sintered ore layer.

【0010】この細粒焼結鉱層は細粒焼結鉱単独の層で
あるため空隙率は低下せず、通気を良好に保つことがで
きる。そしてC2(複数バッチ装入において2回目のコ
ークス)またはO1(複数バッチ装入において1回目の
鉱石)以降の装入し際し、細粒焼結鉱層の上をC1層が
覆っているため、細粒焼結鉱の堆積位置を変化させるこ
とが無い。このため、本発明法により従来の細粒焼結鉱
安定使用限界量(7wt%程度)を超え20wt%まで
の細粒焼結鉱を使用することが可能である。ここで、炉
周辺部とは炉壁から炉中心方向に炉半径の1/3までの
範囲である。
Since this fine-grained sintered ore layer is a layer of fine-grained sintered ore alone, the porosity does not decrease, and good ventilation can be maintained. When C2 (the second coke in the multi-batch charging) or O1 (the first ore in the multi-batch charging) or later is charged, the C1 layer covers the fine-grained sintered ore layer, It does not change the deposition position of fine-grained sintered ore. Therefore, according to the method of the present invention, it is possible to use the fine-grained sinter up to 20 wt%, which exceeds the conventional stable use limit amount of the fine-grained sinter (about 7 wt%). Here, the furnace peripheral part is a range from the furnace wall toward the center of the furnace to 1/3 of the radius of the furnace.

【0011】炉半径の1/3までに限定した理由は、炉
中心部のガス流を確保するためであり、細粒焼結鉱の装
入量を全装入鉱石量の3wt%以上20wt%以下に限
定した理由は、3wt%未満では焼結鉱の歩留改善の効
果が小さく、20wt%超の細粒焼結鉱を装入すると炉
内の通気抵抗が急激に増大するためである。ただし、細
粒焼結鉱の装入量は全装入鉱石量の10〜20wt%で
あることが焼結鉱歩留りを改善する効果が大きいため好
ましい。細粒焼結鉱の粒度を1〜5mmとした理由は、
1mm未満であると装入時に吹き飛ばされる量が多くな
り、5mm超にすると細粒焼結鉱の粒径度が大きくな
り、その結果細粒焼結鉱層の空隙率が低下するためであ
る。各サイクルのコークス及び鉱石のバッチ数に特に上
限は無いが、装入物の降下に追いつくために速やかな装
入が必要であり、実質的にはそれぞれ3バッチが上限と
考えられる。
The reason for limiting the furnace radius to 1/3 is to secure the gas flow in the center of the furnace, and the charging amount of the fine-grained sintered ore is 3 wt% or more and 20 wt% or more of the total charging ore amount. The reason for limiting to the following is that if the amount is less than 3 wt%, the effect of improving the yield of the sintered ore is small, and if the fine-grained sintered ore of more than 20 wt% is charged, the ventilation resistance in the furnace rapidly increases. However, it is preferable that the amount of fine-grained sintered ore charged is 10 to 20 wt% of the total amount of ore because the effect of improving the yield of the sintered ore is great. The reason for setting the particle size of the fine-grained sintered ore to 1 to 5 mm is
This is because if it is less than 1 mm, the amount blown off at the time of charging is large, and if it exceeds 5 mm, the grain size of the fine-grained sintered ore becomes large, and as a result, the porosity of the fine-grained sintered ore layer decreases. There is no particular upper limit on the number of batches of coke and ore in each cycle, but rapid loading is necessary to catch up with the fall of the loading, and it is considered that the upper limit is practically 3 batches each.

【0012】[0012]

【実施例】以下、実施例に基づいて本発明方法を詳細に
説明する。結果を表1に示す。ほぼ同じ出銑能力のベル
レス式高炉とベル式高炉があり、通常操業時には、コー
クス2バッチ、鉱石2バッチを1サイクルとする装入
(C1−C2−O1−O2:C1,C2は1回目,2回
目のコークス装入、O1,O2は1回目,2回目の鉱石
装入)において、細粒焼結鉱をO2に混合してO1上の
炉周辺部に細粒焼結鉱を全装入鉱石量の7.0wt%装
入しているが、通気抵抗指数は1.89であり、安定操
業を行っている。この装入方法では、細粒焼結鉱装入量
を全装入鉱石量の8.5wt%以上にすると、10,0
00t/d以上の出銑量を出すことが困難になる。ここ
で、細粒焼結鉱の装入量を増大した場合に本発明による
方法と従来の方法を比較し、以下に示す。
EXAMPLES The method of the present invention will be described in detail below based on examples. The results are shown in Table 1. There are bell-less blast furnace and bell-type blast furnace with almost the same tapping capacity, and during normal operation, charging with 2 batches of coke and 2 batches of ore as one cycle (C1-C2-O1-O2: C1, C2 is the first, In the second coke charging, O1 and O2 are the first and second ore chargings), the fine-grained sintered ore was mixed with O2, and the fine-grained sintered ore was fully charged around the furnace on O1. Although 7.0 wt% of the amount of ore is charged, the ventilation resistance index is 1.89, indicating stable operation. With this charging method, if the amount of fine-grained sintered ore charged is 8.5 wt% or more of the total amount of ore charged, 10,0
It becomes difficult to produce a pig iron amount of 00 t / d or more. Here, the method according to the present invention and the conventional method are compared when the charging amount of the fine-grained sintered ore is increased, and are shown below.

【0013】実施例1は、ベルレス式高炉でC1のコー
クスに粒径3〜5mmの細粒焼結鉱を全装入鉱石量の1
5.5wt%装入する場合である。このとき、炉頂ホッ
パーに装入する細粒焼結鉱は16t、コークスは32t
である。炉頂ホッパーに装入した時点でホッパー下部は
細粒焼結鉱とコークスの混合層であり、上・中部は殆ど
コークス単味の層であった。高炉内への装入は旋回シュ
ートにより炉周辺部から炉中心部に向かって行うため、
ホッパー下部の細粒焼結鉱とコークスの混合層が炉周辺
部に装入され、ホッパー上・中部のコークス層は中間部
から中心部にかけて装入される。このとき、粒径・密度
の差により細粒焼結鉱とコークスは自然に分級されコー
クス層を浸透するが、コークス層の下にある粗粒鉱石層
を細粒焼結鉱は粒子間の空隙が小さいため浸透できない
ので、細粒焼結鉱は周辺部のコークス層下部に局在化す
る。
Example 1 is a bellless blast furnace in which C1 coke is charged with fine-grained sinter having a grain size of 3 to 5 mm in a total amount of ore of 1 or less.
This is the case of charging 5.5 wt%. At this time, 16 t of fine-grained sintered ore and 32 t of coke are charged into the furnace hopper.
Is. When charged into the furnace top hopper, the lower part of the hopper was a mixed layer of fine-grained sintered ore and coke, and the upper and middle parts were mostly coke-free layers. The charging into the blast furnace is performed from the periphery of the furnace toward the center of the furnace by the swirling chute,
The mixed layer of fine-grained sintered ore and coke in the lower part of the hopper is charged in the peripheral part of the furnace, and the coke layers in the upper and middle parts of the hopper are charged from the middle part to the central part. At this time, the fine-grained sinter and coke are naturally classified due to the difference in grain size and density and permeate the coke layer, but the coarse-grained ore layer below the coke layer forms the voids between the grains. Since it is too small to permeate, the fine-grained sinter is localized in the lower part of the coke layer in the peripheral area.

【0014】つまり、C1装入を行った結果、炉周辺部
上層にはコークス単味層が、炉周辺部下層にはほぼ細粒
焼結鉱だけの層が形成される。このため、上部のコーク
ス単味層の存在により、下部の細粒焼結鉱層はこれ以降
の装入に対し乱されること無く、細粒焼結鉱の中心部へ
の流れ込みや円周方向のバランス崩れ等の問題も回避す
ることができた。炉内の通気抵抗指数は管理限界値内の
1.97であり、操業に何等支障は無かった。また、粗
粒鉱石と混合しないため、細粒焼結鉱の使用量を通常の
7.0wt%から15.5wt%に増大しても高炉の朝
顔部での鉱石の還元率は約90%であり還元率の低下は
みられなかった。
That is, as a result of charging with C1, a coke plain layer is formed in the upper portion of the furnace peripheral portion, and a layer of only fine-grained sintered ore is formed in the lower portion of the furnace peripheral portion. For this reason, the presence of the coke monolayer in the upper portion does not disturb the fine-grained sintered ore layer in the lower portion for the subsequent charging, and the fine-grained sintered ore flows into the central portion or in the circumferential direction. We were able to avoid problems such as imbalance. The ventilation resistance index in the furnace was 1.97, which was within the control limit value, and there was no hindrance to the operation. In addition, since it does not mix with coarse-grained ore, even if the amount of fine-grained ore used is increased from 7.0 wt% to 15.5 wt%, the reduction rate of ore in the bosh section of the blast furnace is about 90%. There was no reduction in the reduction rate.

【0015】実施例2は、ベル式高炉でC1のコークス
に粒径1〜5mm細粒焼結鉱を全装入鉱石量の17.2
wt%装入する場合である。このとき、炉頂ホッパーに
装入する細粒焼結鉱は21t、コークスは32tであ
る。ムーバブルアーマーで装入物の落下位置を制御し、
C1を炉壁に近い位置に装入する。C1をベルカップに
装入した時点で、細粒焼結鉱はベルカップ下端に、コー
クスはその上部に堆積しているため、高炉内へC1を装
入するとき、細粒焼結鉱が先に装入され、続いてコーク
スが装入される。このため、細粒焼結鉱は炉周辺部に装
入され、炉周辺部に装入しきれないコークスが中間から
中心部に流れ込むことになる。
Example 2 is a bell-type blast furnace in which C1 coke is charged with fine-grained sintered ore having a grain size of 1 to 5 mm and the total amount of ore is 17.2.
This is the case of charging wt%. At this time, the fine-grained sintered ore charged into the furnace top hopper is 21 t, and the coke is 32 t. Use the movable armor to control the fall position of the charge,
Charge C1 at a position close to the furnace wall. When C1 is charged into the bell cup, the fine-grained sinter is deposited on the lower end of the bell cup and the coke is deposited on the upper part of the bell-cup. Then, coke is charged. For this reason, the fine-grained sintered ore is charged into the peripheral portion of the furnace, and coke that cannot be charged into the peripheral portion of the furnace flows into the central portion from the middle.

【0016】以下、ベルレス式高炉の場合と同様に、細
粒焼結鉱の使用量が通常の7.0wt%から17.2w
t%まで増大しても炉周辺部に細粒焼結鉱を局在化する
ことができた。炉内の通気抵抗指数は管理限界値内の
1.95であり操業に何の支障も無かった。また、朝顔
部での還元率は約90%であり、何の問題も無かった。
実施例1,2の場合とも、細粒焼結鉱は炉壁から炉半径
の1/3までに装入されていることをモデル計算及び実
炉の1/3縮尺の装入物分布実験装置でのサンプリング
により確認した。
Hereinafter, as in the case of the bellless blast furnace, the amount of the fine-grained sintered ore used is usually 7.0 wt% to 17.2 w.
Even if it increased to t%, the fine-grained sintered ore could be localized in the periphery of the furnace. The ventilation resistance index in the furnace was 1.95, which was within the control limit value, and there was no hindrance to the operation. The return rate at the morning glory was about 90%, and there was no problem.
In both cases of Examples 1 and 2, the model calculation that the fine-grained sintered ore is charged from the furnace wall to 1/3 of the furnace radius and the apparatus for experimentally measuring the charge distribution at 1/3 scale of the actual furnace It was confirmed by sampling at.

【0017】また、比較例1は、粒径3〜5mmの細粒
焼結鉱をO2に混合する通常操業と同じ方法で炉周辺部
に全装入鉱石量の17.0wt%を装入する場合であ
る。このとき、次チャージのC1装入の際に鉱石層の一
部が崩され、炉中心部に細粒焼結鉱の流れ込みが発生し
た。このため、中心ガス流の確保が困難となり通気抵抗
指数が2.31まで上昇し炉況が不安定となった。ま
た、鉱石層中の空隙率が低下したため還元率が約70%
まで低下し、炉腹温度が低下した。
Further, in Comparative Example 1, 17.0 wt% of the total amount of ore charged is charged into the peripheral portion of the furnace by the same method as the normal operation of mixing fine-grained sintered ore having a particle size of 3 to 5 mm with O2. This is the case. At this time, a part of the ore layer was destroyed at the time of charging C1 for the next charge, and inflow of fine-grained sintered ore occurred in the center of the furnace. Therefore, it became difficult to secure the central gas flow, and the ventilation resistance index increased to 2.31, and the furnace condition became unstable. Also, the reduction rate is about 70% because the porosity in the ore layer has decreased.
And the furnace temperature decreased.

【0018】さらに、比較例2は、粒径3〜5mmの細
粒焼結鉱を炉周辺部のコークス層上に全鉱石装入量の1
5.9wt%装入する場合である。この場合、炉周辺部
のガス流が強く、細粒焼結鉱の約1/3がガス流の影響
を受け炉中心部側に吹き飛ばされてしまった。このた
め、通気抵抗指数は2.37まで上昇し、以降細粒焼結
鉱の装入を止めざるを得なかった。
Further, in Comparative Example 2, a fine-grained sintered ore having a grain size of 3 to 5 mm was placed on the coke layer in the peripheral portion of the furnace at a total amount of 1 ore.
This is the case where 5.9 wt% is charged. In this case, the gas flow around the furnace was strong, and about 1/3 of the fine-grained sintered ore was blown off toward the center of the furnace under the influence of the gas flow. For this reason, the ventilation resistance index rose to 2.37, and thereafter, the charging of the fine-grained sintered ore had to be stopped.

【0019】比較例3は、通常操業と同じ方法で粒径3
〜5mmの細粒焼結鉱を炉周辺部に全装入鉱石量の1
6.9wt%を装入する場合である。この場合、通気抵
抗指数は2.00で管理値内であるが、実施例1,2と
比べ平均出銑量が2000t/day程低く、低出銑比
操業を行っている。
Comparative Example 3 has a particle size of 3 in the same manner as in normal operation.
Approximately 5 mm of fine-grained sintered ore is added to the peripheral area of the furnace,
This is the case where 6.9 wt% is charged. In this case, the ventilation resistance index is 2.00, which is within the control value, but the average amount of tapping is lower than that of Examples 1 and 2 by about 2000 t / day, and low tapping ratio operation is performed.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明により、細粒焼結鉱の炉中心部へ
の流れ込みや円周バランスの崩れを抑制することがで
き、炉内の通気抵抗の増大が抑制できるため、高出銑比
を維持しながら高炉での細粒焼結鉱の多量使用が可能で
ある。これにより、焼結鉱の歩留りを約10%向上する
ことができた。
EFFECTS OF THE INVENTION According to the present invention, it is possible to suppress the inflow of fine-grained sintered ore into the center of the furnace and the disruption of the circumferential balance, and to suppress the increase of ventilation resistance in the furnace. It is possible to use a large amount of fine-grained sintered ore in a blast furnace while maintaining the above. As a result, the yield of the sintered ore could be improved by about 10%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の細粒焼結鉱の装入状態を示す模式図FIG. 1 is a schematic diagram showing a charging state of a fine-grained sintered ore according to the present invention.

【符号の説明】[Explanation of symbols]

A 粗粒焼結鉱層 B コークス層 C 細粒焼結鉱層 A Coarse-grained sintered ore layer B Coke layer C Fine-grained sintered ore layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コークスを1バッチ以上連続して高炉へ
装入した後、鉱石を装入することを1サイクルとする原
料装入方法において、各サイクルの最初のバッチの装入
コークスに1〜5mmの細粒焼結鉱を各サイクルの全装
入鉱石量の3〜20wt%混合して炉内周辺部に装入す
ることにより、前記細粒焼結鉱を前記炉内周辺部に堆積
させることを特徴とする高炉の原料装入方法。
1. A raw material charging method comprising charging coke into a blast furnace continuously for one or more batches and then charging ore in one cycle. In the charging coke of the first batch of each cycle, 1 to The fine-grained sintered ore is deposited in the peripheral portion of the furnace by mixing the fine-grained sintered ore in an amount of 3 to 20 wt% of the total amount of ore charged in each cycle and charging the mixture into the peripheral portion of the furnace. A method for charging a raw material for a blast furnace, which is characterized in that
【請求項2】 請求項1記載の炉内周辺部が炉壁から炉
中心方向に炉半径の1/3までの範囲であることを特徴
とする高炉の原料装入方法。
2. A raw material charging method for a blast furnace according to claim 1, wherein a peripheral portion of the furnace is within a range from a furnace wall toward a center of the furnace to 1/3 of a radius of the furnace.
JP27720194A 1994-10-18 1994-10-18 Method for charging raw material of blast furnace Pending JPH08120311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27720194A JPH08120311A (en) 1994-10-18 1994-10-18 Method for charging raw material of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27720194A JPH08120311A (en) 1994-10-18 1994-10-18 Method for charging raw material of blast furnace

Publications (1)

Publication Number Publication Date
JPH08120311A true JPH08120311A (en) 1996-05-14

Family

ID=17580223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27720194A Pending JPH08120311A (en) 1994-10-18 1994-10-18 Method for charging raw material of blast furnace

Country Status (1)

Country Link
JP (1) JPH08120311A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202229A (en) * 2010-03-25 2011-10-13 Kobe Steel Ltd Method for operating blast furnace
KR101510546B1 (en) * 2013-10-30 2015-04-08 주식회사 포스코 Method for charging materials into blast furnace
JP2015074801A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Blast furnace operation method
JP6885528B1 (en) * 2020-01-29 2021-06-16 Jfeスチール株式会社 How to charge raw materials to the blast furnace
WO2021152989A1 (en) * 2020-01-29 2021-08-05 Jfeスチール株式会社 Method for charging raw material into blast furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202229A (en) * 2010-03-25 2011-10-13 Kobe Steel Ltd Method for operating blast furnace
JP2015074801A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Blast furnace operation method
KR101510546B1 (en) * 2013-10-30 2015-04-08 주식회사 포스코 Method for charging materials into blast furnace
JP6885528B1 (en) * 2020-01-29 2021-06-16 Jfeスチール株式会社 How to charge raw materials to the blast furnace
WO2021152989A1 (en) * 2020-01-29 2021-08-05 Jfeスチール株式会社 Method for charging raw material into blast furnace

Similar Documents

Publication Publication Date Title
JPH08120311A (en) Method for charging raw material of blast furnace
JPS63153385A (en) Method and system of operating vertical type furnace
JP4114626B2 (en) Blast furnace operation method
JP3247276B2 (en) Blast furnace charging method
JP2782786B2 (en) Raw material charging apparatus and charging method for bellless blast furnace
JP2020015933A (en) Bell-less blast furnace charge method
JP3700457B2 (en) Blast furnace operation method
JP2797917B2 (en) Blast furnace operation method
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JPS59153815A (en) Feeding device of raw material to melt-reducing furnace
WO2021152989A1 (en) Method for charging raw material into blast furnace
JP6885528B1 (en) How to charge raw materials to the blast furnace
JPH02259005A (en) Method for charging raw material in blast furnace
JP3014549B2 (en) Blast furnace operation method
JP3522508B2 (en) Blast furnace operation method
JPH1088208A (en) Method for charging charged material into bell-less type blast furnace
JP4915119B2 (en) Raw material charging method for blast furnace
JP2600803B2 (en) Blast furnace raw material charging method
JP2003138304A (en) Method for operating blast furnace
JP3247731B2 (en) Blast furnace charging method
JP2808344B2 (en) Blast furnace charging method
JP2003171705A (en) Method for charging raw material into blast furnace
KR101510546B1 (en) Method for charging materials into blast furnace
RU2228955C1 (en) Method of melting cast-iron at low content of silicon
JP2002097505A (en) Blast furnace operating method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031021