JP2020015933A - Bell-less blast furnace charge method - Google Patents

Bell-less blast furnace charge method Download PDF

Info

Publication number
JP2020015933A
JP2020015933A JP2018138137A JP2018138137A JP2020015933A JP 2020015933 A JP2020015933 A JP 2020015933A JP 2018138137 A JP2018138137 A JP 2018138137A JP 2018138137 A JP2018138137 A JP 2018138137A JP 2020015933 A JP2020015933 A JP 2020015933A
Authority
JP
Japan
Prior art keywords
coke
raw material
furnace
mixed
mixed raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018138137A
Other languages
Japanese (ja)
Other versions
JP7073962B2 (en
Inventor
浩 三尾
Hiroshi Mio
浩 三尾
隆 折本
Takashi Orimoto
隆 折本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018138137A priority Critical patent/JP7073962B2/en
Publication of JP2020015933A publication Critical patent/JP2020015933A/en
Application granted granted Critical
Publication of JP7073962B2 publication Critical patent/JP7073962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

To provide a charge method, even in the case coke is mixed into ores and the mixture is charged, capable of uniformizing the coke distribution of the ores compared with the conventional case.SOLUTION: A bell-less blast furnace comprises a process where mixed raw material of ores and coke is temporarily stored in a furnace top hopper, and the same is charged into a furnace from the furnace top hopper by a swing chute to form a mixed layer, in which, regarding the mixed raw material, an integrated dimensionless charge amount when the dimensionless exhaust time of the mixed raw material is 0.5 is 0.1 to 0.45, and the charge method includes: a first mixed raw material charge step S1 where the mixed raw material is deposited in forward tilt from a position of 0.7 to 1.0 in a throat dimensionless radius to a position in which the same is overlapped with a part or the whole of a central coke layer in the case the central coke layer is formed and to a position of 0 to 0.2 in a throat dimensionless radius in the case the central coke layer is not formed; and a second mixed raw material charge step S2 where the mixed raw material id deposited in forward tilt from a position of 0.8 to 1.0 in a throat dimensionless radius to a position of 0.3 to 0.5 in a throat dimensionless radius.SELECTED DRAWING: Figure 1

Description

本発明は、ベルレス高炉の装入方法に関する。   The present invention relates to a method for charging a bellless blast furnace.

高炉の操業においては、鉄源としての鉱石と、還元材としてのコークスとを交互に装入することにより、鉱石層とコークス層を形成する方法がある。   In the operation of a blast furnace, there is a method of forming an ore layer and a coke layer by alternately charging ore as an iron source and coke as a reducing agent.

鉱石にコークスを混合して装入する方法もある。コークスは鉱石よりも炉内温度では軟化し難いため、鉱石層の通気性を改善できるためである。また、コークスと鉱石を近接させることにより、反応性が向上するためである。   There is also a method in which coke is mixed with ore and charged. This is because coke is harder to soften at the furnace temperature than ore, so that the permeability of the ore layer can be improved. Further, by bringing the coke and the ore close to each other, the reactivity is improved.

鉱石にコークスを混合して装入する方法では、炉径方向において、混合層中のコークス分布が偏る場合がある。これは、コークスと鉱石は密度と粒子径が違うため、炉頂ホッパーに貯蔵する際の堆積する位置が異なり、鉱石がコークスよりも先に排出されるためである。すなわち、炉頂ホッパーにおいては、焼結鉱等の鉱石は中央部近傍に堆積しやすく、コークスは周辺に堆積しやすい傾向がある。よって、炉頂ホッパーからの切り出しの際には、ファンネルフローにより、排出口の直上の焼結鉱から優先的に排出され、周辺部のコークスは遅れて排出されるのである。   In the method in which coke is mixed and charged into ore, the coke distribution in the mixed layer may be uneven in the furnace radial direction. This is because the coke and the ore have different densities and particle diameters, and therefore, the positions where they are deposited when stored in the furnace hopper are different, and the ore is discharged before the coke. That is, in the furnace top hopper, ores such as sintered ore tend to accumulate near the center and coke tends to accumulate in the periphery. Therefore, when cutting from the furnace top hopper, the sinter just above the discharge port is preferentially discharged by the funnel flow, and the coke in the peripheral portion is discharged with a delay.

そのため、鉱石にコークスを混合して装入する方法では、混合層中のコークス分布を調整する必要がある。   Therefore, in the method of mixing and charging coke into ore, it is necessary to adjust the coke distribution in the mixed layer.

具体的な調整方法としては、鉱石にコークスを混合した1バッチ目の装入途中で一度ホッパーの排出口を閉じ、2バッチ目の鉱石をホッパーに投入して、再度排出口を開けて装入を再開することにより、2バッチ目の初期にコークスを排出させる方法が知られている(特許文献1)。   As a specific adjustment method, the outlet of the hopper is closed once during the charging of the first batch in which coke is mixed with the ore, the ore of the second batch is charged into the hopper, and the discharging outlet is opened again to charge the ore. A method of discharging coke at the beginning of the second batch by restarting the coke is known (Patent Document 1).

鉱石とコークスとの混合原料をまず順傾動で装入し、途中で折り返して逆傾動で装入することにより、1バッチ分の混合原料を装入し、混合層内のコークス分布を炉径方向に均一にする方法も知られている(特許文献2)。   First, a mixed raw material of ore and coke is charged in a forward tilt, then turned back halfway and charged in a reverse tilt to load a batch of mixed raw material, and the coke distribution in the mixed layer is measured in the furnace radial direction. There is also known a method for making the uniformity (Patent Document 2).

混合原料を2バッチに分割し、2バッチ目のコークス混合量を1バッチ目よりも多くする方法も知られている(特許文献3)。
混合原料を2バッチに分割した上で、混合原料へのコークス混合量を60〜75質量%と非常に多くし、2バッチ目を炉壁側に装入する方法も知られている(特許文献4)。
混合原料を2バッチに分割した上で、1バッチ目を炉中心側に、2バッチ目を炉壁側に、逆傾動で装入する方法も知られている(特許文献5)。
There is also known a method in which a mixed raw material is divided into two batches and a coke mixing amount of the second batch is made larger than that of the first batch (Patent Document 3).
There is also known a method in which a mixed raw material is divided into two batches, a coke mixing amount to the mixed raw material is extremely increased to 60 to 75% by mass, and the second batch is charged into a furnace wall side (Patent Document) 4).
There is also known a method in which a mixed raw material is divided into two batches, and the first batch is charged to the center of the furnace and the second batch is charged to the furnace wall by reverse tilting (Patent Document 5).

特許第6102497号Patent No. 6102497 特開2015−134941号公報JP-A-2013-134941 特許第4114626号Patent No. 4114626 特許第5776866号Patent No. 5776866 国際公開2017/073053号明細書WO 2017/073053

しかしながら、特許文献1〜5に記載の技術には、以下のような問題があった。
特許文献1に記載の技術は、装入途中でホッパーの排出口の開閉が必要となる。このような機械的な動作を伴う装入では、機械的の構造上の精度の限界があり、正確な装入が難しいという問題があった。また、機械的な故障が起こりやすい問題もあった。
However, the techniques described in Patent Documents 1 to 5 have the following problems.
The technique described in Patent Document 1 requires opening and closing of a discharge port of a hopper during charging. There is a problem in such charging with mechanical operation that there is a limit in mechanical structural accuracy and that accurate charging is difficult. There is also a problem that a mechanical failure is likely to occur.

特許文献2に記載の技術では、コークスの分布は調整できるが、順傾動と逆傾動の組み合わせが必須であるため、逆傾動で装入した鉱石の粒度分布の調整が難しいという問題があった。   In the technique described in Patent Document 2, although the coke distribution can be adjusted, there is a problem that it is difficult to adjust the particle size distribution of the ore charged by the reverse tilt since the combination of the forward tilt and the reverse tilt is essential.

特許文献3に記載の技術では、ある程度のコークスの偏析を防止できるものの、2バッチ目のコークス混合量を1バッチ目よりも多くするのみでは、径方向のコークス分布の厳密な調整は困難であった。   The technique described in Patent Document 3 can prevent coke segregation to some extent, but it is difficult to precisely adjust the coke distribution in the radial direction only by increasing the coke mixing amount of the second batch from that of the first batch. Was.

特許文献4に記載の技術では、1チャージのコークス量の60%以上を混合層に使用するため、コークス層の形成が困難であるという問題があった。   The technique described in Patent Document 4 has a problem that it is difficult to form a coke layer because 60% or more of the coke amount per charge is used for the mixed layer.

特許文献5に記載の技術では、ある程度のコークスの偏析を防止できるものの、1バッチ目と2バッチ目の径方向のコークス分布が重なって2つのピークを有する偏った分布になるため、径方向のコークス分布の厳密な調整は困難であった。また、混合原料を逆傾動で装入するため、鉱石の粒度分布の調整が難しいという問題もあった。   According to the technology described in Patent Document 5, although coke segregation to some extent can be prevented, coke distributions in the first batch and the second batch in the radial direction overlap to form a biased distribution having two peaks. Exact adjustment of coke distribution was difficult. Further, since the mixed raw material is charged in reverse tilt, there is a problem that it is difficult to adjust the particle size distribution of the ore.

本発明は上記課題に鑑みてなされたものであり、鉱石にコークスを混合して装入する場合に、混合層内のコークスの径方向分布を、従来よりも均一にできる、ベルレス高炉の装入方法の提供を目的とする。   The present invention has been made in view of the above problems, and when coke is mixed with ore and charged, the radial distribution of coke in the mixed layer can be made more uniform than before, and the charging of a bellless blast furnace is performed. The purpose is to provide a method.

本発明のベルレス高炉の装入方法は、鉱石とコークスの混合原料を炉頂ホッパーに一時貯留し、炉頂ホッパーから旋回シュートにより炉内に装入して混合層を形成するベルレス高炉の装入方法において、前記コークスは、混合原料の無次元排出時間が0.5のときの積算無次元装入量が0.1〜0.45であり、中心コークス層を形成する場合は、炉口無次元半径0.7〜1.0の位置から、前記中心コークスの一部または全部と重なる位置まで、順傾動で前記混合原料を堆積させ、中心コークス層を形成しない場合は、炉口無次元半径0.7〜1.0の位置から、炉口無次元半径0〜0.2の位置まで順傾動で前記混合原料を堆積させる第1の混合原料装入工程と、炉口無次元半径0.8〜1.0の位置から炉口無次元半径0.3〜0.5の位置まで順傾動で前記混合原料を堆積させる第2の混合原料装入工程と、を実施することを特徴とする。
本発明によれば、混合原料を、炉壁近傍から炉中心近傍まで順傾動で装入する工程と、炉壁近傍から炉内の中間部まで順傾動で装入する2つのバッチに分けて装入を行う。そのため、1バッチ目と2バッチ目のコークス分布が極端な2つのピークとなることはなく、径方向に均一にコークスを装入できる。また、2つのバッチはいずれも順傾動であるため、鉱石の粒度分布の調整も容易である。
The method for charging a bellless blast furnace according to the present invention comprises charging a bellless blast furnace in which a mixed raw material of ore and coke is temporarily stored in a furnace top hopper and charged into the furnace from a furnace hopper with a swirling chute to form a mixed layer. In the method, when the dimensionless discharge time of the mixed raw material is 0.5, the integrated dimensionless charge is 0.1 to 0.45. When the mixed raw material is deposited by forward tilting from a position having a dimensional radius of 0.7 to 1.0 to a position overlapping part or all of the central coke, and a central coke layer is not formed, a furnace port non-dimensional radius is used. A first mixed material charging step of depositing the mixed material in a forward tilt from a position of 0.7 to 1.0 to a position of a non-dimensional radius of the furnace port of 0 to 0.2; From the position of 8 to 1.0, the furnace opening dimensionless radius 0.3 to 0.5 A second mixed feed charging step of depositing the mixed material in order tilted to a position, which comprises carrying out the.
According to the present invention, the mixed raw material is charged into two batches in which the mixed raw material is charged with a forward tilt from the vicinity of the furnace wall to the vicinity of the furnace center, and the mixed raw material is charged with a forward tilt from the vicinity of the furnace wall to an intermediate portion in the furnace. To enter. Therefore, the coke distribution of the first batch and the second batch does not have two extreme peaks, and coke can be charged uniformly in the radial direction. Further, since both of the two batches are tilted forward, it is easy to adjust the particle size distribution of the ore.

前記コークスは小塊コークスであることが好ましい。
本発明では、混合原料に小塊コークスを混合するので、無次元排出時間が0.5のときの積算無次元装入量が0.1〜0.45という条件を満たすのが容易である。
本発明では、第2の混合原料装入工程の後で、前記混合層の上にコークスを混合させない鉱石を装入して鉱石層を形成する、鉱石装入工程を実施することが好ましい。
また、本発明では、第2の混合原料装入工程の後で、前記混合原料よりも低い混合比でコークスを混合させた鉱石を前記混合層の上に装入して鉱石層を形成する、鉱石装入工程を実施することが好ましい。
本発明によれば、混合層の上に、コークスを混合しない、または、コークスの混合比の少ない鉱石層を形成するため、混合層内のコークスがコークス層のコークスと接触し難くなる。そのため、コークス混合による、鉱石層の通気性確保や反応性向上という効果を、より高めることができ、さらに安定した高還元率の操業が実現できる。
Preferably, the coke is small lump coke.
In the present invention, since the small coke is mixed with the mixed raw material, it is easy to satisfy the condition that the integrated dimensionless charging amount when the dimensionless discharge time is 0.5 is 0.1 to 0.45.
In the present invention, after the second mixed raw material charging step, it is preferable to perform an ore charging step of charging an ore that does not mix coke on the mixed layer to form an ore layer.
In the present invention, after the second mixed raw material charging step, the ore obtained by mixing coke at a lower mixing ratio than the mixed raw material is charged on the mixed layer to form an ore layer. Preferably, an ore charging step is performed.
According to the present invention, the coke is not mixed or the ore layer having a low coke mixing ratio is formed on the mixed layer, so that the coke in the mixed layer hardly comes into contact with the coke in the coke layer. Therefore, the effect of ensuring the air permeability of the ore layer and improving the reactivity by coke mixing can be further enhanced, and more stable operation with a high reduction rate can be realized.

本実施形態に係るベルレス高炉の装入方法の概要を示すフロー図。The flow figure showing the outline of the charging method of the bell-less blast furnace concerning this embodiment. 本実施形態に係るベルレス高炉の装入方法で、中心コークスを装入しない場合に装入された混合原料を示す断面図であって、(A)はO1バッチ装入後、(B)はO2バッチ装入後、(C)はO3バッチ装入後を示す図。It is sectional drawing which shows the mixed raw material charged when central coke is not charged by the charging method of the bellless blast furnace which concerns on this embodiment, (A) is O1 batch charging, (B) is O2. (C) is a diagram showing the state after charging the O3 batch after charging the batch. 実施例1において、装入する混合原料の無次元排出時間とコークスの積算無次元装入量の関係を示す図。FIG. 4 is a diagram illustrating a relationship between a dimensionless discharge time of a mixed raw material charged and an integrated dimensionless charged amount of coke in the first embodiment. 実施例1において、O1バッチとO2バッチの層厚比を示す図。FIG. 4 is a diagram showing a layer thickness ratio between an O1 batch and an O2 batch in Example 1. 実施例1において、炉口無次元半径と、混合層のコークスの無次元堆積量との関係を示す図であって、(A)は予測値、(B)は実験値。In Example 1, it is a figure which shows the relationship between the non-dimensional radius of a furnace port and the dimensionless amount of coke deposition of a mixed layer, (A) is a predicted value, (B) is an experimental value. 実施例で用いた模型実験装置を示す図。The figure which shows the model experiment apparatus used in the Example. 実施例2において、装入する混合原料の無次元排出時間と、混合層中のコークスの積算無次元装入量との関係を示す図。In Example 2, the figure which shows the relationship between the dimensionless discharge time of the mixed raw material charged and the integrated dimensionless charging amount of coke in the mixed layer. 実施例2において、O1バッチとO2バッチの層厚比を示す図。FIG. 9 is a diagram showing a layer thickness ratio between an O1 batch and an O2 batch in Example 2. 実施例2において、炉口無次元半径と、混合層中のコークスの無次元堆積量との関係を示す図であって、(A)は予測値、(B)は実験値を示す。In Example 2, it is a figure which shows the relationship between the non-dimensional radius of a furnace port and the dimensionless amount of coke deposited in a mixed layer, (A) shows a predicted value and (B) shows an experimental value. 比較例において、炉口無次元半径と、混合層中のコークスの無次元堆積量との関係を示す図。The figure which shows the relationship between the non-dimensional radius of a furnace opening and the non-dimensional deposition amount of coke in a mixed layer in a comparative example.

以下、図面を参照して本発明に好適な実施形態を詳細に説明する。
まず、図1を参照して、本実施形態に係るベルレス高炉の装入方法の概要を説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
First, an overview of a method for charging a bellless blast furnace according to the present embodiment will be described with reference to FIG.

まず、炉口無次元半径0.7〜1.0の位置から、中心コークス層を形成する場合は、中心コークス層の少なくとも一部と重なる位置まで順傾動で混合原料を堆積させる。中心コークス層を形成しない場合は、炉口無次元半径0.7〜1.0の位置から、炉口無次元半径0〜0.2の位置まで順傾動で混合原料を堆積させる(図1のS1、第1の混合原料装入工程)。   First, when forming a central coke layer from the position of the furnace port dimensionless radius of 0.7 to 1.0, the mixed raw material is deposited by forward tilting to a position overlapping at least a part of the central coke layer. When the central coke layer is not formed, the mixed raw material is deposited by forward tilting from the position of the non-dimensional radius of the furnace port 0.7 to 1.0 to the position of the non-dimensional radius of the furnace port 0 to 0.2 (see FIG. 1). S1, first mixed raw material charging step).

次に、炉口無次元半径0.8〜1.0の位置から、炉口無次元半径0.3〜0.5の位置まで、順傾動で混合原料を堆積させる(図1のS2、第2の混合原料装入工程)。   Next, the mixed raw material is deposited by forward tilting from the position of the furnace opening dimensionless radius 0.8 to 1.0 to the position of the furnace opening dimensionless radius 0.3 to 0.5 (S2 in FIG. 2 mixed material charging step).

さらに、必要に応じて、S2の後で、混合層の上に鉱石を装入して鉱石層を形成する(図1のS3、鉱石装入工程)。
以上が本実施形態に係るベルレス高炉の装入方法の概要である。
Further, if necessary, after S2, ore is charged on the mixed layer to form an ore layer (S3 in FIG. 1, ore charging step).
The above is the outline of the method for charging the bellless blast furnace according to the present embodiment.

次に、本実施形態に係るベルレス高炉の装入方法の詳細を説明する。
<対象高炉>
本実施形態に係る装入方法は、ベルレス高炉であれば、対象とする高炉の構造や寸法は特に限定しない。ベルレス高炉とは、ベルレス装入装置を有する高炉をいう。
本実施形態に係る装入方法は、混合原料を炉頂ホッパーに一時貯留し、炉頂ホッパーから旋回シュートにより炉内に装入して混合層を形成する場合に限定される。混合原料を炉頂ホッパーに一時貯留しない場合、すなわち、別々のホッパーに貯蔵された鉱石とコークスとを同時切り出しにより炉内に装入する場合には、上述した炉頂ホッパー内での偏析の影響がなく、高炉内へのコークス装入のタイミングを任意に制御でき、炉径方向において混合層中のコークス分布が偏るという問題が生じないためである。
操業条件も、鉱石とコークスの混合原料を装入すること以外は特に限定しない。
Next, details of the method for charging the bellless blast furnace according to the present embodiment will be described.
<Target blast furnace>
In the charging method according to the present embodiment, the structure and dimensions of the target blast furnace are not particularly limited as long as the blast furnace is a bellless blast furnace. A bellless blast furnace refers to a blast furnace having a bellless charging device.
The charging method according to the present embodiment is limited to a case where the mixed raw material is temporarily stored in a furnace top hopper, and is charged into the furnace from the furnace top hopper by a rotating chute to form a mixed layer. When the mixed raw materials are not temporarily stored in the furnace hopper, that is, when the ore and coke stored in separate hoppers are simultaneously cut into the furnace and charged into the furnace, the influence of the segregation in the furnace hopper described above. This is because the timing of charging coke into the blast furnace can be arbitrarily controlled, and the problem of uneven distribution of coke in the mixed layer in the furnace radial direction does not occur.
The operating conditions are not particularly limited except that a mixed raw material of ore and coke is charged.

コークスの種類は特に限定しない。通常の塊コークスを用いることができる。ただし、混合原料の無次元排出時間が0.5のときの積算無次元装入量が0.1〜0.45である必要がある。0.45を超えると、本実施形態を実施しなくてもコークスが偏析しない。0.1範囲未満だと、本実施形態の装入方法を用いても、コークスが均一に分布しない。より好ましくは、混合原料の無次元排出時間が0.5のときの積算無次元装入量が0.2〜0.4である。
このようなコークスとしては、小塊コークスが好ましい。ここでいう小塊コークスとは、コークス層を形成するコークスの篩下であり、例えば粒子径10〜40mm程度のコークスである。以下の説明では、小塊コークスを用いた例を説明する。また、鉱石とは、高炉に装入される鉄含有原料の総称であり、焼結鉱、塊鉱石、ペレット及び含炭塊成鉱、並びにそれらの混合物をいう。
1チャージのバッチ数も、鉱石とコークスの粒度も、S1〜S3に規定する要件以外は限定しない。混合比も特に限定しない。出銑比も特に限定しない。
コークス層を形成するコークスの粒度や装入条件も特に限定しない。中心コークスを装入してもよいし、装入しなくてもよい。
The type of coke is not particularly limited. Normal lump coke can be used. However, when the dimensionless discharge time of the mixed raw material is 0.5, the integrated dimensionless charge amount needs to be 0.1 to 0.45. If it exceeds 0.45, coke does not segregate even if this embodiment is not performed. If it is less than 0.1 range, coke will not be uniformly distributed even if the charging method of the present embodiment is used. More preferably, when the dimensionless discharge time of the mixed raw material is 0.5, the integrated dimensionless charge is 0.2 to 0.4.
As such coke, small lump coke is preferable. The small lump coke referred to here is a sieve under a coke forming a coke layer, and is, for example, coke having a particle diameter of about 10 to 40 mm. In the following description, an example using small coke will be described. The ore is a general term for iron-containing raw materials charged into a blast furnace, and refers to sinter, lump ore, pellets, coal-bearing agglomerates, and mixtures thereof.
The number of batches for one charge and the ore and coke particle sizes are not limited except for the requirements specified in S1 to S3. The mixing ratio is not particularly limited. The tapping ratio is not particularly limited.
The particle size and charging conditions of the coke forming the coke layer are not particularly limited. Central coke may or may not be charged.

以下の説明では、図2に示すように、炉径方向にコークス層201としてC1バッチを装入し、中心コークスを装入しないで、混合層202をO1バッチとO2バッチに分けて装入した場合を例に説明するが、炉中心に中心コークスとしてC2バッチを装入してもよい。   In the following description, as shown in FIG. 2, the C1 batch was charged as a coke layer 201 in the furnace radial direction, and the mixed layer 202 was charged into O1 batch and O2 batch without charging the central coke. Although the case will be described as an example, a C2 batch may be charged as the central coke in the center of the furnace.

<S1:第1の混合原料装入工程>
S1では、中心コークスを装入しない場合は、図2(A)に示すように、炉口無次元半径0.7〜1.0の位置から、炉口無次元半径0〜0.2の位置P1まで、混合層202を構成する混合原料の一部を、順傾動で装入する。中心コークスを装入する場合は、炉口無次元半径0.7〜1.0の位置から、中心コークスの一部または全部と重なる位置P1まで、混合層202を構成する混合原料の一部を順傾動で装入する。
ここでは、S1で装入する混合原料をO1バッチと称す。
炉口無次元半径とは、炉中心を0、炉壁を1、炉径をR、炉径方向の半径位置Pにおける炉中心からの距離をrとした場合に、位置Pをr/Rで表した値である(図2(A)(B)参照)。
<S1: First mixed raw material charging step>
In S1, when the central coke is not charged, as shown in FIG. 2A, the position of the non-dimensional radius of the furnace port is 0.7 to 1.0, and the position of the non-dimensional radius of the furnace port is 0 to 0.2. Until P1, a part of the mixed raw material forming the mixed layer 202 is charged by forward tilting. When charging the central coke, a part of the mixed raw material constituting the mixed layer 202 is transferred from the position of the furnace opening dimensionless radius 0.7 to 1.0 to the position P1 overlapping part or all of the central coke. Charge with forward tilt.
Here, the mixed raw material charged in S1 is referred to as an O1 batch.
The non-dimensional radius of the furnace port is as follows: when the furnace center is 0, the furnace wall is 1, the furnace diameter is R, and the distance from the furnace center at the radial position P in the furnace radial direction is r, the position P is r / R. These values are shown (see FIGS. 2A and 2B).

<S2:第2の混合原料装入工程>
S2では、炉口無次元半径0.8〜1.0の位置から炉口無次元半径0.3〜0.5の位置まで、混合層202を構成する混合原料のうち、S1で装入しなかった残りを順傾動で装入する(図1のS2、第2の混合原料装入工程)。
ここでは、S2で装入する混合原料をO2バッチと称す。
S2終了後の混合原料の、高炉内における装入物分布を図2(B)に示す。
<S2: second mixed raw material charging step>
In S2, from the position of the furnace port non-dimensional radius 0.8 to 1.0 to the position of the furnace port non-dimensional radius 0.3 to 0.5, the mixed material constituting the mixed layer 202 is charged in S1. The remaining material is charged by forward tilting (S2 in FIG. 1, second mixed material charging step).
Here, the mixed raw material charged in S2 is referred to as an O2 batch.
FIG. 2B shows the charge distribution of the mixed raw material in the blast furnace after the completion of S2.

S1を実施したことにより、混合層202を形成すべき領域の略全域にO1バッチが装入されている。ただし、装入の際に鉱石が小塊コークス100よりも先に排出されるため、炉中心側に小塊コークス100が偏析しており、炉壁側、すなわち炉口無次元半径0.8〜1.0の位置から炉口無次元半径0.3〜0.5の範囲にある混合層202には小塊コークス100が十分に混合されていない。S2において、O2バッチを炉壁側にのみ装入することにより、O1バッチは、炉壁側の小塊コークス含有量が少ない領域のみがO2バッチと重なる。そのため、O1バッチとO2バッチを合わせた炉壁側の混合層202中の小塊コークス量と、O1バッチのみの炉中心側の混合層202中の小塊コークス量の差が小さくなり、径方向の小塊コークス100の分布が偏ることを抑制できる。S2の装入範囲の炉中心側端部を炉口無次元半径0.3〜0.5の位置までとすべき理由については実施例において詳述する。
また、O1バッチとO2バッチはいずれも順傾動で装入するため、鉱石の粒度分布の調整も容易となる。
Due to the execution of S1, the O1 batch is charged in substantially the entire region where the mixed layer 202 is to be formed. However, since the ore is discharged before the small coke 100 at the time of charging, the small coke 100 is segregated at the furnace center side, and the furnace wall side, that is, the furnace opening dimensionless radius 0.8 to The small coke 100 is not sufficiently mixed in the mixed layer 202 within a range of the furnace port non-dimensional radius 0.3 to 0.5 from the position 1.0. In S2, by charging the O2 batch only to the furnace wall side, the O1 batch overlaps with the O2 batch only in the region where the small coke content is small on the furnace wall side. Therefore, the difference between the small coke amount in the mixed layer 202 on the furnace wall side of the O1 batch and the O2 batch and the small coke amount in the mixed layer 202 on the furnace center side of only the O1 batch becomes small, Uneven distribution of the small coke 100 can be suppressed. The reason why the end of the furnace center side of the charging range of S2 should be set to the position of the furnace opening dimensionless radius 0.3 to 0.5 will be described in detail in Examples.
In addition, since both the O1 batch and the O2 batch are charged in a forward tilt, the particle size distribution of the ore can be easily adjusted.

O1バッチとO2バッチの層厚比は、鉱石と小塊コークス100との密度差及び粒子径差に起因する炉頂ホッパー3からの原料排出特性を考慮して、混合層202中の小塊コークス100の径方向分布が所望の程度に均一化されるよう、適宜設定すればよい。   The layer thickness ratio between the O1 batch and the O2 batch is determined based on the density difference between the ore and the small coke 100 and the material discharge characteristics from the furnace top hopper 3 due to the difference in particle diameter. What is necessary is just to set suitably so that the radial distribution of 100 may be homogenized to a desired degree.

層厚比の設定方法は特に限定しないが、以下の方法を例示できる。
まず、混合層202の層厚の絶対値の分布、ここでは図2(B)の混合層202の表面の層厚分布を設定する。操業条件として、コークス層と鉱石層の質量比(O/C)が予め決まっているため、混合層202の層厚はコークス層201の層厚との関係で定まる。
The method for setting the layer thickness ratio is not particularly limited, but the following methods can be exemplified.
First, the distribution of the absolute value of the layer thickness of the mixed layer 202, here, the layer thickness distribution on the surface of the mixed layer 202 in FIG. 2B is set. Since the mass ratio (O / C) of the coke layer and the ore layer is determined in advance as operating conditions, the layer thickness of the mixed layer 202 is determined by the relationship with the layer thickness of the coke layer 201.

次に、装入する混合原料の無次元排出時間と、混合原料中の小塊コークスの積算無次元装入量の関係を求める。混合原料の無次元排出時間と混合原料中の小塊コークスの積算無次元装入量との関係は、試験装置で求めるか、休風中のサンプリング試験または過去の操業実績から求めても良いし、例えば離散要素法(Discrete Element Method、DEM)や、「実物大模型実験に基づくベルレス装入物分布シミュレーションモデルの開発」(梶原義雅ら、鉄と鋼71巻(1985)2号p.175−182)に開示されるような排出シミュレーションモデルを用いて数値計算により求めても良い。   Next, the relationship between the dimensionless discharge time of the mixed raw material to be charged and the integrated dimensionless charged amount of small coke in the mixed raw material is determined. The relationship between the dimensionless discharge time of the mixed raw material and the integrated dimensionless charged amount of the small coke in the mixed raw material may be obtained by a test device, or may be obtained from a sampling test during a cold wind or past operation results. For example, Discrete Element Method (DEM), "Development of Bellless Charge Distribution Simulation Model Based on Full-Scale Model Experiment" (Yoshimasa Kajiwara et al., Iron and Steel Vol. 71 (1985) No. 2, p. 175-175) 182) may be obtained by numerical calculation using an emission simulation model as disclosed in 182).

混合原料の無次元排出時間とは、混合原料の排出が終了するまでに要した時間をT、混合原料の排出を開始してから経過した任意の時間をtとした場合に、経過した時間をt/Tで表したものである。   The dimensionless discharge time of the mixed raw material is defined as T, which is the time required until the discharge of the mixed raw material is completed, and t, which is an arbitrary time elapsed after the discharge of the mixed raw material is started. It is represented by t / T.

小塊コークスの積算無次元装入量とは、混合原料の排出が終了した時点での、混合原料中の小塊コークスの装入量(質量)をM、無次元排出時間t/Tにおける小塊コークスの積算装入量(質量)をmとした場合に、小塊コークスの積算装入量をm/Mで表したものである。試験装置や実炉を用いて、混合原料の無次元排出時間と混合原料中の小塊コークスの積算無次元装入量の関係を求める場合には、一定時間間隔で混合原料をサンプリングし、サンプリングされた全ての小塊コークスの質量をM、無次元排出時間t/Tに対応するある時点までにサンプリングされた積算の小塊コークスの質量をmとすればよい。
求めた混合原料の無次元排出時間と混合原料中の小塊コークスの積算無次元装入量との関係の例を図3に示す。
The integrated dimensionless charged amount of the small coke refers to the charged amount (mass) of the small coke in the mixed raw material at the time of completion of the discharge of the mixed raw material as M, and the small dimension at the dimensionless discharge time t / T. When the accumulated charge (mass) of the lump coke is m, the accumulated charge of the small lump coke is represented by m / M. When determining the relationship between the dimensionless discharge time of the mixed raw material and the integrated dimensionless charged amount of small coke in the mixed raw material using a test device or an actual furnace, the mixed raw material is sampled at regular time intervals and sampled. The mass of all the obtained small coke may be M, and the mass of the integrated small coke sampled up to a certain point corresponding to the dimensionless discharge time t / T may be m.
FIG. 3 shows an example of the relationship between the obtained dimensionless discharge time of the mixed raw material and the integrated dimensionless charged amount of the small coke in the mixed raw material.

次に、装入する混合原料の径方向の小塊コークス分布が、極力均一になるような層厚比を求める。例えば、層厚比を変えながら混合原料の径方向の小塊コークス分布を計算し、最も小塊コークス分布が均一になる層厚比を求める。なお、層厚比を変える作業には、O1バッチまたはO2バッチのそれぞれの装入範囲を変更することも含まれる。   Next, the layer thickness ratio is determined such that the small coke distribution in the radial direction of the mixed raw material to be charged is as uniform as possible. For example, the small coke distribution in the radial direction of the mixed raw material is calculated while changing the layer thickness ratio, and the layer thickness ratio at which the small coke distribution is most uniform is obtained. The operation of changing the layer thickness ratio includes changing the charging range of each of the O1 batch and the O2 batch.

層厚比の例を図4に示す。図4に示す層厚比で混合原料の径方向の小塊コークス分布を計算した結果を図5(A)に示す。図5(A)では、小塊コークス分布を、炉口無次元半径と、無次元堆積量の関係で示している。無次元堆積量とは、混合層202の径方向の各位置における混合原料の堆積量(体積)を1とした場合の、小塊コークス100の堆積量(体積)の比である。   FIG. 4 shows an example of the layer thickness ratio. FIG. 5A shows the result of calculating the small coke distribution in the radial direction of the mixed raw material at the layer thickness ratio shown in FIG. In FIG. 5A, the small coke distribution is shown by the relationship between the non-dimensional radius of the furnace port and the non-dimensional deposition amount. The dimensionless deposition amount is a ratio of the deposition amount (volume) of the small coke 100 when the deposition amount (volume) of the mixed raw material at each position in the radial direction of the mixed layer 202 is 1.

O1バッチとO2バッチの層厚比を設定することにより、O1バッチとO2バッチによる混合原料の装入量も定まる。以上の説明においては、各バッチへの小塊コークス100の配分は予め設定されているものとしたが、混合層内の小塊コークス100の径方向分布がより均一になるように、各バッチへの小塊コークス100の配分を調整しても良い。   By setting the layer thickness ratio between the O1 batch and the O2 batch, the charged amount of the mixed raw material in the O1 batch and the O2 batch is determined. In the above description, the distribution of the small coke 100 to each batch is set in advance. However, the distribution of the small coke 100 to each batch is more uniform so that the radial distribution of the small coke 100 in the mixed layer becomes more uniform. Of the small coke 100 may be adjusted.

<S3:鉱石装入工程>
S3は、混合層202の上に鉱石を装入して鉱石層203を形成する工程であり、必要に応じて実施される(図2(C)参照)。ここではS3で装入される鉱石をO3バッチと称す。
<S3: Ore charging process>
S3 is a step of charging the ore on the mixed layer 202 to form the ore layer 203, and is performed as necessary (see FIG. 2C). Here, the ore charged in S3 is referred to as an O3 batch.

O3バッチにはコークスを混合しないか、O1バッチ及びO2バッチよりも少ない混合比でコークスを混合させる。なお混合比は、小塊コークス100についてもその他のコークスについても同様に、鉱石原料の質量に対するコークスの質量の質量比として求められる。
混合層202の上に鉱石層203が形成されることにより、混合層202の直上に次チャージのコークス層201が形成されなくなるため、混合層202内の小塊コークス100がコークス層201のコークスと接触し難くなる。そのため、混合層202に小塊コークス100を混合することによる、混合層202及び鉱石層203の通気性確保や反応性向上という効果を、より高めることができ、さらに安定した高還元率の操業が実現できる。
No coke is mixed into the O3 batch, or coke is mixed at a lower mixing ratio than the O1 batch and the O2 batch. The mixing ratio is obtained as a mass ratio of the mass of coke to the mass of the ore raw material similarly for the small coke 100 and other coke.
By forming the ore layer 203 on the mixed layer 202, the coke layer 201 of the next charge is not formed immediately above the mixed layer 202, so that the small coke 100 in the mixed layer 202 is separated from the coke of the coke layer 201. It becomes difficult to contact. Therefore, by mixing the small coke 100 with the mixed layer 202, the effect of ensuring the air permeability and improving the reactivity of the mixed layer 202 and the ore layer 203 can be further enhanced, and more stable operation at a high reduction rate can be achieved. realizable.

O3バッチの層厚は特に限定しないが、0.05〜0.4(鉱石層全体を1.0としたときの相対厚さ)程度である。
O3バッチの鉱石の粒度も特に規定しないが、O1バッチおよびO2バッチの鉱石の粒度と同程度であるのが好ましい。
以上が本実施形態に係るベルレス高炉の装入方法の詳細の説明である。
The layer thickness of the O3 batch is not particularly limited, but is about 0.05 to 0.4 (relative thickness when the entire ore layer is 1.0).
Although the particle size of the ore in the O3 batch is not particularly specified, it is preferably the same as the particle size of the ore in the O1 batch and the O2 batch.
The above is the detailed description of the method for charging the bellless blast furnace according to the present embodiment.

このように、本実施形態によれば、混合原料を、炉壁近傍から炉中心近傍まで順傾動で装入する工程(S1)と、炉壁近傍から炉内の中間部まで順傾動で装入する工程(S2)で分けて装入を行う。そのため、O1バッチとO2バッチを合わせた混合層202中の、炉径方向の小塊コークス分布が極端な2つのピークとなることはなく、炉径方向に均一に小塊コークスを装入できる。また、O1バッチとO2バッチはいずれも順傾動であるため、鉱石の粒度分布の調整も容易である。   Thus, according to the present embodiment, the mixed raw material is charged in a forward tilting manner from the vicinity of the furnace wall to the vicinity of the furnace center (S1), and the mixed raw material is charged in a forward tilting manner from the vicinity of the furnace wall to an intermediate portion in the furnace. The charging is performed separately in the step (S2). Therefore, the small coke distribution in the furnace diameter direction in the mixed layer 202 in which the O1 batch and the O2 batch are combined does not have two extreme peaks, and the small coke can be charged uniformly in the furnace diameter direction. Further, since both the O1 batch and the O2 batch are tilted forward, it is easy to adjust the particle size distribution of the ore.

以下、実施例に基づき本発明を具体的に説明するが、本発明は実施例には限定されない。   Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the examples.

(実施例1)
高炉の1/3縮尺模型実験装置を用いて、本実施形態の高炉装入分布実験を行った。具体的な手順は以下の通りである。
まず、実験装置として、図6に示す模型実験装置11を用意した。
(Example 1)
A blast furnace charging distribution experiment of the present embodiment was performed using a 1/3 scale model experiment apparatus for a blast furnace. The specific procedure is as follows.
First, a model experiment apparatus 11 shown in FIG. 6 was prepared as an experiment apparatus.

模型実験装置11は、装入物装入装置、および高炉本体の上部の1/3模型であり、サージホッパー1、装入コンベア2、炉頂ホッパー3、旋回シュート4、炉体シャフト部5、および切り出し装置6を備える。   The model experiment device 11 is a charged material charging device and a 1/3 model of the upper part of the blast furnace main body, and includes a surge hopper 1, a charging conveyor 2, a furnace top hopper 3, a turning chute 4, a furnace body shaft portion 5, And a cutting-out device 6.

サージホッパー1は、装入原料であるコークスおよび鉱石を貯蔵する貯蔵庫である。
装入コンベア2は、サージホッパー1から切り出した装入原料を炉頂ホッパー3まで搬送するコンベアである。炉頂ホッパー3は、装入直前の原料を一時的に貯蔵するホッパーである。旋回シュート4は、炉頂ホッパー3から排出された原料を装入するシュートである。炉体シャフト部5は、高炉のシャフト部までを模擬した筒状の模型である。切り出し装置6は、炉体シャフト部5の下端に設けられ、装入された原料を切り出して、炉内の荷下がりを再現するための装置である。
The surge hopper 1 is a storage for storing charged coke and ore.
The charging conveyor 2 is a conveyor that conveys the charging material cut out from the surge hopper 1 to the furnace top hopper 3. The furnace top hopper 3 is a hopper for temporarily storing the raw material immediately before charging. The revolving chute 4 is a chute for charging the raw material discharged from the furnace top hopper 3. The furnace body shaft portion 5 is a cylindrical model simulating the shaft portion of the blast furnace. The cutout device 6 is provided at the lower end of the furnace body shaft portion 5 and cuts out the charged raw material to reproduce the unloading in the furnace.

次に、混合原料として、鉱石としての焼結鉱と、小塊コークス100を用意した。具体的には、平均粒径は、実炉で想定する平均粒径の約1/3とした。焼結鉱は、平均粒子径7.7mm、密度3.3g/cm3であった。小塊コークス100は、平均粒子径10.8mm、密度;1.0g/cm3であった。焼結鉱に対する小塊コークス100の粒子径比は1.40、密度比は0.3であった。 Next, sintered ore as ore and small coke 100 were prepared as mixed raw materials. Specifically, the average particle size was set to about 1/3 of the average particle size assumed in an actual furnace. The sintered ore had an average particle size of 7.7 mm and a density of 3.3 g / cm 3 . The small lump coke 100 had an average particle diameter of 10.8 mm and a density of 1.0 g / cm 3 . The particle size ratio of the small coke 100 to the sintered ore was 1.40, and the density ratio was 0.3.

次に、原料をサージホッパー1から切り出して装入コンベア2を介して炉頂ホッパー3に貯蔵し、旋回シュート4に投入した時点で原料を採取して小塊コークス100の割合を測定し、混合原料の無次元排出時間と、小塊コークス100の積算無次元装入量の関係を求めた。結果を図3に示す。   Next, the raw material is cut out from the surge hopper 1, stored in the furnace top hopper 3 via the charging conveyor 2, and when the raw material is put into the revolving chute 4, the raw material is sampled, the ratio of the small coke 100 is measured, and The relationship between the dimensionless discharge time of the raw material and the integrated dimensionless charge of the small coke 100 was determined. The results are shown in FIG.

次に、図3から、装入する混合原料中の小塊コークス100の径方向分布が均一になるような、O1バッチとO2バッチとの層厚比を求めた。具体的には層厚比を変えながら混合原料中の小塊コークス100の径方向分布を計算し、最も分布が均一になる層厚比を計算した。層厚比の計算結果を図4に示す。図4に示す層厚比で混合原料を装入する場合の、混合原料中の小塊コークス100の径方向分布の予測値を図5(A)に示す。   Next, from FIG. 3, the layer thickness ratio between the O1 batch and the O2 batch was determined so that the radial distribution of the small coke 100 in the mixed raw material to be charged was uniform. Specifically, the radial distribution of the small coke 100 in the mixed raw material was calculated while changing the layer thickness ratio, and the layer thickness ratio at which the distribution became the most uniform was calculated. FIG. 4 shows the calculation results of the layer thickness ratio. FIG. 5A shows a predicted value of the radial distribution of the small coke 100 in the mixed raw material when the mixed raw material is charged at the layer thickness ratio shown in FIG.

次に、混合原料を、2つのバッチに分けて、O1バッチ(焼結鉱4800kg、小塊コークス104kg)、O2バッチ(焼結鉱2600kg、小塊コークス56kg)の順に旋回シュート4により、順傾動で装入して混合層202を形成した。
装入質量は、実炉で想定される質量の約1/33=約1/27とした。
O1バッチを炉口無次元半径0.05〜0.95の範囲に順傾動で堆積させ、O2バッチを炉口無次元半径0.4〜1.0の範囲に順傾動で堆積させた。
装入後の原料を、円周方向の幅20cm、径方向に15cm間隔でサンプリングし、混合原料中の小塊コークス100の径方向分布を実測した。
結果を図5(B)に示す。
Next, the mixed raw material was divided into two batches, and the O1 batch (sinter 4800 kg, small coke 104 kg) and the O2 batch (sinter 2600 kg, small coke 56 kg) were sequentially tilted by the turning chute 4 in this order. To form a mixed layer 202.
The charged mass was set to about 1/3 3 = about 1/27 of the mass assumed in the actual furnace.
The O1 batch was deposited by forward tilting in the range of 0.05 to 0.95 in the furnace opening non-dimensional radius, and the O2 batch was deposited by forward tilting in the range of the non-dimensional radius of the furnace opening of 0.4 to 1.0.
The charged raw material was sampled at a width of 20 cm in the circumferential direction and at 15 cm intervals in the radial direction, and the radial distribution of the small coke 100 in the mixed raw material was actually measured.
The results are shown in FIG.

図5(B)に示すように、図5(A)に示す予測値と同様の結果が得られ、半径方向に均一に小塊コークス100を配置することができた。そのため、本実施形態に係るベルレス高炉の装入方法を用いれば、半径方向に均一に小塊コークス100を配置できることが分かった。実施例1においては、O2バッチの炉中心側端部を炉口無次元半径0.4の位置までとしたが、ベルレス高炉の装入方法において通常調整する範囲(炉口無次元半径で−0.1〜0.1)の変更であれば、同様の効果を得られる。すなわち、O2バッチの炉中心側端部は炉口無次元半径0.3〜0.5の範囲であればよい。   As shown in FIG. 5B, a result similar to the predicted value shown in FIG. 5A was obtained, and the small coke 100 could be uniformly arranged in the radial direction. Therefore, it was found that the small coke 100 can be uniformly arranged in the radial direction by using the bellless blast furnace charging method according to the present embodiment. In Example 1, the furnace center side end of the O2 batch was set to the position of the non-dimensional radius of the furnace port of 0.4. However, the range normally adjusted in the charging method of the bellless blast furnace (−0 in the non-dimensional radius of the furnace port). .1 to 0.1), the same effect can be obtained. That is, the furnace center side end portion of the O2 batch may be in the range of 0.3 to 0.5 of the furnace opening dimensionless radius.

(実施例2)
実施例1において、小塊コークス100の平均粒子径を、より小さく変更し、実施例1と同じ高炉の1/3縮尺模型実験装置を用いて、本実施形態の高炉装入分布実験を行った。
(Example 2)
In Example 1, the average particle diameter of the small lump coke 100 was changed to be smaller, and the blast furnace charging distribution experiment of the present embodiment was performed using the same 1/3 scale model experiment apparatus of the blast furnace as in Example 1. .

まず、混合原料として、鉱石としての焼結鉱と、小塊コークス100を用意した。焼結鉱は、平均粒子径7.7mm、密度3.3g/cm3であった。小塊コークス100は、平均粒子径9.1mm、密度;1.0g/cm3であった。焼結鉱に対する小塊コークス100の粒子径比は1.18、密度比は0.3であった。 First, a sintered ore as an ore and a small coke 100 were prepared as mixed raw materials. The sintered ore had an average particle size of 7.7 mm and a density of 3.3 g / cm 3 . The small lump coke 100 had an average particle diameter of 9.1 mm and a density of 1.0 g / cm 3 . The particle size ratio of the small coke 100 to the sintered ore was 1.18, and the density ratio was 0.3.

この混合原料を、実施例1と同様に、まず旋回シュート4に投入した時点で原料を採取して小塊コークス100の割合を測定し、無次元排出時間と、小塊コークス100の積算無次元装入量の関係を求めた。結果を図7に示す。図7に示すように、実施例2は、無次元排出時間0.5で積算無次元装入量が0.4であった。図3に示すように、実施例1は、無次元排出時間0.5で積算無次元装入量が0.2であり、実施例1と比べて平均粒子径の小さい小塊コークス100を用いる実施例2においては、小塊コークス100の偏析が比較的小さく早く排出されることが分かる。   As in Example 1, the mixed raw material was first introduced into the revolving chute 4, the raw material was collected and the proportion of the small coke 100 was measured. The relationship between the charging amounts was determined. FIG. 7 shows the results. As shown in FIG. 7, in Example 2, the dimensionless discharge time was 0.5 and the integrated dimensionless charge was 0.4. As shown in FIG. 3, Example 1 uses small coke 100 having a dimensionless discharge time of 0.5, an integrated dimensionless charge of 0.2, and a smaller average particle diameter than that of Example 1. In Example 2, it can be seen that segregation of the small lump coke 100 is relatively small and is discharged quickly.

図7を基に、装入する混合原料中の小塊コークス100の径方向分布が均一になるような層厚比を実施例1と同様に求めた。層厚比の計算結果を図8に示す。図8に示す層厚比で混合原料を装入する場合の、混合原料中の小塊コークス100の径方向分布の予測値を図9(A)に示す。   Based on FIG. 7, the layer thickness ratio such that the radial distribution of the small coke 100 in the mixed raw material to be charged becomes uniform was determined in the same manner as in Example 1. FIG. 8 shows the calculation result of the layer thickness ratio. FIG. 9A shows a predicted value of the radial distribution of the small coke 100 in the mixed raw material when the mixed raw material is charged at the layer thickness ratio shown in FIG.

次に、混合原料を、2つのバッチに分けて、O1バッチ(焼結鉱3600kg、小塊コークス78kg)、O2バッチ(焼結鉱3800kg、小塊コークス82kg)の順に、旋回シュート4により、順傾動で装入した。
O1バッチを炉口無次元半径0.05〜1.0の範囲に順傾動で堆積させ、O2バッチを炉口無次元半径0.4〜1.0の範囲に順傾動で堆積させた。
装入後の原料を、円周方向の幅20cm、径方向に15cm間隔でサンプリングし、混合原料の径方向の小塊コークス分布を実測した。結果を図9(B)に示す。
Next, the mixed raw material is divided into two batches, and the O1 batch (3600 kg of sintered ore, 78 kg of small lump coke) and the O2 batch (3800 kg of sintered ore, 82 kg of small lump coke) are sequentially turned by the rotating chute 4 in order. It was charged by tilting.
The O1 batch was deposited with a forward tilt in the range of the furnace port non-dimensional radius 0.05 to 1.0, and the O2 batch was deposited with the forward tilt in the range of the furnace port non-dimensional radius 0.4 to 1.0.
The charged raw material was sampled at intervals of 15 cm in the circumferential direction with a width of 20 cm in the circumferential direction, and the small coke distribution in the radial direction of the mixed raw material was actually measured. The results are shown in FIG.

図9(B)に示すように、実施例2でも、半径方向に均一に小塊コークス100を配置することができた。そのため、本実施形態に係るベルレス高炉の装入方法は、混合装入する小塊コークス100の粒子径によらず、半径方向に均一に小塊コークス100を配置できることが分かった。実施例2においては、O2バッチの炉中心側端部を炉口無次元半径0.4の位置までとしたが、ベルレス高炉の装入方法において通常調整する範囲(炉口無次元半径で−0.1〜0.1)の変更であれば、同様の効果を得られる。すなわち、O2バッチの炉中心側端部は炉口無次元半径0.3〜0.5の範囲であればよい。   As shown in FIG. 9B, also in Example 2, the small coke 100 could be uniformly arranged in the radial direction. Therefore, it was found that the charging method of the bellless blast furnace according to the present embodiment can uniformly arrange the small coke 100 in the radial direction regardless of the particle diameter of the small coke 100 to be mixed and charged. In Example 2, the furnace center side end of the O2 batch was set to the position of the non-dimensional radius of the furnace port of 0.4. .1 to 0.1), the same effect can be obtained. That is, the furnace center end of the O2 batch may be in the range of 0.3 to 0.5 in the non-dimensional radius of the furnace port.

(比較例)
実施例1において、特許文献5に記載の方法に従い、O1バッチを炉口無次元半径0〜0.8の範囲に逆傾動で装入し、O2バッチを炉口無次元半径0.6〜1.0の範囲に逆傾動で装入したこと以外は、実施例1と同じ条件で装入を行った。混合原料の径方向の小塊コークス分布を実測した結果を図10に示す。
図10に示すように、実施例1および実施例2と比べると、無次元半径0.3付近と0.8付近に大きなピークが現れていた。そのため、半径方向に均一に小塊コークス100が配置されていないことが分かった。
(Comparative example)
In Example 1, according to the method described in Patent Document 5, the O1 batch was charged in the range of 0 to 0.8 in the furnace port non-dimensional radius by reverse tilting, and the O2 batch was 0.6 to 1 in the furnace port non-dimensional radius. The charging was performed under the same conditions as in Example 1 except that the charging was performed in the range of 0.0 by reverse tilting. FIG. 10 shows the measurement results of the small coke distribution in the radial direction of the mixed raw material.
As shown in FIG. 10, as compared with Example 1 and Example 2, large peaks appeared near the dimensionless radius 0.3 and around 0.8. Therefore, it turned out that the small lump coke 100 is not arranged uniformly in the radial direction.

1…サージホッパー、2…装入コンベア、3…炉頂ホッパー、4…旋回シュート、5…炉体シャフト部、6…切り出し装置、100…小塊コークス。   DESCRIPTION OF SYMBOLS 1 ... Surge hopper, 2 ... Loading conveyor, 3 ... Furnace top hopper, 4 ... Revolving chute, 5 ... Furnace shaft part, 6 ... Cutting device, 100 ... Small coke.

Claims (4)

鉱石とコークスの混合原料を炉頂ホッパーに一時貯留し、炉頂ホッパーから旋回シュートにより炉内に装入して混合層を形成するベルレス高炉の装入方法において、
前記コークスは、混合原料の無次元排出時間が0.5のときの積算無次元装入量が0.1〜0.45であり、
中心コークス層を形成する場合は、炉口無次元半径0.7〜1.0の位置から、前記中心コークス層の一部または全部と重なる位置まで、順傾動で前記混合原料を堆積させ、
中心コークス層を形成しない場合は、炉口無次元半径0.7〜1.0の位置から、炉口無次元半径0〜0.2の位置まで順傾動で前記混合原料を堆積させる第1の混合原料装入工程と、
炉口無次元半径0.8〜1.0の位置から炉口無次元半径0.3〜0.5の位置まで順傾動で前記混合原料を堆積させる第2の混合原料装入工程と、
を実施することを特徴とする、ベルレス高炉の装入方法。
In a method of charging a bellless blast furnace in which a mixed raw material of ore and coke is temporarily stored in a furnace top hopper and charged into the furnace with a swirling chute from the furnace hopper to form a mixed layer,
The coke has an integrated dimensionless charge of 0.1 to 0.45 when the dimensionless discharge time of the mixed raw material is 0.5,
When forming the central coke layer, from the position of the furnace port non-dimensional radius 0.7 to 1.0, to the position overlapping with part or all of the central coke layer, the mixed raw material is deposited by forward tilting,
When the central coke layer is not formed, the first mixed material is deposited by forward tilting from the position of the non-dimensional radius of the furnace port 0.7 to 1.0 to the position of the non-dimensional radius of the furnace port 0 to 0.2. Mixed raw material charging process,
A second mixed raw material charging step of depositing the mixed raw material in a forward tilt from a position of the furnace opening dimensionless radius 0.8 to 1.0 to a position of the furnace opening dimensionless radius 0.3 to 0.5,
A method for charging a bellless blast furnace.
前記コークスは小塊コークスであることを特徴とする請求項1記載のベルレス高炉の装入方法。   The method for charging a bellless blast furnace according to claim 1, wherein the coke is small lump coke. 第2の混合原料装入工程の後で、コークスを混合させない鉱石を前記混合層の上に装入して鉱石層を形成する、鉱石装入工程を実施することを特徴とする、請求項1または2に記載のベルレス高炉の装入方法。   The ore charging step, wherein an ore in which coke is not mixed is charged on the mixed layer to form an ore layer after the second mixed raw material charging step. Or the method of charging a bellless blast furnace according to 2. 第2の混合原料装入工程の後で、前記混合原料よりも低い混合比でコークスを混合させた鉱石を前記混合層の上に装入して鉱石層を形成する、鉱石装入工程を実施することを特徴とする、請求項1または2に記載のベルレス高炉の装入方法。   After the second mixed raw material charging step, an ore in which coke is mixed at a lower mixing ratio than the mixed raw material is charged on the mixed layer to form an ore layer. The method for charging a bellless blast furnace according to claim 1, wherein the method is performed.
JP2018138137A 2018-07-24 2018-07-24 How to charge the bellless blast furnace Active JP7073962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018138137A JP7073962B2 (en) 2018-07-24 2018-07-24 How to charge the bellless blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018138137A JP7073962B2 (en) 2018-07-24 2018-07-24 How to charge the bellless blast furnace

Publications (2)

Publication Number Publication Date
JP2020015933A true JP2020015933A (en) 2020-01-30
JP7073962B2 JP7073962B2 (en) 2022-05-24

Family

ID=69581322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018138137A Active JP7073962B2 (en) 2018-07-24 2018-07-24 How to charge the bellless blast furnace

Country Status (1)

Country Link
JP (1) JP7073962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022083503A (en) * 2020-11-25 2022-06-06 Jfeスチール株式会社 Method for charging raw material into blast furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112032A (en) * 2010-11-02 2012-06-14 Jfe Steel Corp Method for operating blast furnace
JP2014224293A (en) * 2013-05-16 2014-12-04 新日鐵住金株式会社 Method for charging raw material into bell-less blast furnace
JP2015134941A (en) * 2014-01-16 2015-07-27 新日鐵住金株式会社 Method for charging raw material in bell-less blast furnace
WO2016125487A1 (en) * 2015-02-03 2016-08-11 Jfeスチール株式会社 Method for introducing feed into blast furnace
WO2016157794A1 (en) * 2015-03-30 2016-10-06 Jfeスチール株式会社 Method for charging feedstock into blast furnace
WO2017073053A1 (en) * 2015-10-28 2017-05-04 Jfeスチール株式会社 Method for charging feedstock in blast furnace
JP2017128794A (en) * 2016-01-20 2017-07-27 Jfeスチール株式会社 Method for inputting raw material to blast furnace
JP2018070954A (en) * 2016-10-29 2018-05-10 Jfeスチール株式会社 Method for loading raw materials into blast furnace

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112032A (en) * 2010-11-02 2012-06-14 Jfe Steel Corp Method for operating blast furnace
JP2014224293A (en) * 2013-05-16 2014-12-04 新日鐵住金株式会社 Method for charging raw material into bell-less blast furnace
JP2015134941A (en) * 2014-01-16 2015-07-27 新日鐵住金株式会社 Method for charging raw material in bell-less blast furnace
WO2016125487A1 (en) * 2015-02-03 2016-08-11 Jfeスチール株式会社 Method for introducing feed into blast furnace
WO2016157794A1 (en) * 2015-03-30 2016-10-06 Jfeスチール株式会社 Method for charging feedstock into blast furnace
WO2017073053A1 (en) * 2015-10-28 2017-05-04 Jfeスチール株式会社 Method for charging feedstock in blast furnace
JP2017128794A (en) * 2016-01-20 2017-07-27 Jfeスチール株式会社 Method for inputting raw material to blast furnace
JP2018070954A (en) * 2016-10-29 2018-05-10 Jfeスチール株式会社 Method for loading raw materials into blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022083503A (en) * 2020-11-25 2022-06-06 Jfeスチール株式会社 Method for charging raw material into blast furnace
JP7372600B2 (en) 2020-11-25 2023-11-01 Jfeスチール株式会社 Blast furnace raw material charging method

Also Published As

Publication number Publication date
JP7073962B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
JP2820478B2 (en) Feeding method for bellless blast furnace
TWI239355B (en) Method for charging material into blast furnace with distributing chute instead of bells
JP3948352B2 (en) Blast furnace operation method and bellless charging device
JP2020015933A (en) Bell-less blast furnace charge method
JP6260288B2 (en) Raw material charging method for bell-less blast furnace
JP6405877B2 (en) Raw material charging method for bell-less blast furnace
EP2851434B1 (en) Method for loading raw material into blast furnace
JP5481891B2 (en) Raw material charging method for bell-less blast furnace
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
RU2742997C1 (en) Raw materials into a blast furnace loading method
JP2014214331A (en) Method of charging raw material into blast furnace
JP4608906B2 (en) Raw material charging method for bell-less blast furnace
JP6769507B2 (en) How to charge raw materials for blast furnace
JP2010150643A (en) Method for charging raw material to blast furnace
JP4680344B2 (en) Raw material charging method to blast furnace
JP4139578B2 (en) Raw material charging method to blast furnace
JPH02305911A (en) Bell-less type raw material charging method for vertical furnace
JP6558519B1 (en) Raw material charging method for blast furnace
JP4617689B2 (en) Raw material charging method in a blast furnace equipped with a bellless raw material charging device
JPH1088208A (en) Method for charging charged material into bell-less type blast furnace
JPH0421724B2 (en)
JPH05179320A (en) Raw material charging method for bell-less blast furnace
JP5359670B2 (en) Raw material charging method for bell-type blast furnace
JPS62260009A (en) Charging method for pellet-compounded raw material in bell-less type blast furnace
JP2008095206A (en) Method for charging raw material into blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R151 Written notification of patent or utility model registration

Ref document number: 7073962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151