WO2016157794A1 - Method for charging feedstock into blast furnace - Google Patents

Method for charging feedstock into blast furnace Download PDF

Info

Publication number
WO2016157794A1
WO2016157794A1 PCT/JP2016/001555 JP2016001555W WO2016157794A1 WO 2016157794 A1 WO2016157794 A1 WO 2016157794A1 JP 2016001555 W JP2016001555 W JP 2016001555W WO 2016157794 A1 WO2016157794 A1 WO 2016157794A1
Authority
WO
WIPO (PCT)
Prior art keywords
coke
raw material
blast furnace
charging
mixed
Prior art date
Application number
PCT/JP2016/001555
Other languages
French (fr)
Japanese (ja)
Inventor
寿幸 廣澤
和平 市川
大山 伸幸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016535260A priority Critical patent/JP6041073B1/en
Priority to CN201680017640.0A priority patent/CN107406896B/en
Priority to KR1020177029833A priority patent/KR102058834B1/en
Publication of WO2016157794A1 publication Critical patent/WO2016157794A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace

Definitions

  • the present invention relates to a raw material charging method into a blast furnace, in which the raw material is charged into the blast furnace through a turning chute.
  • a blast furnace is generally charged with ore raw materials such as sintered ore, pellets, and massive ore and coke stacked in the direction of the furnace axis from the top of the blast furnace, and combustion gas is allowed to flow from the tuyere of the blast furnace. It is a facility for burning pigs and obtaining pig iron from ore.
  • Coke and ore raw materials which are blast furnace charging materials charged in the blast furnace, descend from the top of the furnace to the lower part of the furnace, and ore reduction and raw material temperature rise occur.
  • the ore raw material layer gradually deforms while filling the gaps between the ore raw materials due to the temperature rise and the load from above, and under the shaft part of the blast furnace, it has a very high ventilation resistance and a gas that hardly flows. Form a layer.
  • raw material charging into a blast furnace is performed by alternately charging ore raw materials and coke, and in the furnace, ore raw material layers and coke layers are alternately layered. Further, in the lower part of the blast furnace, there are an ore raw material layer having a high air flow resistance in which ores are softened and fused, and a coke slit derived from coke and having a relatively low air resistance.
  • the air permeability of this cohesive zone has a great influence on the air permeability of the entire blast furnace, and the productivity in the blast furnace is limited.
  • the amount of coke used is reduced, so the coke slit can be considered as thin as possible, and it is important to ensure the permeability of the cohesive zone. become.
  • Patent Document 1 in a bell-less blast furnace, coke is charged into the ore hopper on the downstream side of the ore hopper, and the coke is stacked on the ore on the conveyor, and then charged into the furnace top bunker. The ore and coke are charged into the blast furnace through the turning chute.
  • Patent Document 2 ore and coke are separately stored in a bunker at the top of the furnace, and coke and ore are mixed and charged at the same time, so that a normal charging batch for coke and a central charging batch for coke are used. And three batches for mixing and charging are performed simultaneously.
  • Patent Document 3 in order to prevent the destabilization of the cohesive zone shape in the blast furnace operation and the decrease in the gas utilization rate near the center, and to improve the safe operation and the thermal efficiency, all ore and all coke are thoroughly mixed and then charged into the furnace.
  • JP-A-3-211210 JP 2004-107794 A Japanese Patent Publication No.59-10402
  • the average particle size of the typical coke described in Patent Document 3 is about 40 mm and the average particle size of the ore is about 15 mm, and the particle sizes of both are greatly different. Ore gets in between, the porosity is greatly reduced, the air permeability is deteriorated in the furnace, and there is a possibility that troubles such as blowout of gas and poor lowering of raw materials may occur.
  • a method of forming a coke-only layer in the core part of the furnace can be considered. According to this method, the passage of gas through the coke layer is secured in the core portion of the furnace, so that air permeability can be improved.
  • an object of the present invention is to propose a raw material charging method for a blast furnace that can achieve stabilization of blast furnace operation and improvement of thermal efficiency.
  • the gist configuration of the present invention is as follows. 1.
  • the swirling chute is tilted at an average angle ⁇ 1 with respect to the axial direction of the blast furnace to supply the charging raw material O1, and then the swirling chute is tilted at an average angle ⁇ 2 larger than the average angle ⁇ 1 to inject the charging raw material.
  • a raw material charging method to a blast furnace in which a raw material charging layer is formed by supplying a charging raw material O2 mixed with coke having a particle size 1.1 to 3.0 times the particle size of coke mixed with O1.
  • the ore raw material is a general term for sintered ore, pellets, massive ore, and the like.
  • the average angle is defined by the following equation.
  • the formation of the raw material charging layer is defined, but the blast furnace operation is performed by alternately stacking the coke layer and the charging raw material layer in the entire blast furnace. Furthermore, a coke layer extending in the axial direction may be formed at the center of the blast furnace.
  • the air permeability in the blast furnace can be reliably ensured, thereby realizing a stable blast furnace operation with high thermal efficiency. Is done.
  • FIG. 1 is a blast furnace
  • 2 is a blast furnace throat
  • 3 is a blast furnace belly
  • 4a to 4c are top bunker
  • 5 is a coke layer
  • 5a is a central coke layer
  • 5b is a peripheral coke layer
  • 6 is an ore.
  • a raw material layer in which a raw material and coke are mixed 7 is a collecting hopper
  • 8 is a bell-less charging device
  • 9 is a swivel chute
  • 10 is a tuyered air duct.
  • a furnace top bunker is prepared by placing a mixture of ore raw materials and coke in advance on a conveyor that transports raw materials to the furnace top bunker. And the mixture may be supplied from one top bunker.
  • the raw material charging in the swirl chute blast furnace is performed by alternately charging the raw material and coke with the swirl chute 9, and the coke layer 5 and the charging raw material layer 6 are alternately layered in the furnace.
  • the raw material charging destination of the turning chute 9 is set as the inner peripheral portion of the furnace wall of the blast furnace 1 by a so-called forward tilting method.
  • the coke is charged from the furnace top bunker 4a or 4b charged with only coke, thereby forming the peripheral coke layer 5b on the inner peripheral portion of the furnace wall.
  • the coke is charged from the furnace top bunker 4a or 4b with the raw material charging destination of the swivel chute 9 as the axial center of the blast furnace, thereby forming the central coke layer 5a in the axial center of the blast furnace.
  • the charging raw material layer 6 is stacked and formed. Previously, as shown in FIG. 2, a single charging material layer 6 was formed.
  • O1 is supplied to the core side to form the inner charging raw material layer 6a.
  • the raw material O2 mixed from the ore raw material from the furnace top bunker 4c and the coke having a larger particle size than the coke of the raw material O1 from the furnace top bunker 4b is mixed on the furnace wall side.
  • the outer charging material layer 6b is formed by supplying.
  • the charging raw material layer 6 is constituted by the lamination of the inner charging raw material layer 6a and the outer charging raw material layer 6b.
  • the ratio DpC2 / DpC1 of the particle size DpC2 of the coke mixed with the charging raw material O2 and the particle size DpC1 of the coke mixed with the charging raw material O1 is 1.1 to 3.0. is there.
  • the charging chute 9 is inclined at an average angle ⁇ 1 and the charging material O1 is supplied to the core side to The charging raw material layer 6a is formed.
  • the turning chute 9 is tilted at an average angle ⁇ 2 larger than the average angle ⁇ 1, and the charging raw material O2 having a large mixed coke particle size is supplied to form the outer charging raw material layer 6b.
  • the average angles ⁇ 1 and ⁇ 2 of the turning chute 9 are preferably set so that ⁇ 2 / ⁇ 1 is 1.1 to 2.0 from the viewpoint of ensuring the air permeability and reactivity of the charged raw material layer.
  • the air permeability in the blast furnace can be reliably ensured. This is because the gas flow rate in the blast furnace is not uniform from the center of the furnace to the furnace wall and has a distribution, so that the permeability can be secured by charging coke with different particle sizes. That is, since the gas easily flows through the furnace wall portion in the shortest path connecting the blast furnace tuyere and the furnace mouth, coke having a large particle size with good air permeability is charged so as not to inhibit the gas flow.
  • the ratio DpC2 / DpC1 between the particle size DpC2 of the coke mixed with the charging raw material O2 and the particle size DpC1 of the coke mixed with the charging raw material O1 is 1.1 to 3.0, so that The charged raw material O1 is deposited and mixed with highly reactive small particle size coke in order to ensure the reducibility of the ore, while the charged raw material O2 is aerated to improve the air permeability. Coke having a small particle size and a small resistance is deposited and mixed, so that reducibility and air permeability can be achieved at a high level.
  • the ratio DpC2 / DpC1 when the ratio DpC2 / DpC1 is less than 1.1, coke having a small airflow resistance and a large particle size cannot be deposited and mixed, so that the effect of improving air permeability cannot be obtained.
  • it is 1.5 or more.
  • the ratio DpC2 / DpC1 exceeds 3.0, the airflow resistance is reduced, but the reactivity is further reduced, and thus the effect of improving the reduction cannot be obtained.
  • it is 2.0 or less.
  • the ratio DpC1 / DpO1 of the particle diameter DpC1 of the coke mixed with the charging raw material O1 to the particle diameter DpO1 of the ore raw material mixed with the charging raw material O1 is preferably 0.5 to 1.5. That is, if the ratio DpC1 / DpO1 is less than 0.5, coke with a small particle size is mixed in the vicinity of the furnace center, and the ventilation resistance becomes high, which may hinder the gas flow flowing in the vicinity of the center of the blast furnace. is there. On the other hand, when the ratio DpC1 / DpO1 exceeds 1.5, the reactivity of the charged raw material O1 disposed on the core side becomes small, and it becomes difficult to obtain the effect of improving the reducing property. More preferably, it is 1.0 to 1.2.
  • the same mixing ratio of coke mixed with the ore raw material is made the same, and then DpC2 / DpC1 in the charging raw materials O1 and O2, and the charging raw material O1.
  • charging raw materials O1 and O2 having various changes in DpC1 / DpO1 are prepared, and they are set to the average angles ⁇ 1 and ⁇ 2 of the swiveling chute shown in Table 1 and charged into the blast furnace. , Performed each operation. The operational results in each case were investigated. The survey results are also shown in Table 1.
  • the output ratio is a value obtained by dividing the daily output (t / d) of the blast furnace by the furnace volume (m 3 ).
  • the reducing material ratio, the coke ratio, and the pulverized coal ratio are the amount of reducing material, the amount of coke, and the amount of pulverized coal (kg / t) used when producing hot metal 1t.
  • the inventive examples 1 to 9 have a coke ratio in the range of 339 to 353 kg / t, which is a low coke ratio as compared with the coke ratio of the comparative examples 1 to 3 of 356 to 360 kg / t. Yes.
  • ⁇ P / V which is an index of ventilation resistance, is 18.3 to 20 lower than the range of 20.9 to 23.1 in Comparative Examples 1 to 3. .8 range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Proposed is a method for charging feedstock into a blast furnace, the method being capable of ensuring ventilation in the blast furnace to thereby achieve improved stability and thermal efficiency in the operation of the blast furnace. When charging feedstock, which is a mixture of ore raw materials and coke, into a blast furnace through a turning chute, a feedstock charge layer is formed by tilting the turning chute at an average angle of θ1 with respect to the axial direction of the blast furnace to feed feedstock O1, and then tilting the turning chute at an average angle of θ2, which is greater than the average angle θ1, to feed feedstock O2, in which coke having a particle size that is 1.1-3.0 times the particle size of coke mixed in the feedstock O1 is mixed.

Description

高炉への原料装入方法Raw material charging method to blast furnace
 本発明は、高炉内へ旋回シュートを介して原料の装入を行う、高炉への原料装入方法に関するものである。 The present invention relates to a raw material charging method into a blast furnace, in which the raw material is charged into the blast furnace through a turning chute.
 高炉は、一般的に焼結鉱、ペレット、塊状鉱石等の鉱石類原料とコークスとを、高炉の頂上付近から炉軸方向へ積層させて装入し、高炉の羽口より燃焼ガスを流してコークスを燃焼させて鉱石から銑鉄を得るための設備である。高炉内に装入された高炉装入原料であるコークスと鉱石類原料は炉頂より炉下部へと降下し、鉱石の還元と原料の昇温が起こる。鉱石類原料層は、昇温と上方からの荷重により鉱石類原料間の空隙を埋めながら徐々に変形して、高炉のシャフト部の下方においては、非常に通気抵抗が大きくガスが殆ど流れない融着層を形成する。 A blast furnace is generally charged with ore raw materials such as sintered ore, pellets, and massive ore and coke stacked in the direction of the furnace axis from the top of the blast furnace, and combustion gas is allowed to flow from the tuyere of the blast furnace. It is a facility for burning pigs and obtaining pig iron from ore. Coke and ore raw materials, which are blast furnace charging materials charged in the blast furnace, descend from the top of the furnace to the lower part of the furnace, and ore reduction and raw material temperature rise occur. The ore raw material layer gradually deforms while filling the gaps between the ore raw materials due to the temperature rise and the load from above, and under the shaft part of the blast furnace, it has a very high ventilation resistance and a gas that hardly flows. Form a layer.
 従来、高炉への原料装入は、鉱石類原料とコークスとを交互に装入しており、炉内では鉱石類原料層とコークス層が交互に層状となっている。また、高炉内下部には融着帯と呼ばれる、鉱石類が軟化融着した通気抵抗の大きな鉱石類原料層およびコークス由来の比較的通気抵抗が小さいコークススリットが存在する。
 この融着帯の通気性が高炉全体の通気性に大きく影響を及ぼしており、高炉における生産性を律速している。コークス使用量を抑制する、低コークス操業を行う場合は、使用されるコークス量が減少することから、コークススリットが限りなく薄くなることが考えられ、融着帯の通気性を確保することが重要になる。
Conventionally, raw material charging into a blast furnace is performed by alternately charging ore raw materials and coke, and in the furnace, ore raw material layers and coke layers are alternately layered. Further, in the lower part of the blast furnace, there are an ore raw material layer having a high air flow resistance in which ores are softened and fused, and a coke slit derived from coke and having a relatively low air resistance.
The air permeability of this cohesive zone has a great influence on the air permeability of the entire blast furnace, and the productivity in the blast furnace is limited. When performing low coke operation, which suppresses the use of coke, the amount of coke used is reduced, so the coke slit can be considered as thin as possible, and it is important to ensure the permeability of the cohesive zone. become.
 融着帯の通気性を改善するためには、鉱石類原料層にコークスを混合するのが有効であることが知られている。そこで、コークスの適切な混合状態を得るために多くの研究がなされている。例えば、特許文献1においては、ベルレス高炉において、鉱石ホッパーのうち下流側の鉱石ホッパーにコークスを装入し、コンベア上で鉱石の上にコークスを積層した状態で、炉頂バンカーに装入して、旋回シュートを介して鉱石とコークスとを高炉内に装入するようにしている。 In order to improve the breathability of the cohesive zone, it is known that mixing coke with the ore raw material layer is effective. Therefore, many studies have been made to obtain an appropriate mixed state of coke. For example, in Patent Document 1, in a bell-less blast furnace, coke is charged into the ore hopper on the downstream side of the ore hopper, and the coke is stacked on the ore on the conveyor, and then charged into the furnace top bunker. The ore and coke are charged into the blast furnace through the turning chute.
 また、特許文献2では、炉頂のバンカーに鉱石とコークスとを別々に貯留して、コークスと鉱石を同時に混合装入することによって、コークスの通常装入用バッチ、コークスの中心装入用バッチおよび混合装入用バッチの3通りを同時に行うようにしている。 In Patent Document 2, ore and coke are separately stored in a bunker at the top of the furnace, and coke and ore are mixed and charged at the same time, so that a normal charging batch for coke and a central charging batch for coke are used. And three batches for mixing and charging are performed simultaneously.
 さらに、特許文献3では、高炉操業における融着帯形状の不安定化および中心部付近におけるガス利用率の低下を防止し、安全操業と熱効率の向上を図るために、高炉の原料装入方法おいて、全鉱石と全コークスを完全混合した後炉内に装入するようにしている。 Further, in Patent Document 3, in order to prevent the destabilization of the cohesive zone shape in the blast furnace operation and the decrease in the gas utilization rate near the center, and to improve the safe operation and the thermal efficiency, In addition, all ore and all coke are thoroughly mixed and then charged into the furnace.
特開平3-211210号公報JP-A-3-211210 特開2004-107794号公報JP 2004-107794 A 特公昭59-10402号公報Japanese Patent Publication No.59-10402
 ところで、融着帯の通気抵抗を改善するためには、前述した特許文献3に記載された技術のように、鉱石層にコークスを混合しておくことが有効である。
 しかしながら、特許文献3に記載された代表的なコークスの平均粒径は約40mmおよび鉱石の平均粒径は約15mmであり、両者の粒径は大幅に異なることから、単純に混合しただけではコークス間に鉱石が入り込んで空隙率が大幅に低下し、炉内において通気性が悪化し、ガスの吹き抜けや原料の降下不良といったトラブルを生じる可能性がある。
By the way, in order to improve the ventilation resistance of the cohesive zone, it is effective to mix coke in the ore layer as in the technique described in Patent Document 3 described above.
However, the average particle size of the typical coke described in Patent Document 3 is about 40 mm and the average particle size of the ore is about 15 mm, and the particle sizes of both are greatly different. Ore gets in between, the porosity is greatly reduced, the air permeability is deteriorated in the furnace, and there is a possibility that troubles such as blowout of gas and poor lowering of raw materials may occur.
 これらのトラブルを回避するためには、炉軸心部にコークスのみの層を形成する方法が考えられる。この方法によれば、炉軸心部にコークス層によるガスの通り道が確保されるため、通気性の改善が可能となる。 In order to avoid these troubles, a method of forming a coke-only layer in the core part of the furnace can be considered. According to this method, the passage of gas through the coke layer is secured in the core portion of the furnace, so that air permeability can be improved.
 しかしながら、高炉還元材として、羽口から微粉炭を大量に吹き込んだ操業を行う場合には、微粉炭未燃焼粉量およびOre/Coke比(鉱石とコークスとの質量比)の増加により通気性が阻害されるため、特に炉壁周辺の通気性が大幅に悪化することになり、炉軸心部のみ通気性を確保しても炉全体の通気性は十分であるとは言えない。また、前記したような低コークス操業を行う場合には、炉軸心部のコークス層自体の形成が不足することもある。 However, when performing operation with a large amount of pulverized coal blown from the tuyere as a blast furnace reducing material, air permeability is increased due to an increase in the amount of unburned pulverized coal and the Ore / Coke ratio (mass ratio of ore and coke). In particular, the air permeability around the furnace wall is greatly deteriorated, and even if the air permeability is ensured only in the core part of the furnace, it cannot be said that the air permeability of the entire furnace is sufficient. In addition, when performing the low coke operation as described above, the formation of the coke layer itself in the core part of the furnace may be insufficient.
 本発明は、上記の現状に鑑み開発されたものであり、たとえ、コークス量が少なかったり、微粉炭の大量吹込み操業を実施したりする場合であっても、高炉内の通気性を確保して、高炉操業の安定化および熱効率の向上を達成することができる、高炉への原料装入方法について提案することを目的とする。 The present invention has been developed in view of the above situation, and ensures air permeability in the blast furnace even when the amount of coke is small or when a large amount of pulverized coal is injected. Thus, an object of the present invention is to propose a raw material charging method for a blast furnace that can achieve stabilization of blast furnace operation and improvement of thermal efficiency.
 すなわち、本発明の要旨構成は次のとおりである。
1.鉱石類原料およびコークスを混合した装入原料を、高炉内へ旋回シュートを介して装入するに際し、
 前記旋回シュートを前記高炉の軸方向に対して平均角度θ1にて傾けて装入原料O1を供給し、次いで前記旋回シュートを前記平均角度θ1より大きい平均角度θ2にて傾けて、前記装入原料O1に混合させるコークスの粒径の1.1~3.0倍の粒径を有するコークスが混合された装入原料O2を供給して原料装入層を形成する高炉への原料装入方法。
 ここで、前記鉱石類原料は、焼結鉱、ペレットおよび塊状鉱石などの総称である。また、前記平均角度は、次式にて定義される。
Figure JPOXMLDOC01-appb-I000001
 但し、θk,iはi周目の旋回シュートの高炉の軸方向に対する角度であり、k=1がθ1およびk=2がθ2をそれぞれ示している。
That is, the gist configuration of the present invention is as follows.
1. When charging the raw material mixed with ore raw material and coke into the blast furnace via the swivel chute,
The swirling chute is tilted at an average angle θ1 with respect to the axial direction of the blast furnace to supply the charging raw material O1, and then the swirling chute is tilted at an average angle θ2 larger than the average angle θ1 to inject the charging raw material. A raw material charging method to a blast furnace in which a raw material charging layer is formed by supplying a charging raw material O2 mixed with coke having a particle size 1.1 to 3.0 times the particle size of coke mixed with O1.
Here, the ore raw material is a general term for sintered ore, pellets, massive ore, and the like. The average angle is defined by the following equation.
Figure JPOXMLDOC01-appb-I000001
Here, θk, i is the angle of the turning chute of the i-th rotation with respect to the axial direction of the blast furnace, k = 1 indicates θ1, and k = 2 indicates θ2.
 なお、前記1では、原料装入層の形成について規定しているが、高炉の全体にわたる積層はコークス層と装入原料層とを交互に積み重ねて高炉操業を行う。さらに、高炉中心部には、軸方向に延びるコークス層を形成してもよい。 In addition, in 1 above, the formation of the raw material charging layer is defined, but the blast furnace operation is performed by alternately stacking the coke layer and the charging raw material layer in the entire blast furnace. Furthermore, a coke layer extending in the axial direction may be formed at the center of the blast furnace.
2.前記装入原料O2に混合させるコークスの粒径は、前記装入原料O1に混合させるコークスの粒径の1.5倍以上である前記1に記載の高炉への原料装入方法。 2. 2. The raw material charging method to the blast furnace as described in 1 above, wherein a particle size of coke mixed with the charging raw material O2 is 1.5 times or more of a particle size of coke mixed with the charging raw material O1.
3.前記装入原料O1に混合させるコークスの粒径は、同装入原料O1に混合させる鉱石類原料の粒径の0.5~1.5倍である前記1または2に記載の高炉への原料装入方法。 3. 3. The raw material to the blast furnace according to 1 or 2 above, wherein the particle size of coke mixed with the charging raw material O1 is 0.5 to 1.5 times the particle size of the ore raw material mixed with the charging raw material O1. The charging method.
 本発明によれば、低コークス量での操業および微粉炭の大量吹込みによる操業においても、高炉内の通気性を確実に確保することができるため、高い熱効率の下に安定した高炉操業が実現される。 According to the present invention, even in an operation with a low coke amount and an operation with a large amount of pulverized coal injection, the air permeability in the blast furnace can be reliably ensured, thereby realizing a stable blast furnace operation with high thermal efficiency. Is done.
旋回シュート方式の高炉を示す模式図である。It is a schematic diagram which shows the blast furnace of a turning chute system. 従来の原料装入状態を示す模式図である。It is a schematic diagram which shows the conventional raw material charging state. 本発明に従う原料装入状態を示す模式図である。It is a schematic diagram which shows the raw material charging state according to this invention.
 以下、本発明を具体的に説明する。
 本発明の原料装入方法を、実機の旋回シュート方式の高炉に適用する場合の例について、図1から3に基づいて説明する。
 図1中、符号1は高炉、2は高炉炉口部、3は高炉炉腹部、4a~4cは炉頂バンカー、5はコークス層、5aが中心コークス層および5bが周辺コークス層、6は鉱石類原料およびコークスを混合した装入原料層、7は集合ホッパー、8はベルレス式装入装置、9は旋回シュート、10は羽口の送風管である。
 なお、この例では、炉頂バンカー4aおよび4bにはコークスのみが、さらに炉頂バンカー4cには鉱石類原料のみが、それぞれ貯留されている。また、コークスのみを装入した4aおよび4bには、粒径の異なるコークスを貯留する。そして、炉頂バンカー4aと4cとから同時に切り出し、同様に炉頂バンカー4bと4cとから同時に切り出すことにより、鉱石類原料およびコークスを混合しての供給を行う。尚、コークス粒径の異なる混合層を形成する手法は上記に限定されず、例えば炉頂バンカーへ原料等を運搬するコンベア上に、予め鉱石類原料およびコークスを混合したものを載せて炉頂バンカーまで運搬し、該混合物を1つの炉頂バンカーから供給しても構わない。
Hereinafter, the present invention will be specifically described.
An example in which the raw material charging method of the present invention is applied to an actual turning chute blast furnace will be described with reference to FIGS.
In FIG. 1, reference numeral 1 is a blast furnace, 2 is a blast furnace throat, 3 is a blast furnace belly, 4a to 4c are top bunker, 5 is a coke layer, 5a is a central coke layer and 5b is a peripheral coke layer, and 6 is an ore. A raw material layer in which a raw material and coke are mixed, 7 is a collecting hopper, 8 is a bell-less charging device, 9 is a swivel chute, and 10 is a tuyered air duct.
In this example, only the coke is stored in the furnace top bunkers 4a and 4b, and only the ore raw material is stored in the furnace top bunker 4c. Further, cokes having different particle diameters are stored in 4a and 4b charged with only coke. And it cuts out simultaneously from the furnace top bunker 4a and 4c, and similarly cuts out simultaneously from the furnace top bunker 4b and 4c, and mixes and supplies an ore raw material and coke. The method for forming the mixed layer having different coke particle diameters is not limited to the above. For example, a furnace top bunker is prepared by placing a mixture of ore raw materials and coke in advance on a conveyor that transports raw materials to the furnace top bunker. And the mixture may be supplied from one top bunker.
 旋回シュート方式の高炉における原料装入は、旋回シュート9によって装入原料とコークスとを交互に装入することにより行っており、炉内ではコークス層5と装入原料層6とを交互に層状に堆積する。
 ここで、具体的なコークス層の装入手順の例としては、いわゆる順傾動方式により、図2に示すように、まず、旋回シュート9の原料装入先を高炉1の炉壁内周部とし、コークスのみを装入した炉頂バンカー4aまたは4bからコークスを装入することによって、炉壁内周部に周辺コークス層5bを形成する。ついで、旋回シュート9の原料装入先を高炉の軸心部として、炉頂バンカー4aまたは4bからコークスを装入することにより、高炉の軸心部に中心コークス層5aを形成する。
 かように形成したコークス層5の上に、装入原料層6を積み重ねて形成する。従前はこの図2に示すように、単一の装入原料層6を形成していた。
The raw material charging in the swirl chute blast furnace is performed by alternately charging the raw material and coke with the swirl chute 9, and the coke layer 5 and the charging raw material layer 6 are alternately layered in the furnace. To deposit.
Here, as a specific example of the charging procedure of the coke layer, as shown in FIG. 2, first, the raw material charging destination of the turning chute 9 is set as the inner peripheral portion of the furnace wall of the blast furnace 1 by a so-called forward tilting method. The coke is charged from the furnace top bunker 4a or 4b charged with only coke, thereby forming the peripheral coke layer 5b on the inner peripheral portion of the furnace wall. Next, the coke is charged from the furnace top bunker 4a or 4b with the raw material charging destination of the swivel chute 9 as the axial center of the blast furnace, thereby forming the central coke layer 5a in the axial center of the blast furnace.
On the coke layer 5 thus formed, the charging raw material layer 6 is stacked and formed. Previously, as shown in FIG. 2, a single charging material layer 6 was formed.
 これに対して、本発明では、図3に示すように、炉頂バンカー4cからの鉱石類原料と炉頂バンカー4aからの小粒径のコークスとを同時に切出すことにより混合した、装入原料O1を、炉心側に供給して内側装入原料層6aを形成する。さらに、炉頂バンカー4cからの鉱石類原料と炉頂バンカー4bからの装入原料O1のコークスよりも大粒径のコークスとを同時に切出すことにより混合した、装入原料O2を炉壁側に供給して外側装入原料層6bを形成する。これら内側装入原料層6aおよび外側装入原料層6bの積層にて装入原料層6を構成する。その際、前記装入原料O2に混合させるコークスの粒径DpC2と、装入原料O1に混合させるコークスの粒径DpC1との比DpC2/DpC1を1.1~3.0とすることが肝要である。 On the other hand, in this invention, as shown in FIG. 3, the charging raw material which mixed the ore raw material from the furnace top bunker 4c and the small particle size coke from the furnace top bunker 4a by cutting out simultaneously. O1 is supplied to the core side to form the inner charging raw material layer 6a. Furthermore, the raw material O2 mixed from the ore raw material from the furnace top bunker 4c and the coke having a larger particle size than the coke of the raw material O1 from the furnace top bunker 4b is mixed on the furnace wall side. The outer charging material layer 6b is formed by supplying. The charging raw material layer 6 is constituted by the lamination of the inner charging raw material layer 6a and the outer charging raw material layer 6b. At that time, it is important that the ratio DpC2 / DpC1 of the particle size DpC2 of the coke mixed with the charging raw material O2 and the particle size DpC1 of the coke mixed with the charging raw material O1 is 1.1 to 3.0. is there.
 すなわち、図1に示すように、旋回シュート9の高炉の軸Lに対する角度をθとしたとき、まず、旋回シュート9を平均角度θ1にて傾けて炉心側に装入原料O1を供給して内側装入原料層6aを形成する。次いで、旋回シュート9を前記平均角度θ1より大きい平均角度θ2にて傾けて、混合コークスの粒径が大きい装入原料O2を供給して外側装入原料層6bを形成する。
 ここで、旋回シュート9の前記平均角度θ1およびθ2は、装入原料層の通気性及び反応性を確保する観点から、θ2/θ1を1.1~2.0とすることが好ましい。
That is, as shown in FIG. 1, when the angle of the turning chute 9 with respect to the axis L of the blast furnace is θ, first, the charging chute 9 is inclined at an average angle θ1 and the charging material O1 is supplied to the core side to The charging raw material layer 6a is formed. Next, the turning chute 9 is tilted at an average angle θ2 larger than the average angle θ1, and the charging raw material O2 having a large mixed coke particle size is supplied to form the outer charging raw material layer 6b.
Here, the average angles θ1 and θ2 of the turning chute 9 are preferably set so that θ2 / θ1 is 1.1 to 2.0 from the viewpoint of ensuring the air permeability and reactivity of the charged raw material layer.
 以上のように積層した装入原料層6をコークス層5と交互に積層配置することによって、高炉内の通気性を確実に確保することができる。なぜなら、高炉内のガス流速は、炉の中心から炉壁まで均一でなく分布を有しているため、粒径が異なるコークスを装入することにより通気性が確保できるからである。すなわち、高炉羽口と炉口を結ぶ最短経路にある炉壁部はガスが流れやすいため、そのガス流れを阻害しないよう、通気性の良い大粒径のコークスを装入する。
 とりわけ、装入原料O2に混合させるコークスの粒径DpC2と、装入原料O1に混合させるコークスの粒径DpC1との比DpC2/DpC1を1.1~3.0とすることによって、炉心側に配置される装入原料O1には、鉱石の還元性を確保するために反応性の高い小さい粒径のコークスを堆積および混合させる一方、装入原料O2には、通気性を向上させるために通気抵抗の小さい粒径の大きいコークスを堆積および混合させることになり、還元性および通気性を高い次元で両立させることができる。
By arranging the charging raw material layers 6 laminated as described above alternately with the coke layers 5, the air permeability in the blast furnace can be reliably ensured. This is because the gas flow rate in the blast furnace is not uniform from the center of the furnace to the furnace wall and has a distribution, so that the permeability can be secured by charging coke with different particle sizes. That is, since the gas easily flows through the furnace wall portion in the shortest path connecting the blast furnace tuyere and the furnace mouth, coke having a large particle size with good air permeability is charged so as not to inhibit the gas flow.
In particular, the ratio DpC2 / DpC1 between the particle size DpC2 of the coke mixed with the charging raw material O2 and the particle size DpC1 of the coke mixed with the charging raw material O1 is 1.1 to 3.0, so that The charged raw material O1 is deposited and mixed with highly reactive small particle size coke in order to ensure the reducibility of the ore, while the charged raw material O2 is aerated to improve the air permeability. Coke having a small particle size and a small resistance is deposited and mixed, so that reducibility and air permeability can be achieved at a high level.
 すなわち、比DpC2/DpC1が1.1未満では、通気抵抗の小さい粒径の大きいコークスを堆積および混合できないため通気性の向上効果が得られない。好ましくは、1.5以上である。一方、比DpC2/DpC1が3.0を超えると、通気抵抗は小さくなるが、反応性が更に低下するため、還元性向上の効果が得られない。好ましくは、2.0以下である。 That is, when the ratio DpC2 / DpC1 is less than 1.1, coke having a small airflow resistance and a large particle size cannot be deposited and mixed, so that the effect of improving air permeability cannot be obtained. Preferably, it is 1.5 or more. On the other hand, when the ratio DpC2 / DpC1 exceeds 3.0, the airflow resistance is reduced, but the reactivity is further reduced, and thus the effect of improving the reduction cannot be obtained. Preferably, it is 2.0 or less.
 さらに、装入原料O1に混合させる鉱石類原料の粒径DpO1に対する装入原料O1に混合させるコークスの粒径DpC1の比DpC1/DpO1が0.5~1.5であることが好ましい。
 すなわち、比DpC1/DpO1が0.5未満では、炉中心部近傍に小さい粒径のコークスが混合されて通気抵抗が高くなり高炉の中心部近傍を流れるガス流を阻害する、おそれがあるためである。一方、比DpC1/DpO1が1.5を超えると、炉心側に配置される装入原料O1における反応性が小さくなって還元性の向上効果を得ることが難しくなるためである。より好ましくは、1.0~1.2である。
Further, the ratio DpC1 / DpO1 of the particle diameter DpC1 of the coke mixed with the charging raw material O1 to the particle diameter DpO1 of the ore raw material mixed with the charging raw material O1 is preferably 0.5 to 1.5.
That is, if the ratio DpC1 / DpO1 is less than 0.5, coke with a small particle size is mixed in the vicinity of the furnace center, and the ventilation resistance becomes high, which may hinder the gas flow flowing in the vicinity of the center of the blast furnace. is there. On the other hand, when the ratio DpC1 / DpO1 exceeds 1.5, the reactivity of the charged raw material O1 disposed on the core side becomes small, and it becomes difficult to obtain the effect of improving the reducing property. More preferably, it is 1.0 to 1.2.
 図1に示した旋回シュート方式の高炉実機において、同一出銑比で鉱石類原料と混合するコークス混合比を同一とした上で、装入原料O1およびO2でのDpC2/DpC1、装入原料O1でのDpC1/DpO1を表1に示すように種々に変化させた装入原料O1およびO2を用意し、それらを表1に示す旋回シュートの平均角度θ1およびθ2に定めて高炉内に装入する、各操業を行った。それぞれの場合における操業成績を調査した。その調査結果を表1に併記する。
 ここで、出銑比は、高炉の一日当たりの出銑量(t/d)を炉内容積(m3)で除した値である。また、還元材比、コークス比及び微粉炭比は、溶銑1tを製造する際に使用した還元材量、コークス量及び微粉炭量(kg/t)である。
In the actual blast furnace of the swirl chute system shown in FIG. 1, the same mixing ratio of coke mixed with the ore raw material is made the same, and then DpC2 / DpC1 in the charging raw materials O1 and O2, and the charging raw material O1. As shown in Table 1, charging raw materials O1 and O2 having various changes in DpC1 / DpO1 are prepared, and they are set to the average angles θ1 and θ2 of the swiveling chute shown in Table 1 and charged into the blast furnace. , Performed each operation. The operational results in each case were investigated. The survey results are also shown in Table 1.
Here, the output ratio is a value obtained by dividing the daily output (t / d) of the blast furnace by the furnace volume (m 3 ). The reducing material ratio, the coke ratio, and the pulverized coal ratio are the amount of reducing material, the amount of coke, and the amount of pulverized coal (kg / t) used when producing hot metal 1t.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、発明例1~9は、コークス比が339~353kg/tの範囲であり、比較例1~3のコークス比356~360kg/tと比較して低コークス比となっている。しかしながら、このような低コークス比の操業であっても、通気抵抗の指標であるΔP/Vを、比較例1~3における20.9~23.1の範囲より、さらに低い18.3~20.8の範囲に抑制することができた。 As shown in Table 1, the inventive examples 1 to 9 have a coke ratio in the range of 339 to 353 kg / t, which is a low coke ratio as compared with the coke ratio of the comparative examples 1 to 3 of 356 to 360 kg / t. Yes. However, even with such a low coke ratio operation, ΔP / V, which is an index of ventilation resistance, is 18.3 to 20 lower than the range of 20.9 to 23.1 in Comparative Examples 1 to 3. .8 range.
 1 高炉
 2 高炉炉口部
 3 高炉炉腹部
 4a~4c 炉頂バンカー
 5 コークス層
 5a 中心コークス層
 5b 周辺コークス層
 6 装入原料層
 6a 内側装入原料層
 6b 外側装入原料層
 7  集合ホッパー
 8 ベルレス式装入装置
 9 旋回シュート
 10 羽口の送風管



 
1 Blast Furnace 2 Blast Furnace Port 3 Blast Furnace Abdomen 4a-4c Top Bunker 5 Coke Layer 5a Central Coke Layer 5b Peripheral Coke Layer 6 Charge Raw Material Layer 6a Inner Charge Raw Material Layer 6b Outer Charge Raw Material Layer 7 Collective Hopper 8 Bellless Type charging device 9 swivel chute 10 tuyere air duct



Claims (3)

  1.  鉱石類原料およびコークスを混合した装入原料を、高炉内へ旋回シュートを介して装入するに際し、
     前記旋回シュートを前記高炉の軸方向に対して平均角度θ1にて傾けて装入原料O1を供給し、次いで前記旋回シュートを前記平均角度θ1より大きい平均角度θ2にて傾けて、前記装入原料O1に混合させるコークスの粒径の1.1~3.0倍の粒径を有するコークスが混合された装入原料O2を供給して原料装入層を形成する高炉への原料装入方法。
    When charging the raw material mixed with ore raw material and coke into the blast furnace via the swivel chute,
    The swirling chute is tilted at an average angle θ1 with respect to the axial direction of the blast furnace to supply the charging raw material O1, and then the swirling chute is tilted at an average angle θ2 larger than the average angle θ1 to inject the charging raw material. A raw material charging method to a blast furnace in which a raw material charging layer is formed by supplying a charging raw material O2 mixed with coke having a particle size 1.1 to 3.0 times the particle size of coke mixed with O1.
  2.  前記装入原料O2に混合させるコークスの粒径は、前記装入原料O1に混合させるコークスの粒径の1.5倍以上である請求項1に記載の高炉への原料装入方法。 The method for charging raw material into a blast furnace according to claim 1, wherein the particle size of coke mixed with the charged raw material O2 is 1.5 times or more than the particle size of coke mixed with the charged raw material O1.
  3.  前記装入原料O1に混合させるコークスの粒径は、同装入原料O1に混合させる鉱石類原料の粒径の0.5~1.5倍である請求項1または2に記載の高炉への原料装入方法。 The blast furnace according to claim 1 or 2, wherein a particle size of coke mixed with the charging raw material O1 is 0.5 to 1.5 times a particle size of an ore raw material mixed with the charging raw material O1. Raw material charging method.
PCT/JP2016/001555 2015-03-30 2016-03-17 Method for charging feedstock into blast furnace WO2016157794A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016535260A JP6041073B1 (en) 2015-03-30 2016-03-17 Raw material charging method to blast furnace
CN201680017640.0A CN107406896B (en) 2015-03-30 2016-03-17 The method of charging feedstock into blast furnace
KR1020177029833A KR102058834B1 (en) 2015-03-30 2016-03-17 Method of charging raw material into blast furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015069893 2015-03-30
JP2015-069893 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016157794A1 true WO2016157794A1 (en) 2016-10-06

Family

ID=57006643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001555 WO2016157794A1 (en) 2015-03-30 2016-03-17 Method for charging feedstock into blast furnace

Country Status (4)

Country Link
JP (1) JP6041073B1 (en)
KR (1) KR102058834B1 (en)
CN (1) CN107406896B (en)
WO (1) WO2016157794A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015933A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Bell-less blast furnace charge method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562106A (en) * 1978-10-30 1980-05-10 Nippon Steel Corp Raw material charging method for blast furnace
JPH02213405A (en) * 1989-02-15 1990-08-24 Kawasaki Steel Corp Method and apparatus for classifying and charging raw material in blast furnace
JPH05239513A (en) * 1991-02-28 1993-09-17 Nippon Steel Corp Raw material charging method of blast furnace
JP2015074801A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Blast furnace operation method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910402A (en) 1982-07-10 1984-01-19 Toshiba Corp Rolling mill and rolling method
JP2820478B2 (en) 1990-01-16 1998-11-05 川崎製鉄株式会社 Feeding method for bellless blast furnace
JP4269847B2 (en) 2002-08-30 2009-05-27 Jfeスチール株式会社 Raw material charging method for bell-less blast furnace
JP2010100915A (en) * 2008-10-27 2010-05-06 Jfe Steel Corp Method for operating vertical furnace
CN102010920A (en) * 2010-12-24 2011-04-13 宝钢集团新疆八一钢铁有限公司 Method for smelting bell-less top blast furnace high proportion pellet ore burden structure
WO2013172035A1 (en) * 2012-05-17 2013-11-21 Jfeスチール株式会社 Method for loading raw material into blast furnace
JP5871062B2 (en) * 2012-05-18 2016-03-01 Jfeスチール株式会社 Raw material charging method to blast furnace
CN104313215A (en) * 2014-11-19 2015-01-28 中冶南方工程技术有限公司 Blast furnace sinter graded feeding technology

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562106A (en) * 1978-10-30 1980-05-10 Nippon Steel Corp Raw material charging method for blast furnace
JPH02213405A (en) * 1989-02-15 1990-08-24 Kawasaki Steel Corp Method and apparatus for classifying and charging raw material in blast furnace
JPH05239513A (en) * 1991-02-28 1993-09-17 Nippon Steel Corp Raw material charging method of blast furnace
JP2015074801A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Blast furnace operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015933A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Bell-less blast furnace charge method
JP7073962B2 (en) 2018-07-24 2022-05-24 日本製鉄株式会社 How to charge the bellless blast furnace

Also Published As

Publication number Publication date
KR102058834B1 (en) 2019-12-24
JPWO2016157794A1 (en) 2017-04-27
CN107406896A (en) 2017-11-28
JP6041073B1 (en) 2016-12-07
CN107406896B (en) 2019-06-28
KR20170128554A (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6041072B1 (en) Raw material charging method to blast furnace
JP2006265644A (en) Method for charging raw materials into blast furnace
WO2013172045A1 (en) Method for charging starting material into blast furnace
JP6260288B2 (en) Raw material charging method for bell-less blast furnace
WO2013172042A1 (en) Method for loading raw material into blast furnace
JP6041073B1 (en) Raw material charging method to blast furnace
JP5754109B2 (en) Raw material charging method to blast furnace
JP5751037B2 (en) Blast furnace operation method
JP5834922B2 (en) Blast furnace operation method
JP5871062B2 (en) Raw material charging method to blast furnace
JP5515288B2 (en) Raw material charging method to blast furnace
JP6260751B2 (en) Raw material charging method to blast furnace
JP5338309B2 (en) Raw material charging method to blast furnace
JP5338310B2 (en) Raw material charging method to blast furnace
JP5338308B2 (en) Raw material charging method to blast furnace
JP5966608B2 (en) Raw material charging method to blast furnace
JP5884208B1 (en) Raw material charging method to blast furnace
JP2014111819A (en) Method for charging raw material into blast furnace
JP2018070954A (en) Method for loading raw materials into blast furnace
JP6135622B2 (en) Blast furnace raw material charging method
JP5338311B2 (en) Raw material charging method to blast furnace
JP2018070953A (en) Method for loading raw materials into blast furnace
JP2013241642A (en) Method for charging raw material into blast furnace
JP2014058718A (en) Charging method of blast furnace feed

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016535260

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177029833

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16771687

Country of ref document: EP

Kind code of ref document: A1