JP2015074801A - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP2015074801A
JP2015074801A JP2013211337A JP2013211337A JP2015074801A JP 2015074801 A JP2015074801 A JP 2015074801A JP 2013211337 A JP2013211337 A JP 2013211337A JP 2013211337 A JP2013211337 A JP 2013211337A JP 2015074801 A JP2015074801 A JP 2015074801A
Authority
JP
Japan
Prior art keywords
coke
blast furnace
sintered ore
coarse
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211337A
Other languages
Japanese (ja)
Other versions
JP6167829B2 (en
Inventor
酒井 博
Hiroshi Sakai
博 酒井
公平 砂原
Kohei Sunahara
公平 砂原
将達 片桐
Nobutatsu Katagiri
将達 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013211337A priority Critical patent/JP6167829B2/en
Publication of JP2015074801A publication Critical patent/JP2015074801A/en
Application granted granted Critical
Publication of JP6167829B2 publication Critical patent/JP6167829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an operation with high tapping of molten iron and a low reductant ratio by modifying the grain size of sintered ore and grain size of coke in the radial direction without depending on quality improvement of coke and sintered ore in a bell-less blast furnace.SOLUTION: A blast furnace operation method comprises sieving sintered or and coke into coarse grains and fine grains by grain size before charge into a blast furnace and charging sintered ore and coke so that the fine grains of sintered ore and a part of the coarse grains of coke are present in a mixed form in the vicinity of a furnace wall and that the coarse grains of sintered ore and the fine grains of coke are present in a mixed form in a region from the vicinity of the furnace wall to the vicinity of central coke.

Description

本発明は、高炉操業方法に関する。特に、焼結鉱及びコークスを粗粒と細粒に篩分けし装入する高炉操業方法に関する。   The present invention relates to a blast furnace operating method. In particular, the present invention relates to a blast furnace operating method in which sintered ore and coke are sieved into coarse particles and fine particles and charged.

近年、設備の集約化傾向にともない、高炉操業の分野においても生産性向上のニーズが高まっている。高炉における高生産性操業、すなわち高出銑比の高炉操業を行う上での課題としては、出銑滓および荷下がりの安定性、通気性の確保等がある。従来の高出銑比の高炉操業では、こうした考え方の下で、装入物強度の向上が研究されてきた。
また、地球温暖化対策として、COの排出削減のため、高炉の還元材比の低減が要請され、焼結鉱の被還元性の向上も研究されてきた。
In recent years, with the tendency of equipment consolidation, there is an increasing need for productivity improvement in the field of blast furnace operation. Problems in carrying out high productivity operation in a blast furnace, that is, blast furnace operation with a high output ratio, include stability of dredging and unloading, ensuring air permeability, and the like. In conventional blast furnace operation with a high output ratio, improvement of charge strength has been studied under this concept.
In addition, as a measure against global warming, reduction of the reducing material ratio of the blast furnace has been requested in order to reduce CO 2 emission, and improvement of the reducibility of sintered ore has been studied.

鉄鉱石原料中の70質量%以上が見掛け密度4.2g/cm以上の高見掛け密度鉄鉱石を配合原料として製造されたものであって、SiOの質量比率が3.1質量%未満、CaO含有量が8.5質量%以上、MgO含有量が0.8質量%以上、FeO含有量が5質量%以上で、落下強度(SI)が90以上である極低SiO高強度焼結鉱を10質量%〜60質量%含む焼結鉱を、塊鉱石その他の原料ならびに炭材と共に装入し、炉内に生成する高炉スラグのAlを16質量%以下に調整するとともに、出銑比が2.35を超える操業を特徴とする高出銑比操業方法が開示されている(特許文献1)。
また、高炉羽口部から微粉炭を吹き込むとともに、焼結鉱を含む鉄源とコークスを交互に高炉頂部から装入し、炉内持ち込み水分を30kg/t−pig以上とし、出銑比を2.2以上2.5以下で操業を行う高炉操業方法において、前記焼結鉱の被還元速度を0.435〜0.500(%/min)としたことを特徴とする高炉操業方法を述べている(特許文献2)。
70 mass% or more in the iron ore raw material is produced using a high apparent density iron ore having an apparent density of 4.2 g / cm 3 or more as a blended raw material, and the mass ratio of SiO 2 is less than 3.1 mass%. Extremely low SiO 2 high strength sintering with a CaO content of 8.5% by mass or more, a MgO content of 0.8% by mass or more, a FeO content of 5% by mass or more, and a drop strength (SI) of 90 or more. While charging a sintered ore containing 10% by mass to 60% by mass of ore together with lump ore and other raw materials and carbonaceous materials, adjusting the Al 2 O 3 of blast furnace slag generated in the furnace to 16% by mass or less, A high output ratio operation method characterized by an operation in which the output ratio exceeds 2.35 is disclosed (Patent Document 1).
In addition, pulverized coal is blown from the blast furnace tuyere, iron sources including coke and coke are alternately charged from the top of the blast furnace, the moisture brought into the furnace is 30 kg / t-pig or more, and the output ratio is 2 In the blast furnace operating method in which the operation is performed at 2 or more and 2.5 or less, the blast furnace operating method is characterized in that the reduction rate of the sintered ore is 0.435 to 0.500 (% / min). (Patent Document 2).

特許第4196613号公報Japanese Patent No. 4196613 特許第4564462号公報Japanese Patent No. 4564462

特許文献1に記載の発明は、極低SiO高強度焼結鉱を用い、高炉スラグのAlを16質量%以下に調整して、高出銑比操業を達成する。また、特許文献2に記載の発明は、高出銑比、かつ、炉内に持ち込まれる水分量が多くなる操業において、炉内還元時間が短縮する状況下で、被還元性に優れた焼結鉱を使用することで、高出銑比操業を可能とするものである。
しかし、近年の資源劣質化により高炉で使用する装入物の多種多様化が求められている。上記の特許文献1又は特許文献2に記載の発明は、いずれも高出銑比操業の達成のために装入原料性状を向上させる必要があり、通常時の操業で使用されるコークス、焼結鉱をそのまま使用することはできない。
そこで、コークス及び焼結鉱の品質向上に頼ることなく、高出銑、低還元材比操業を可能とする高精度な装入物分布制御技術の開発が期待される。
The invention described in Patent Document 1 achieves a high iron ratio operation by adjusting the Al 2 O 3 of the blast furnace slag to 16% by mass or less using extremely low SiO 2 high strength sintered ore. In addition, the invention described in Patent Document 2 is a sintering with excellent reducibility in a situation in which the reduction time in the furnace is shortened in an operation in which the amount of moisture brought into the furnace is increased with a high output ratio. By using ore, it is possible to operate at a high ratio.
However, due to the recent deterioration of resources, there is a demand for diversification of the charges used in the blast furnace. In the inventions described in Patent Document 1 and Patent Document 2 described above, it is necessary to improve the raw material properties in order to achieve a high output ratio operation, and coke and sintering used in normal operation. The ore cannot be used as it is.
Therefore, it is expected to develop a high-accuracy charge distribution control technology that enables high-efficiency, low-reducing material ratio operation without relying on the improvement of coke and sintered ore quality.

高炉においては、鉱石とコークスを順次に炉内に装入し、鉱石層とコークス層を形成する装入方式が一般的である。
装入物分布制御の方法として、最近の大型高炉においては、炉頂部に旋回機能を有し、且つ、その俯仰角度が変更できるシュートを設け、このシュートにより原料をリング状に炉内に装入する旋回シュート式原料装入装置が採用されている(以下、ベルレス高炉と記す。)。
In a blast furnace, an ore and coke are generally charged into the furnace in order to form an ore layer and a coke layer.
As a method for controlling the distribution of charges, in recent large-scale blast furnaces, a chute is provided at the top of the furnace and the elevation angle can be changed, and this chute is used to charge the raw material into the furnace in a ring shape. A swivel chute-type raw material charging device is employed (hereinafter referred to as a bell-less blast furnace).

大型高炉を安定して操業するには、高炉内での還元ガスの通気性の確保が重要である。
高炉の全体の通気性は、(1)装入物の粒度分布に依存し、そして、径方向の通気抵抗分布は、(2)径方向での鉱石とコークスの層厚比(以下O/Cという。)の分布と、(3)径方向での鉱石とコークスの粒度分布、により形成される。そのため、上記(1)乃至(3)のコントロールにより、高炉内の通気性を改善することが重要である。
In order to stably operate a large blast furnace, it is important to ensure the permeability of reducing gas in the blast furnace.
The overall air permeability of the blast furnace depends on (1) the particle size distribution of the charge, and the radial resistance distribution is (2) the ore to coke layer thickness ratio (hereinafter referred to as O / C). And (3) the particle size distribution of ore and coke in the radial direction. Therefore, it is important to improve the air permeability in the blast furnace by controlling the above (1) to (3).

本発明者は、焼結鉱及びコークスを粗粒と細粒に篩分け、粗粒と細粒を径方向に偏析させ装入することにより、高炉全体の通気性及び還元性を改善する方策を研究した。
本発明の目的は、装入物分布制御により焼結鉱の粒径及びコークスの粒径を径方向に変更し、高出銑、低還元材比操業を可能とする高炉操業方法を提供することである。
The inventor screened the sintered ore and coke into coarse and fine particles, segregated the coarse particles and fine particles in the radial direction, and charged them to improve the air permeability and reducibility of the entire blast furnace. Studied.
An object of the present invention is to provide a method for operating a blast furnace in which the particle size of the sintered ore and the particle size of the coke are changed in the radial direction by controlling the distribution of the charged material, and the operation can be performed at a high ratio and a low reducing material ratio. It is.

本発明者等は、ベルレス高炉において、焼結鉱及びコークスの径方向の粒度分布を変更し、高炉トータルシミュレータを用いて計算した結果、高出銑、低還元材比操業が可能となる知見を得た。
本発明は、かかる知見に基づくものである。
The present inventors changed the particle size distribution in the radial direction of sintered ore and coke in the bell-less blast furnace, and as a result of calculation using a blast furnace total simulator, the knowledge that the operation of high fermenting and low reducing material ratio is possible. Obtained.
The present invention is based on such knowledge.

本発明の要旨とするところは、以下のとおりである。
(1)高炉への装入前に焼結鉱及びコークスを粗粒と細粒の粒径に篩分けし、細粒焼結鉱と粗粒コークスの一部が炉壁近傍において混合して存在するよう装入し、粗粒焼結鉱と細粒コークスが炉壁近傍から中心コークス近傍の領域において混合して存在するよう装入することを特徴とする高炉操業方法。
(2)前記焼結鉱の粒径篩分けは、細粒焼結鉱が20%〜40%で、粗粒焼結鉱が80%〜60%であることを特徴とする請求項1に記載の高炉操業方法。
(3)前記細粒焼結鉱への前記粗粒コークスの混合量は、0kg/t−pigを超え、20kg/t−pig以下であることを特徴とする(1)又は(2)に記載の高炉操業方法。
(4)前記粗粒焼結鉱への前記細粒コークスの混合量が0kg/t−pigを超え、50kg/t−pig以下であることを特徴とする(1)乃至(3)のいずれかに記載の高炉操業方法。
The gist of the present invention is as follows.
(1) Before charging into the blast furnace, the sinter and coke are sieved into coarse and fine particles, and some of the fine sinter and coarse coke are mixed in the vicinity of the furnace wall. A blast furnace operating method characterized by charging so that coarse-grained sintered ore and fine-grained coke are mixed and present in the region near the furnace wall to the central coke.
(2) The particle size sieving of the sintered ore is characterized in that the fine-grained sintered ore is 20% to 40% and the coarse-grained sintered ore is 80% to 60%. Blast furnace operation method.
(3) The amount of the coarse-grained coke mixed with the fine-grained sintered ore is more than 0 kg / t-pig and not more than 20 kg / t-pig, as described in (1) or (2) Blast furnace operation method.
(4) Any one of (1) to (3), wherein the amount of the fine coke mixed with the coarse sinter is more than 0 kg / t-pig and not more than 50 kg / t-pig The blast furnace operating method described in 1.

本発明は、ベルレス高炉において、コークス及び焼結鉱の品質向上に頼ることなく、焼結鉱の粒径及びコークスの粒径を径方向で変更することにより、高出銑、低還元材比操業が可能となる高炉操業方法を提供することができる。   The present invention, in a bell-less blast furnace, without relying on the improvement of the quality of coke and sintered ore, by changing the particle diameter of the sintered ore and the particle size of the coke in the radial direction, Therefore, it is possible to provide a blast furnace operating method that makes it possible.

原料堆積層表面に落下した装入物の粒度偏析を示す図。The figure which shows the particle size segregation of the charging material which fell on the raw material deposited layer surface. 原料堆積層におけるコークステラスの形成を示す図。The figure which shows formation of the coke terrace in a raw material deposition layer. 粒度を分級することにより、空隙率が向上することを説明する模式図。The schematic diagram explaining that the porosity improves by classifying a particle size. 燒結鉱の粒度分級の一例を示す図。The figure which shows an example of the particle size classification of a sintered ore. 粒度分級の割合に対応した空隙率を示す図。The figure which shows the porosity corresponding to the ratio of a particle size classification. 槽からの原料切り出しにより、輸送ベルト上での原料混合を説明する図。The figure explaining the raw material mixing on a transport belt by the raw material cut-out from a tank. 、C、O、Oの4バッチ装入の装入物堆積形状を示す図。 C 1, C 2, O 1 , shows a charge deposition geometry of 4 batches loading of O 2. 装入物分布モデルの計算に用いた焼結鉱の粒度分布を示す図。The figure which shows the particle size distribution of the sintered ore used for calculation of the charge distribution model. 装入物分布モデルの計算に用いたコークスの粒度分布を示す図。The figure which shows the particle size distribution of the coke used for calculation of the charge distribution model. 炉壁近傍(図7のP,P断面)における装入物の堆積状況を示す図。The figure which shows the accumulation condition of the charging material in the furnace wall vicinity (P, P cross section of FIG. 7).

(ベルレス高炉の装入物装入方法の従来技術)
ベルレス高炉の装入物装入方法は、一般に、コークス(以下Cと記す。)は、C、Cの2バッチに分けて装入され、又、鉱石(以下Oと記す。)は、O、Oの2バッチに分けて装入される。C、C、O、Oの装入を1チャージと称する。ここで、コークスと鉱石それぞれ1バッチで装入し、C、Oの2バッチを1チャージとする装入や、C、C、Oの3バッチを1チャージとする装入方法もある。
以下、本願明細書では、C、C、O、Oの4バッチを1チャージとする装入方法について述べるが、C、O、C、O等のバッチの順を変えた装入、2バッチ、3バッチを1チャージとする装入方法においても同様である。
図1に傾動角度θの旋回シュート4から炉内に落下したC、の粒度偏析を示す。高炉炉内に落下したCは、高炉中心と壁側に向け転がり落ち、一般に、逆W型形状の装入物形状を形成する。この場合、Cの中の粗粒コークス5は、高炉中心方向と壁側に向け転がり落ち、微粒コークス6は、落下地点にとどまりやすい。装入される鉱石も同様である。
炉壁の直前は、粗粒コークス5が堆積しやすいので、通気性が良く、炉内ガスが強く通り易い(いわゆるスキンフロー)。その結果、炉壁が損傷されやすいという問題がある。
これに対し、Cの炉壁近傍に形成された壁際の「くぼみ」にOを装入し、壁際のO/Cを調整することにより、壁際のガス流をコントロールする技術がある。
一方、図2に示すいわゆるコークステラスの形成技術がある。コークステラスとは、ベルレス高炉において、装入物の落下点を炉壁から炉中心部側へ連続的に移動させ、炉壁近傍におけるコークス堆積形状(プロフィール)を平らなテラス状に形成することである。テラスでは、プロフィールが平らなため粒度偏析が抑制され、粗粒コークス5と微粒コークス6は、均一に堆積される。そのため、コークステラス上にOを乗せることにより炉壁近傍の鉱石とコークスの堆積比(O/C)を調整し、炉壁近傍の安定なガス流をコントロールすることができる。
は、炉の中心流を確保するため、炉中心近傍に装入される。
(Prior art of charging method for bell-less blast furnace)
As for the charging method of the bell-less blast furnace, generally, coke (hereinafter referred to as C) is charged in two batches of C 1 and C 2 , and ore (hereinafter referred to as O), It is charged in two batches of O 1 and O 2 . The charging of C 1 , C 2 , O 1 and O 2 is referred to as 1 charge. Here, charging is performed by charging one batch of coke and ore, charging two batches of C 1 and O 1 as one charge, and charging three batches of C 1 , C 2 , and O 1 as one charge. There is also.
Hereinafter, in this specification, a charging method in which four batches of C 1 , C 2 , O 1 , and O 2 are set as one charge will be described, but the order of batches of C 1 , O 1 , C 2 , O 2, etc. will be described. The same applies to the charging method in which the changed charging, 2 batches, and 3 batches are charged as one charge.
FIG. 1 shows the particle size segregation of C 1 that has fallen into the furnace from the turning chute 4 with a tilt angle θ. The C 1 that has fallen into the blast furnace rolls down toward the blast furnace center and the wall side, and generally forms an inverted W-shaped charge shape. In this case, the coarse coke 5 in C 1 rolls down toward the blast furnace center direction and the wall side, and the fine coke 6 tends to stay at the dropping point. The same applies to the ore to be charged.
Immediately before the furnace wall, the coarse-grained coke 5 is likely to be deposited, so that air permeability is good and the gas in the furnace is easy to pass through (so-called skin flow). As a result, there is a problem that the furnace wall is easily damaged.
On the other hand, there is a technique for controlling the gas flow near the wall by inserting O 1 into a “dent” near the wall formed near the furnace wall of C 1 and adjusting O / C near the wall.
On the other hand, there is a so-called coke terrace forming technique shown in FIG. Coke terrace is a bell-less blast furnace in which the dropping point of the charge is continuously moved from the furnace wall to the center of the furnace, and the coke deposit shape (profile) in the vicinity of the furnace wall is formed into a flat terrace shape. is there. On the terrace, since the profile is flat, grain size segregation is suppressed, and the coarse coke 5 and fine coke 6 are uniformly deposited. Therefore, by placing O 1 on the coke terrace, the deposition ratio (O / C) between the ore near the furnace wall and the coke can be adjusted, and a stable gas flow near the furnace wall can be controlled.
C 2 is charged in the vicinity of the center of the furnace in order to secure the center flow of the furnace.

(本発明の考え方)
本発明は、上記の従来の装入分布形成技術をベースとし、更なる通気性および還元性の向上を図るために以下の3ポイントを特徴とする。
(1)鉱石充填層の通気性を向上させるため、焼結鉱の粒度分布を細粒側と粗粒側に分級し、それぞれの充填層の空隙率を相対的に向上させる(図3、図4)。
(2)塊状帯における鉱石充填層の還元性を向上させるため、細粒コークスを鉱石層中に混合させる。
(3)炉壁近傍の軟化融着帯における鉱石充填層の通気性を向上させるため、大塊コークスを鉱石層中に混合させる。
上記3点を満たした装入物分布制御ができれば、十分な通気性改善効果、還元性改善効果が期待でき、装入原料性状を操作することなく、極めて出銑量を増加させた操業が可能となると期待される。
以下、コークステラス形成の装入分布形成をベースとして説明するが、本発明はこれに限定されるものではない。
(Concept of the present invention)
The present invention is characterized by the following three points in order to further improve the air permeability and the reducibility based on the above-described conventional charge distribution forming technology.
(1) In order to improve the air permeability of the ore packed bed, the particle size distribution of the sintered ore is classified into the fine grain side and the coarse grain side, and the porosity of each packed bed is relatively improved (FIG. 3, FIG. 4).
(2) In order to improve the reducing property of the ore packed bed in the massive band, fine coke is mixed in the ore layer.
(3) In order to improve the air permeability of the ore packed bed in the softened cohesive zone near the furnace wall, large coke is mixed in the ore layer.
If charge distribution control that satisfies the above three points can be achieved, sufficient air permeability improvement effect and reduction effect improvement can be expected, and operation with extremely increased output is possible without operating the charge raw material properties. Expected to be.
Hereinafter, although description will be made based on the formation of the charge distribution of coke terrace formation, the present invention is not limited to this.

(焼結鉱およびコークスの粗粒と細粒への篩分け)
本発明では、上記特徴ポイント(1)を目的に、焼結鉱およびコークスを粗粒と細粒に篩分け、高炉の通気性の向上を図る。一般に、充填物の粒度分布が狭いと、空隙率が向上する。
図3は、粗粒と細粒に分級することにより、空隙率が向上することを模式的に示す。
図4に焼結鉱の粒度分級の一例を示す。この例では、18mmを分級点とし、18mm以下の細粒を約30%、18mm以上の粗粒を、約70%得ることができる。
分級点としては、15mm〜25mmとすることができる。
(Sieving of sintered ore and coke into coarse and fine particles)
In the present invention, for the purpose of the feature point (1), the sintered ore and coke are sieved into coarse particles and fine particles to improve the air permeability of the blast furnace. Generally, when the particle size distribution of the packing is narrow, the porosity is improved.
FIG. 3 schematically shows that the porosity is improved by classification into coarse particles and fine particles.
FIG. 4 shows an example of particle size classification of sintered ore. In this example, 18 mm can be used as a classification point, and fine particles of 18 mm or less can be obtained about 30%, and coarse particles of 18 mm or more can be obtained about 70%.
The classification point can be 15 mm to 25 mm.

細粒及び粗粒の割合に対応した空隙率の変化について、一田らによる下記の式(1)の報告がある(鉄と鋼第77年(1991) 第10号 p1561-p1568)。   There is a report of the following formula (1) by Ichida et al. Regarding the change in porosity corresponding to the ratio of fine grains and coarse grains (Iron and Steel 77th (1991) No. 10, p1561-p1568).

Figure 2015074801
Figure 2015074801

ここで、εjは多成分粒子充填層の粒子jに着目した場合の層空間率であり、βj は粒子jを単独で充填した場合の層空隙率より得られる比例定数であり、Sk は体積基準の混合分率を考慮した指数、ε(j, k) は多成分粒子充填層内の着目粒子周囲の部分的な層空間率である。 Here, ε j is the layer space ratio when focusing on the particle j of the multi-component particle packed layer, β j is a proportional constant obtained from the layer porosity when the particle j is packed alone, and S k is The index ε (j, k) taking into account the volume-based mixing fraction is a partial layer space ratio around the target particle in the multi-component particle packed bed.

式(1)を用い粒度分級割合に応じた空隙率を計算した。図5に粒度分級割合に応じた空隙率を示す。細粒焼結鉱の割合が、20質量%〜40質量%の範囲(粗粒焼結鉱は、80質量%〜60質量%)で、細粒層と粗粒層の合計の空隙率が大きい。この結果より、焼結鉱の粒径篩分けは、細粒焼結鉱が20%〜40%、粗粒焼結鉱が80%〜60%で粒径篩分けして高炉に装入すると、焼結充填層の空隙率が向上し、高炉の通気性が向上することが分かった。   The porosity according to the particle size classification ratio was calculated using Formula (1). FIG. 5 shows the porosity according to the particle size classification ratio. The ratio of the fine-grained sintered ore is in the range of 20% by mass to 40% by mass (the coarse-grained ore is 80% by mass to 60% by mass), and the total porosity of the fine-grained layer and the coarse-grained layer is large. . From this result, the particle size sieving of the sintered ore is 20% to 40% for fine sinter and 80% to 60% for coarse sinter and charged into the blast furnace. It was found that the porosity of the sintered packed bed was improved and the air permeability of the blast furnace was improved.

(粗粒焼結鉱の装入方法)
本発明では、篩分けによる細粒焼結鉱及び粗粒焼結鉱をその堆積特性に対応して炉径方向の装入位置を変える。
、C、O、Oの4バッチに対して、細粒焼結鉱をO1に用い、粗粒焼結鉱をOに用いることで、上記の本願の特徴ポイント(1)を実現する。Oは、焼結鉱の80%〜60%を占める粗粒焼結鉱とすることで、炉全体の空隙率を上げ、通気性の向上を図ることができる。
そして、粗粒焼結鉱に細粒コークス(略10mm〜50mm)を混合することで、更に、焼結層の通気性を良くし生産性を向上させると同時に、焼結鉱と細粒コークスの粒子を近接させることにより、焼結鉱の還元性を向上させ、還元材比を低下させ上記の本願の特徴ポイント(2)を実現することができる。
(Method of charging coarse grain sintered ore)
In the present invention, the charging position in the furnace radial direction is changed in accordance with the deposition characteristics of fine-grained sintered ore and coarse-grained sintered ore by sieving.
For 4 batches of C 1 , C 2 , O 1 , and O 2 , the fine-grained sintered ore is used for O 1 and the coarse-grained sintered ore is used for O 2. ). O 2 is a coarse-grained sintered ore that occupies 80% to 60% of the sintered ore, thereby increasing the porosity of the entire furnace and improving the air permeability.
And by mixing fine-grained coke (approximately 10 mm to 50 mm) with coarse-grained sintered ore, the air permeability of the sintered layer is further improved and the productivity is improved. By bringing the particles close to each other, the reducibility of the sintered ore can be improved, the reducing material ratio can be lowered, and the feature point (2) of the present application can be realized.

粗粒焼結鉱と細粒コークスの混合方法は、槽からの切り出しによって実施する。図6に槽からの原料切り出しによる輸送ベルト上の原料混合を示す。粗粒焼結鉱槽1から切り出された輸送ベルト3上の粗粒焼結鉱の上に細粒コークス槽2から切り出された細粒コークスを乗せ、ブレンドする。
細粒コークスの粗粒焼結鉱への混合量は、50kg/t−pig以下が好ましい。50kg/t−pigを超えると細粒コークスは、炉内の直接還元により消費されずに残留し、下層であるC層に侵入し、C層のコークス空隙率を低下させ、通気阻害を起こすからである。
The mixing method of coarse-grained sintered ore and fine-grained coke is carried out by cutting out from the tank. FIG. 6 shows the raw material mixing on the transport belt by cutting out the raw material from the tank. The fine-grained coke cut out from the fine-grained coke tank 2 is placed on the coarse-grained sintered ore on the transport belt 3 cut out from the coarse-grained sintered ore tank 1 and blended.
The amount of fine coke mixed with coarse sintered ore is preferably 50 kg / t-pig or less. Fine coke exceeds 50 kg / t-pig is to remain without being consumed by the direct reduction in the furnace, it penetrates into C 1 layer is the lower layer, to reduce the coke porosity of C 1 layer, ventilation inhibition Because it wakes up.

(細粒焼結鉱の装入方法)
細粒焼結鉱は、粗粒コークスを混合し、C、C、O、Oの4バッチ装入のOとして装入する。上記特徴ポイント(3)の炉壁近傍の鉱石充填層の通気性を向上させるため、粗粒コークスを焼結鉱層中に混合させる。テラス上の焼結鉱は、微粒の偏析がなく、燒結鉱に混合した粗粒コークスは、通気性の向上に貢献する。
細粒焼結鉱への粗粒コークスの混合量は、20kg/t−pig以下が好ましい。粗粒コークスの適正混合量は、テラス長さに応じて変化するが、通常操業のテラス長さが1.2〜1.5mであり、このテラス上のみに粗粒コークスを局所的に50kg/t−pig装入しようとすると、炉内平均としては20kg/t−pigの混合量となる。即ち20kg/t−pigは、テラス上の焼結鉱で見れば、50kg/t−pigに相当する。
(Method of charging fine-grained sintered ore)
The fine-grained sinter is mixed with coarse-grained coke and charged as O 1 in a 4-batch charge of C 1 , C 2 , O 1 , and O 2 . In order to improve the air permeability of the ore packed bed in the vicinity of the furnace wall of the feature point (3), coarse coke is mixed in the sintered ore layer. The sintered ore on the terrace has no segregation of fine particles, and the coarse-grained coke mixed with the sintered ore contributes to the improvement of air permeability.
The mixing amount of the coarse-grained coke into the fine-grained sintered ore is preferably 20 kg / t-pig or less. The proper mixing amount of coarse coke varies depending on the terrace length, but the normal operation terrace length is 1.2 to 1.5 m. When trying to charge t-pig, the average amount in the furnace is 20 kg / t-pig. That is, 20 kg / t-pig corresponds to 50 kg / t-pig when viewed from the sintered ore on the terrace.

図7に本発明におけるC、C、O、Oの4バッチ装入の装入物堆積形状の一例を示す。各バッチの装入量(t)を表1に示す量とし、焼結鉱の粒度分布を図8、コークスの粒度分布を図9とし、装入物分布モデルにより計算したものである。
ここで、装入物分布モデルは、プロフィール計により求められた炉頂装入物の表面形状(計測値)に対して、斜面に堆積する際の粒度偏析を考慮して原料体積層の構造を決定するシミュレーションモデルで、本発明者等によるものである(特開2000−8105号公報)。
FIG. 7 shows an example of a charge accumulation shape of four batches of C 1 , C 2 , O 1 , and O 2 in the present invention. The charge amount (t) of each batch is the amount shown in Table 1, the particle size distribution of the sintered ore is shown in FIG. 8, the particle size distribution of the coke is shown in FIG. 9, and is calculated by the charge distribution model.
Here, the charge distribution model is based on the surface shape (measured value) of the furnace top charge obtained by the profile meter, considering the particle size segregation when depositing on the slope. This simulation model is determined by the present inventors (Japanese Patent Laid-Open No. 2000-8105).

Figure 2015074801
Figure 2015074801

図10に炉壁近傍(図7のP,P断面)における装入物の堆積状況を示す。Cは、コークス層で、融着帯におけるコークススリットとして、通気に貢献する。Oは、細粒焼結鉱に粗粒コークスが混合した層であり、炉壁近傍の通気維持を図る。Oは、粗粒焼結鉱に細粒コークスが混合した層であり、通気性の維持と焼結鉱の還元性の向上が図られる。
これより、本願発明の特徴ポイント(1)、(2)、(3)を満たした装入物分布制御が確保され、安定的に通気性ならびに還元性改善効果が期待できる。
FIG. 10 shows the state of deposit accumulation in the vicinity of the furnace wall (P and P cross sections in FIG. 7). C 1 is a coke layer, as coke slits in the cohesive zone, contributes to ventilation. O 1 is a layer in which coarse-grained coke is mixed with fine-grained sintered ore, and maintains airflow in the vicinity of the furnace wall. O 2 is a layer in which fine-grained coke is mixed with coarse-grained sintered ore, so that air permeability can be maintained and the reducing property of the sintered ore can be improved.
As a result, the charge distribution control satisfying the characteristic points (1), (2) and (3) of the present invention is ensured, and a stable improvement in air permeability and reduction can be expected.

本発明の効果を確認するため、高炉内の反応、流動、伝熱を考慮した高炉トータルシミュレータを用いて検証計算を行った。
高炉トータルシミュレータは、高炉を昇温帯、還元帯、ソリュ−ションロス帯、融着帯、滴下帯にそれぞれのゾーンに分割することで、実高炉における各領域の機能を模したものであり、各ゾーンにおける熱収支、物質収支、反応を考慮するものである。
計算条件として、内容積が4500mの高炉を想定し、出銑比3.0の高出銑比操業を仮定した。
従来操業に対して、酸素富化率を表2に示すように出銑比に対して増加させ、出銑比を3.0まで増加させた。
比較例1は、出銑比2.0程度の従来操業である。比較例2は、従来操業の装入物分布をそのまま適用した出銑比3.0の操業である。
本発明例は、装入物分布の条件は、図8及び図9を用い、粗粒焼結鉱分級割合80%、粗粒焼結鉱への細粒コークス混合量50kg/t−pig、細粒焼結鉱へのコークス混合量20kg/t−pigとして、出銑比3.0の操業を設定した。なお、送風温度、送風湿分、コークス比を共通の計算前提とし、溶銑温度が全ての計算結果で等しくなるように微粉炭比と送風量を操作した。
表2に計算結果を示す。比較例2では、比較例1と比べて大幅に圧力損失が増加する。これに対し、本発明例は、圧力損失の低下が見られた。また、本発明例では、圧力損失の低減だけでなく、ガス利用率の向上も増加した。
以上の高炉トータルシミュレータによる検証の結果、本発明の装入物分布制御は、出銑量の増加による通気性の上昇を抑制し、高炉内の通気性の向上に大きく寄与することがわかった。
In order to confirm the effect of the present invention, verification calculation was performed using a blast furnace total simulator that takes into account the reaction, flow, and heat transfer in the blast furnace.
The blast furnace total simulator imitates the function of each area in the actual blast furnace by dividing the blast furnace into a zone of heating zone, reduction zone, solution loss zone, fusion zone, and dripping zone. The heat balance, mass balance, and reaction are taken into account.
As calculation conditions, a blast furnace with an internal volume of 4500 m 3 was assumed, and a high output ratio operation with an output ratio of 3.0 was assumed.
Compared to the conventional operation, the oxygen enrichment rate was increased with respect to the output ratio as shown in Table 2, and the output ratio was increased to 3.0.
The comparative example 1 is a conventional operation with an output ratio of about 2.0. The comparative example 2 is an operation with an output ratio of 3.0 to which the charge distribution of the conventional operation is applied as it is.
In the example of the present invention, the charge distribution conditions are shown in FIGS. 8 and 9, the coarse sinter classification ratio is 80%, the fine coke mixing amount to the coarse sinter is 50 kg / t-pig, An operation with a brewing ratio of 3.0 was set as a coke mixing amount of 20 kg / t-pig to the grain sintered ore. Note that the blast temperature, the blast moisture, and the coke ratio were assumed to be the common calculation premise, and the pulverized coal ratio and the blast amount were manipulated so that the hot metal temperature became equal in all the calculation results.
Table 2 shows the calculation results. In Comparative Example 2, the pressure loss is significantly increased as compared with Comparative Example 1. On the other hand, in the example of the present invention, a decrease in pressure loss was observed. Further, in the example of the present invention, not only the pressure loss was reduced but also the improvement of the gas utilization rate was increased.
As a result of the above-described verification by the blast furnace total simulator, it was found that the charge distribution control of the present invention significantly suppresses the increase in air permeability due to the increase in the amount of tuna and greatly contributes to the improvement of the air permeability in the blast furnace.

Figure 2015074801
Figure 2015074801

ベルレス高炉において、コークス及び焼結鉱の品質向上に頼ることなく、焼結鉱の粒径及びコークスの粒径を径方向で変更することにより、高出銑、低還元材比操業の達成に利用することができる。   In the bell-less blast furnace, without relying on the improvement of coke and sintered ore quality, by changing the particle size of the sintered ore and coke in the radial direction, it can be used to achieve the operation with high output and low reducing material ratio. can do.

1…粗粒焼結鉱槽、2…細粒コークス槽、3…輸送ベルト、4…旋回シュート、5…粗粒コークス、6…微粉コークス。   DESCRIPTION OF SYMBOLS 1 ... Coarse-grain sintered ore tank, 2 ... Fine-grain coke tank, 3 ... Transport belt, 4 ... Swirling chute, 5 ... Coarse-grain coke, 6 ... Fine coke.

Claims (4)

高炉への装入前に焼結鉱及びコークスを粗粒と細粒の粒径に篩分けし、細粒焼結鉱と粗粒コークスの一部が炉壁近傍において混合して存在するよう装入し、粗粒焼結鉱と細粒コークスが炉壁近傍から中心コークス近傍の領域において混合して存在するよう装入することを特徴とする高炉操業方法。   Prior to charging into the blast furnace, the sinter and coke are screened into coarse and fine grain sizes so that some of the fine sinter and coarse coke are mixed and present in the vicinity of the furnace wall. The blast furnace operating method is characterized in that the coarse sinter and fine coke are charged so as to be mixed in the region near the furnace wall to the central coke. 前記焼結鉱の粒径篩分けは、細粒焼結鉱が20%〜40%で、粗粒焼結鉱が80%〜60%であることを特徴とする請求項1に記載の高炉操業方法。   2. The blast furnace operation according to claim 1, wherein the sintered ore has a particle size sieving of 20% to 40% of fine-grained sintered ore and 80% to 60% of coarse-grained ore. Method. 前記細粒焼結鉱への前記粗粒コークスの混合量は、0kg/t−pigを超え、20kg/t−pig以下であることを特徴とする請求項1又は請求項2に記載の高炉操業方法。   The blast furnace operation according to claim 1 or 2, wherein a mixing amount of the coarse-grained coke into the fine-grained sintered ore is more than 0 kg / t-pig and not more than 20 kg / t-pig. Method. 前記粗粒焼結鉱への前記細粒コークスの混合量が0kg/t−pigを超え、50kg/t−pig以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の高炉操業方法。   The mixing amount of the fine-grained coke into the coarse-grained sintered ore is more than 0 kg / t-pig and not more than 50 kg / t-pig. Blast furnace operation method.
JP2013211337A 2013-10-08 2013-10-08 Blast furnace operation method Active JP6167829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211337A JP6167829B2 (en) 2013-10-08 2013-10-08 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211337A JP6167829B2 (en) 2013-10-08 2013-10-08 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2015074801A true JP2015074801A (en) 2015-04-20
JP6167829B2 JP6167829B2 (en) 2017-07-26

Family

ID=52999910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211337A Active JP6167829B2 (en) 2013-10-08 2013-10-08 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP6167829B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157794A1 (en) * 2015-03-30 2016-10-06 Jfeスチール株式会社 Method for charging feedstock into blast furnace
JP2019143225A (en) * 2018-02-23 2019-08-29 日本製鉄株式会社 Method for charging blast furnace feed
JP6885528B1 (en) * 2020-01-29 2021-06-16 Jfeスチール株式会社 How to charge raw materials to the blast furnace
WO2021152989A1 (en) * 2020-01-29 2021-08-05 Jfeスチール株式会社 Method for charging raw material into blast furnace
CN113416807A (en) * 2021-05-25 2021-09-21 鞍钢股份有限公司 Charging method for improving air permeability in large-scale blast furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140006A (en) * 1986-12-01 1988-06-11 Kawasaki Steel Corp Method for charging raw material into blast furnace
JPS6447802A (en) * 1987-08-18 1989-02-22 Nippon Steel Corp Blast furnace operating method
JPH0873908A (en) * 1994-09-09 1996-03-19 Nkk Corp Apparatus for controlling grain size of charging material in bell-less blast furnace
JPH08120311A (en) * 1994-10-18 1996-05-14 Nippon Steel Corp Method for charging raw material of blast furnace
JP2002003910A (en) * 2000-06-23 2002-01-09 Nippon Steel Corp Method for operating blast furnace
JP2002256311A (en) * 2001-02-28 2002-09-11 Nkk Corp Method for charging raw material for blast furnace into furnace
JP2011068926A (en) * 2009-09-24 2011-04-07 Nippon Steel Corp Method for charging raw material into blast furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140006A (en) * 1986-12-01 1988-06-11 Kawasaki Steel Corp Method for charging raw material into blast furnace
JPS6447802A (en) * 1987-08-18 1989-02-22 Nippon Steel Corp Blast furnace operating method
JPH0873908A (en) * 1994-09-09 1996-03-19 Nkk Corp Apparatus for controlling grain size of charging material in bell-less blast furnace
JPH08120311A (en) * 1994-10-18 1996-05-14 Nippon Steel Corp Method for charging raw material of blast furnace
JP2002003910A (en) * 2000-06-23 2002-01-09 Nippon Steel Corp Method for operating blast furnace
JP2002256311A (en) * 2001-02-28 2002-09-11 Nkk Corp Method for charging raw material for blast furnace into furnace
JP2011068926A (en) * 2009-09-24 2011-04-07 Nippon Steel Corp Method for charging raw material into blast furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157794A1 (en) * 2015-03-30 2016-10-06 Jfeスチール株式会社 Method for charging feedstock into blast furnace
JP6041073B1 (en) * 2015-03-30 2016-12-07 Jfeスチール株式会社 Raw material charging method to blast furnace
JP2019143225A (en) * 2018-02-23 2019-08-29 日本製鉄株式会社 Method for charging blast furnace feed
JP7003725B2 (en) 2018-02-23 2022-01-21 日本製鉄株式会社 How to charge blast furnace raw materials
JP6885528B1 (en) * 2020-01-29 2021-06-16 Jfeスチール株式会社 How to charge raw materials to the blast furnace
WO2021152989A1 (en) * 2020-01-29 2021-08-05 Jfeスチール株式会社 Method for charging raw material into blast furnace
CN115023508A (en) * 2020-01-29 2022-09-06 杰富意钢铁株式会社 Method for charging raw material into blast furnace
CN113416807A (en) * 2021-05-25 2021-09-21 鞍钢股份有限公司 Charging method for improving air permeability in large-scale blast furnace
CN113416807B (en) * 2021-05-25 2022-05-20 鞍钢股份有限公司 Charging method for improving air permeability in large-scale blast furnace

Also Published As

Publication number Publication date
JP6167829B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
JP6167829B2 (en) Blast furnace operation method
JPWO2013179541A1 (en) Raw material charging method for bell-less blast furnace
JP4971812B2 (en) Blast furnace operation method
EP2851435B1 (en) Method for charging starting material into blast furnace
CN106414778A (en) Production method of granular metallic iron
JP2008056985A (en) Method for operating blast furnace
JP2013147692A (en) Method of operating blast furnace at high tapping ratio of pig iron
JP6260751B2 (en) Raw material charging method to blast furnace
JP5834922B2 (en) Blast furnace operation method
JP6198649B2 (en) Raw material charging method for blast furnace
JP4765723B2 (en) Method of charging ore into blast furnace
JP4725230B2 (en) Method for producing sintered ore
JP5338308B2 (en) Raw material charging method to blast furnace
JP5338310B2 (en) Raw material charging method to blast furnace
JP2012021227A (en) Method for operating blast furnace, and top bunker
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP4759985B2 (en) Blast furnace operation method
JP2007270203A (en) Method for operating blast furnace
JP6558519B1 (en) Raw material charging method for blast furnace
JP5884208B1 (en) Raw material charging method to blast furnace
JP2797917B2 (en) Blast furnace operation method
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP2018070954A (en) Method for loading raw materials into blast furnace
JP2000226608A (en) Operation of blast furnace
JP6627717B2 (en) Raw material charging method for blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R151 Written notification of patent or utility model registration

Ref document number: 6167829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350