JP4617689B2 - Raw material charging method in a blast furnace equipped with a bellless raw material charging device - Google Patents

Raw material charging method in a blast furnace equipped with a bellless raw material charging device Download PDF

Info

Publication number
JP4617689B2
JP4617689B2 JP2004082448A JP2004082448A JP4617689B2 JP 4617689 B2 JP4617689 B2 JP 4617689B2 JP 2004082448 A JP2004082448 A JP 2004082448A JP 2004082448 A JP2004082448 A JP 2004082448A JP 4617689 B2 JP4617689 B2 JP 4617689B2
Authority
JP
Japan
Prior art keywords
furnace
coke
raw material
charging
iron source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004082448A
Other languages
Japanese (ja)
Other versions
JP2005264292A (en
Inventor
史朗 渡壁
明紀 村尾
将功 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004082448A priority Critical patent/JP4617689B2/en
Publication of JP2005264292A publication Critical patent/JP2005264292A/en
Application granted granted Critical
Publication of JP4617689B2 publication Critical patent/JP4617689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、ベルレス原料装入装置を備えた高炉での原料装入方法に係わり、特に、高効率で安定した高炉操業を実施可能な原料の炉内装入状態にするため、鉄源原料である焼結鉱、鉄鉱石等の鉄鉱石類(所謂「オア(記号:O)」と称する)と該鉄鉱石類の還元剤及び熱源になる原料のコークス(記号:C)とを、炉頂より適切に混合して装入する技術に関する。   The present invention relates to a raw material charging method in a blast furnace equipped with a bell-less raw material charging device, and in particular, is an iron source raw material in order to bring the raw material into a furnace interior capable of performing highly efficient and stable blast furnace operation. From the top of the furnace, iron ores such as sintered ore and iron ore (referred to as “or (symbol: O)”) and coke (symbol: C) as a reducing agent and a heat source of the iron ore are used. It relates to the technology of mixing and charging properly.

固定費の負担が大きい鉄鋼業、とりわけ製銑分野においては、必要最低限の稼動設備数で最大効率の生産を行なうことが重要である。また、前記O及びCで構成する高炉原料を、できるだけ安価なものに、つまり低価格原料比率を増大して、変動費を削減することも重要である。すなわち、高炉一基あたりの生産量(出銑比)の増大、コークス使用比率の低減、あるいは安価であるが劣質の被還元性の低い原料の使用比率の増大等が今後開発される技術の方向性を示している。   In the steel industry, where the fixed cost is high, especially in the ironmaking field, it is important to produce at maximum efficiency with the minimum number of operating facilities. It is also important to reduce the variable cost by making the blast furnace raw material composed of O and C as cheap as possible, that is, increasing the low-priced raw material ratio. In other words, the direction of technology to be developed in the future is to increase the production amount (output ratio) per unit of blast furnace, reduce the coke usage ratio, or increase the usage ratio of cheap but inferior raw materials with low reducibility Showing sex.

ところで、高炉の生産性を増大させ、また使用するコークス量を低減するには、焼結鉱、ペレット、塊状鉄鉱石等の鉄源原料の粒径低下、還元性の向上等による炉内ガスの利用率向上、炉内を上昇する炉内ガス流量分布の適正化による熱バランスの改善等が有効である。また、羽ロからの微粉炭の吹込み量を増大させることによってもコークス比の低減が可能である。しかしながら、そのような操業を行うと、炉内の鉄源原料とコークスとの存在質量比(O/C)が大きくなって、図11で示す高炉炉体1上部の塊状帯2(O,Cが塊状で存在する領域)での通気性の悪化、軟化融着帯3(Oが軟化溶融している領域)の肥大化による炉下部の通気性の悪化等が引き起こされることが知られている。また、被還元性の低い鉄源原料の使用比率を増加させると、上記軟化融着帯3の肥大化や溶融物の炉内滞留という所謂「ホールドアップ」の増加による通気抵抗の上昇、未還元スラグの高炉下部への滴下による炉下部熱バランスの不安定化等の問題も引き起こされる。   By the way, in order to increase the productivity of the blast furnace and reduce the amount of coke to be used, it is possible to reduce the particle size of the iron source material such as sintered ore, pellets, massive iron ore, etc. It is effective to improve the utilization rate and to improve the heat balance by optimizing the distribution of gas flow in the furnace rising in the furnace. Also, the coke ratio can be reduced by increasing the amount of pulverized coal blown from the feathers. However, when such an operation is performed, the existing mass ratio (O / C) of the iron source material and coke in the furnace becomes large, and the massive band 2 (O, C) at the top of the blast furnace body 1 shown in FIG. It is known that the deterioration of the air permeability in the region where the gas is present in a lump shape), the deterioration of the air permeability in the lower part of the furnace due to the enlargement of the softened fusion zone 3 (the region where O is softened and melted), etc. . Further, when the use ratio of the iron source material having low reducibility is increased, the ventilation resistance is increased due to an increase in the so-called “hold-up” such as enlargement of the softening cohesive zone 3 and residence of the melt in the furnace. Problems such as destabilization of the heat balance at the bottom of the furnace due to dripping of slag into the bottom of the blast furnace are also caused.

そこで、これらの問題の対策として、従来はOだけで構成していた鉄源原料に、コークス(C)を混合させる原料装入方法が開発された。この方法は、コークスを混合すると、上記軟化融着帯3において、軟化溶融した状態にある鉄源原料に混合したコークスがスペーサー(介在物)となって該軟化融着帯3の通気性確保に貢献すること、及び還元を開始したFeO系の融液がコークスと接触し溶融還元されて一層還元特性を向上すること等に着眼した技術である。   Therefore, as a countermeasure against these problems, a raw material charging method has been developed in which coke (C) is mixed with an iron source raw material that has conventionally been composed of only O. In this method, when coke is mixed, coke mixed with the iron source material in the softened and melted state becomes a spacer (inclusion) in the softened and fused zone 3 to ensure air permeability of the softened and fused zone 3. This is a technology that focuses on making contributions and improving the reduction characteristics by bringing the reduced FeO-based melt into contact with coke and being melted and reduced.

しかしながら、焼結鉱等の鉄源原料とコークスとでは、その粒径や比重が異なるために、現在の原料装入装置では、均一に混合させることが非常に難しいという問題がある。つまり、いったん両者を混合しても、各原料槽、ホッパ、ペルトコンベヤ等、炉頂の炉内堆積面に至るまでの輸送中に、あるいは炉内堆積面上で両者が分離してしまう。そのため、装入原料の半径方向O/C分布の制御ができず、また炉中心に流れ込んだOに混合させた細粒コークスが高炉下部に存在する炉芯4(コアとも称し、塊状コークスからなる領域)に入り込んで、その空隙率を低下させる。すなわち、鉄源原料と細粒コークスとを混合させた所謂「混合装入」による実際の高炉操業では、混合層の分離による混合コークスの高炉中心部への流れ込みが最も大きな課題となっており、コークスの混合比率も、質量比率で4%程度を上限とする程度にとどまっている。ここで、コークスの混合比率は、混合装入する鉄源原料の質量に対する混合コークスの質量の比率であり、以下、同様の意味で用いる。そのため、このような混合層の分離を防止するため、従来から様々な技術が開発されている。   However, the iron source material such as sintered ore and coke have different particle sizes and specific gravity, so that there is a problem that it is very difficult to uniformly mix with the current raw material charging apparatus. That is, even if both are once mixed, they are separated during transportation to the in-furnace deposition surface at the top of the furnace such as each raw material tank, hopper, pelt conveyor, etc., or on the in-furnace deposition surface. Therefore, the radial O / C distribution of the charged raw material cannot be controlled, and the fine-grained coke mixed with O flowing into the furnace center exists in the lower part of the blast furnace 4 (also referred to as a core, which is composed of massive coke. Enter the region) and lower its porosity. That is, in actual blast furnace operation by so-called `` mixing charging '' in which iron source raw material and fine-grained coke are mixed, the flow of mixed coke into the blast furnace center by separation of the mixed layer is the biggest issue, The mixing ratio of coke is limited to about 4% by mass ratio. Here, the mixing ratio of the coke is a ratio of the mass of the mixed coke to the mass of the iron source material to be mixed and is used in the same meaning hereinafter. Therefore, in order to prevent such separation of the mixed layer, various techniques have been conventionally developed.

例えば、鉄源原料及びコークスを一時貯留する複数の炉頂バンカと旋回シュートとからなるベルレス原料装入装置を備えた高炉での原料装入において、原料を炉中心側から炉壁側に装入するように旋回シュートの傾動角θ(通常、この傾動角θは、旋回シュートの長手軸が鉛直方向と一致した場合をゼロ度としている)を変更しながら、原料の炉中心側への流れ込みを防止する技術を開示している(特許文献1参照)。つまり、炉中心側から炉壁側へ順次原料を装入することにより、先のシュート旋回時の装入物で次のシュート旋回時の装入物が中心へ流れ込むことを防止するものである。また、混合原料の炉内での堆積角度(水平を基準に)が20°を超えないようにすることによって、特許文献1記載の技術をより効果あるものとする技術も開示されている(特許文献2参照)。これらの技術により、高炉炉頂での原料堆積面上で鉄源原料とコークスとの分離は大幅に抑制されるようになった。しかしながら、鉄源原料とコークスとの混合物が旋回シュートに至るまでのベルトコンベア上での分離、炉頂バンカ内での堆積時における分離及びそれらによる偏析分布を抑制することはできない。そのため、これらの技術を用いても、炉内において目標とするコークスの混合比率分布(つまり、炉半径方向で混合比率が均一)を実現することは難しかった。   For example, in raw material charging in a blast furnace equipped with a bell-less raw material charging device consisting of a plurality of furnace top bunkers that temporarily store iron source raw material and coke and a rotating chute, the raw material is charged from the furnace center side to the furnace wall side. Thus, while changing the tilt angle θ of the swivel chute (usually, this tilt angle θ is zero degrees when the longitudinal axis of the swivel chute coincides with the vertical direction), the raw material flows into the furnace center side. The technique to prevent is disclosed (refer patent document 1). That is, by sequentially charging the raw material from the furnace center side to the furnace wall side, the charge at the time of the previous chute turning prevents the charge at the time of the next chute turning from flowing into the center. In addition, there is also disclosed a technique that makes the technique described in Patent Document 1 more effective by preventing the deposition angle of the mixed raw material in the furnace (on the basis of horizontal) from exceeding 20 ° (patent). Reference 2). With these technologies, separation of iron source material and coke on the material deposition surface at the top of the blast furnace furnace has been greatly suppressed. However, separation on the belt conveyor until the mixture of the iron source material and coke reaches the swivel chute, separation during deposition in the furnace top bunker, and segregation distribution due to them cannot be suppressed. Therefore, even if these techniques are used, it has been difficult to achieve a target coke mixing ratio distribution (that is, a uniform mixing ratio in the furnace radial direction) in the furnace.

さらに、鉄源原料及びコークスをそれぞれ複数の炉頂バンカに蓄え、それらを同時に切り出すことによって混合率の制御を行う技術も開示されている(特許文献3参照)。しかしながら、この技術でも、高炉炉頂の原料堆積面上で混合したコークスと鉄源原料との分離を防止することはできず、混合したコークスの炉中心部への流れ込みのために、高炉1の滴下帯5(前記軟化融着帯の下方にあって、融液が上方より落下してくる領域)での通気性、通液性が悪化する可能性がある。また、同様の理由によって、炉半径方向でのガス流比率を制御することが極めて困難となる。   Furthermore, a technique for controlling the mixing ratio by storing iron source materials and coke in a plurality of furnace top bunkers respectively and cutting them simultaneously is also disclosed (see Patent Document 3). However, even with this technique, separation of the coke mixed on the raw material deposition surface at the top of the blast furnace furnace and the iron source raw material cannot be prevented. There is a possibility that the air permeability and liquid permeability in the dripping zone 5 (a region below the softening fusion zone where the melt falls from above) may deteriorate. For the same reason, it is extremely difficult to control the gas flow ratio in the furnace radial direction.

以上述べたように、従来の技術では、鉄源原料へのコークスの混合比率を一定値以上に増加させ、且つ高炉の半径方向で該混合比率を均一にするような原料装入を行うことは難しかった。
特開昭62−127414号公報 特開昭62−260010号公報 特開昭61−243107号公報
As described above, in the conventional technology, it is possible to increase the mixing ratio of the coke to the iron source material to a certain value or more and perform the raw material charging so that the mixing ratio is uniform in the radial direction of the blast furnace. was difficult.
Japanese Patent Laid-Open No. 62-127414 JP 62-260010 A JP 61-243107 A

本発明は、かかる事情に鑑み、高炉炉頂より鉄源原料とコークスとを混合させて装入しても、原料堆積面上での鉄源原料とコークスとの分離が抑制できると共に、形成された混合層中のコークスの混合比率が炉内半径方向で均一になるベルレス原料装入装置を備えた高炉での原料装入方法を提供することを目的としている。   In view of such circumstances, the present invention is formed while suppressing separation of the iron source material and coke on the material deposition surface even if the iron source material and coke are mixed and charged from the top of the blast furnace. Another object of the present invention is to provide a raw material charging method in a blast furnace equipped with a bellless raw material charging device in which the mixing ratio of coke in the mixed layer is uniform in the radial direction of the furnace.

鉄源原料とコークスとは、貯鉱槽や貯骸槽からの切り出す段階で混合した場合でも、その後に、輸送中の振動やベルトコンベアから各種ホッパへの受け渡し等のハンドリングにおける再堆積により、その粒径、比重の相違に起因した分離が生じる。従って、それらを混合させる位置としては、混合後のハンドリングができるだけ少ないことが望ましく、炉頂バンカからの切り出し時に混合させるのが最も好ましいと考えられる。そこで、発明者は、炉頂バンカから同時に切り出した鉄源原料とコークスとが炉頂の堆積面上で再分離するのをできる限り抑制することに着眼して研究を重ね、その成果を本発明に具現化したのである。   Even if the iron source material and coke are mixed at the stage of cutting out from the storage tank or the storage tank, they are then re-deposited during handling such as vibration during transportation and delivery from the belt conveyor to various hoppers. Separation occurs due to the difference in particle size and specific gravity. Therefore, it is desirable that the position where they are mixed is as little as possible after the mixing, and it is considered most preferable that they are mixed at the time of cutting from the furnace bunker. Therefore, the inventor has repeatedly studied to suppress as much as possible the re-separation of the iron source material and coke simultaneously cut from the furnace top bunker on the deposition surface of the furnace top, and the results of the present invention It was embodied in.

すなわち、本発明は、炉頂バンカにそれぞれ保持した鉄源原料及びコークスを、該炉頂バンカの底部に設けた流量調整ゲートを経て同時に切出して混合した後、旋回シュートを介して炉内へ装入するに際して、前記旋回シュートの傾動角を1旋回毎に炉中心側から炉壁側へ向けて大きくなるように炉内装入を行う際には、前記コークスの切出し量をシュート旋回数の増加につれて複数段階にわたって増加し、炉壁側から炉中心側へ向けて小さくなるように炉内装入を行う際には、前記コークスの切出し量をシュート旋回数の増加につれて複数段階にわたって減少させることを特徴とするベルレス原料装入装置を備えた高炉での原料装入方法である
That is, the present invention is to cut out and mix the iron source material and coke respectively held in the furnace top bunker through the flow rate adjusting gate provided at the bottom of the furnace top bunker and then into the furnace via the swivel chute. When entering the furnace interior so that the tilt angle of the swivel chute increases from the furnace center side to the furnace wall side for each turn, the amount of cut out coke is increased as the number of chute turns increases. When entering into the furnace so that it increases over a plurality of stages and decreases from the furnace wall side toward the furnace center side, the amount of cut out coke is decreased over a plurality of stages as the number of chute turns increases. This is a raw material charging method in a blast furnace equipped with a bellless raw material charging device .

本発明によれば、炉内における鉱石コークス混合層中のコークス混合率を炉半径方向で一定とすることができ、炉内半径方向のガス流分布を安定させることができる。その結果、高炉操業の制御性が向上し、生産量の増大や、安価原料の多量使用など、種々の操業条件での安定した操業が可能となる。   According to the present invention, the coke mixing ratio in the ore coke mixed layer in the furnace can be made constant in the furnace radial direction, and the gas flow distribution in the furnace radial direction can be stabilized. As a result, the controllability of blast furnace operation is improved, and stable operation under various operating conditions such as an increase in production volume and a large amount of low-cost raw materials becomes possible.

以下、発明をなすに至った経緯をまじえ、本発明の最良の実施形態を説明する。 まず、発明者は、ベルレス原料装入装置の縮尺模型を用いた実験により、炉内における鉄源原料及びコークス混合層中のコークス混合比率を炉半径方向で一定とする手段の発見に努力した。該実験に用いたのは、図10に概略を示す実高炉の1/17.8の縮尺模型であり、実機の原料排出経時変化を再現するために、貯鉱槽6、貯骸槽7、計量ホッパ8、ベルレス原料装入装置9、高炉の炉体1で構成してある。なお、実機のベルレス原料装入装置9は、図9に概略を示すように、鉄源原料10及びコークス11をそれぞれ保持する炉頂バンカ12と、該炉頂バンカ12の底部に設けられ、切り出す鉄源原料及びコークスの量を調整する流量調整ゲート13と、同時に切出されて混合した混合物を炉内へ装入する旋回シュート14とを備えており、図10の模型においても炉頂バンカ、流量調整ゲート、旋回シュートを備えている。また、この実験では、炉体1の下部に設けたガス吹き込みロ15を介してブロア16からの送風を行うと共に、炉内に蓄積した鉄源原料等の装入物は、炉体1の底部に設けた電磁フィーダ17で抜き出せるようになっている。   Hereinafter, the best embodiment of the present invention will be described based on the background of the invention. First, the inventor made an effort to find a means for making the iron source material in the furnace and the coke mixing ratio in the coke mixed layer constant in the furnace radial direction by an experiment using a scale model of the bellless material charging apparatus. In this experiment, a 1 / 17.8 scale model of an actual blast furnace schematically shown in FIG. 10 is used. In order to reproduce the change in the material discharge over time of the actual machine, the storage tank 6, the storage tank 7, It comprises a weighing hopper 8, a bellless raw material charging device 9, and a furnace body 1 of a blast furnace. The actual bellless raw material charging device 9 is provided at the top of the furnace top bunker 12 holding the iron source raw material 10 and the coke 11 and the bottom of the furnace top bunker 12, as shown schematically in FIG. 10 includes a flow rate adjusting gate 13 for adjusting the amount of iron source material and coke, and a turning chute 14 for charging the mixture that is simultaneously cut and mixed into the furnace. It has a flow rate adjustment gate and a swivel chute. In this experiment, air is blown from the blower 16 through a gas blowing roller 15 provided in the lower part of the furnace body 1, and charged materials such as iron source materials accumulated in the furnace are stored at the bottom of the furnace body 1. It can be pulled out by the electromagnetic feeder 17 provided in.

実験は、想定した実験条件に基づいて鉄源原料及びコークスの装入量等を決定して行なった。例えば、鉄源原料を1バッチで装入しコークスを2バッチに分割して装入する場合、それぞれの装入量を模型の縮尺比率によって粒径分布ごとに決め、計量ホッパ8からの排出速度を相似条件に応じて決定した。また、旋回シュート14の傾動角や旋回速度は、予めパターン化して自動的に変化させるようにした。さらに、各バッチの装入終了後には、レーザー変位計を用いて、装入したコークス、鉄源原料及びそれらの混合物の炉内での堆積形状を測定した。加えて、装入の終了後には、堆積面上の半径方向に沿って、直径30mm、長さ150mmの円筒管を差込み、該円筒管を介して吸い込みにより鉄源原料、コークス等を採集した。採取した試料は、ヨウ化ナトリウム水溶液を用いて比重分離し、コークス、鉄源原料に分けて採取重量を測定し、コークスの混合比率を確認すると共に、それぞれについての粒径分析も行った。さらに加えて、堆積面の上方から樹脂を流し込み、固化後に切断して炉半径方向に沿った断面(充填状態)の観察を行った。その際用いたエポキシ樹脂は、粘性が極めて低く、硬化時間も制御できるため、樹脂の流し込み中に装入物の堆積面を崩すことはなかった。   The experiment was carried out by determining the iron source material and the amount of coke charged based on the assumed experimental conditions. For example, when the iron source material is charged in one batch and the coke is divided and charged in two batches, the amount of each charge is determined for each particle size distribution by the scale ratio of the model, and the discharge speed from the weighing hopper 8 is determined. Was determined according to the similarity condition. Further, the tilt angle and the turning speed of the turning chute 14 are automatically changed by patterning in advance. Furthermore, after the charging of each batch was completed, the deposition shape in the furnace of the charged coke, the iron source material, and the mixture thereof was measured using a laser displacement meter. In addition, after the charging was completed, a cylindrical tube having a diameter of 30 mm and a length of 150 mm was inserted along the radial direction on the deposition surface, and the iron source material, coke and the like were collected by suction through the cylindrical tube. The collected samples were separated by specific gravity using an aqueous solution of sodium iodide, and the collected weight was measured for coke and iron source raw materials to confirm the mixing ratio of the coke, and the particle size analysis was performed for each. In addition, a resin was poured from above the deposition surface, cut after solidification, and observed in a cross section (filled state) along the furnace radial direction. The epoxy resin used at that time had a very low viscosity and the curing time could be controlled, so that the deposit surface of the charge was not destroyed during the pouring of the resin.

以下に、実験結果及び本発明の最良の実施形態を示す。   The experimental results and the best embodiment of the present invention are shown below.

まず、1回の装入についての旋回シュートの傾動角及び旋回数をパターン化した。そして、下記の装入パターンAを採用し、装入を行った。1回の装入に用いたコークス量の全量は7.1kgであり、このコークスは2バッチに分割して、2つ目のコークスバッチで鉄源原料とコークスの混合装入を行った。鉄源原料へのコ一クスの混合量は2.7kgとした。なお、鉄源原料としては、0.21〜2.8mmの粒度に調整した焼結鉱を、コークスとしては粒径2.0〜5.6mmのものを用いた。

・装入パターンA(装入物の落下位置が炉壁側から炉中心側へ移動させるパターン)
1(コークスのみ):54°×2旋回、53°×2旋回、52°×3旋回、51°×2旋回、50°×1旋回、49°×1旋回、48°×1旋回、47°×1旋回、38°×1旋回、32°×2旋回、26°×1旋回、20°×1旋回
2+O(混合装入):52°×3旋回、50°×2旋回、48°×2旋回、46°×1旋回、44°×1旋回、42°×1旋回、40°×1旋回、38°×1旋回、36°×1旋回

最初の実験は、コークスのみの装入(C1)及び混合装入(C2+O)のいずれも、炉頂バンカからの鉄源原料(図8参照)及びコークス(図7参照)の切り出し速度が装入中にそれぞれ一定となるように、流量調整ゲート13の開度を調整して行った。その結果は、炉半径方向に沿ったコークスの混合比率で評価することとし、その測定値を図6に整理した。図6より、炉中心部に近いほどコークスの混合比率が増加していることが明らかである。これは、鉄源原料及びコークスの混合層が、それらの堆積面上を流れ落ちる際に、コークスと鉄源原料とが分離して、コークスが斜面の裾野に偏在するようになったからである。つまり、一般に、粒度分布または密度差を持つ粒子が斜面上を流れ込むと、パーコレーション(分級作用)を起こして斜面下方に粗粒が、斜面上方に細粒が多く存在するようになるが、コークスと鉄源原料の混合物の場合にも同じ現象が起き、堆積面上で流れ落ちる距離が長いほど、この偏在効果が促進して互いに分離するようになったのである。
First, the tilt angle and the number of turns of the turning chute for one charge were patterned. Then, the following charging pattern A was adopted to perform charging. The total amount of coke used for one charge was 7.1 kg. This coke was divided into two batches, and the iron source material and coke were mixed and charged in the second coke batch. The amount of coke mixed with the iron source material was 2.7 kg. In addition, as the iron source material, a sintered ore adjusted to a particle size of 0.21 to 2.8 mm and a coke having a particle size of 2.0 to 5.6 mm were used.

・ Charging pattern A (pattern in which the dropping position of the charge is moved from the furnace wall side to the furnace center side)
C 1 (Coke only): 54 ° × 2 turns, 53 ° × 2 turns, 52 ° × 3 turns, 51 ° × 2 turns, 50 ° × 1 turns, 49 ° × 1 turns, 48 ° × 1 turns, 47 ° × 1 turn, 38 ° × 1 turn, 32 ° × 2 turn, 26 ° × 1 turn, 20 ° × 1 turn C 2 + O (mixed charging): 52 ° × 3 turns, 50 ° × 2 turns, 48 ° × 2 turns, 46 ° × 1 turn, 44 ° × 1 turn, 42 ° × 1 turn, 40 ° × 1 turn, 38 ° × 1 turn, 36 ° × 1 turn

In the first experiment, the coke-only charging (C 1 ) and the mixed charging (C 2 + O) were both the iron source material (see FIG. 8) and the coke (see FIG. 7) cutting speed from the top bunker. Was adjusted by adjusting the opening of the flow rate adjusting gate 13 so that each became constant during charging. The results were evaluated based on the mixing ratio of coke along the furnace radial direction, and the measured values are shown in FIG. From FIG. 6, it is clear that the mixing ratio of coke increases as it is closer to the furnace center. This is because when the mixed layer of the iron source material and the coke flows down on the deposition surface, the coke and the iron source material are separated, and the coke is unevenly distributed at the bottom of the slope. That is, in general, when particles with a particle size distribution or density difference flow on the slope, percolation (classification action) occurs, and coarse particles are present below the slope and many fine grains are present above the slope. The same phenomenon also occurred in the case of a mixture of iron source materials, and the longer the distance flowing down on the deposition surface, the more this uneven distribution effect was promoted and the two became separated from each other.

このように、装入パターンAを採用しても、コークス及び鉄源原料の炉頂バンカからの切り出し量を1回の装入時期全体で一定としたのでは、炉内の堆積面で得られるコークスの混合比率は、炉半径方向で一様にならなかった。   Thus, even if the charging pattern A is adopted, if the amount of coke and iron source material cut out from the furnace top bunker is made constant throughout the charging time, it can be obtained on the deposition surface in the furnace. The mixing ratio of coke was not uniform in the furnace radial direction.

そこで、発明者は、上記実験の結果に基づくと、炉中心部寄りで旋回シュートを旋回させる時期のコークス切出し量を、炉壁寄りで旋回させる時期より減らせば、炉内の堆積面で得られるコークスの混合比率は、炉半径方向で一様になると考え、本発明に想到した。そして、この考えを確認するため、具体的に、図5に示すように、装入パターンAの採用に加えて、2バッチ目の混合装入(C2+O)を行う際に炉頂バンカからのコークス(C2)の切出し量を旋回時期に応じて複数段階にわたって減少させることを試みた。なお、鉄源原料の切出し量は、図8の通りとした。 Therefore, based on the results of the above experiment, the inventor can obtain the amount of coke cut out at the time of turning the turning chute near the furnace center from the time of turning at the furnace wall near the furnace wall. The mixing ratio of coke was considered to be uniform in the furnace radial direction, and the present invention was conceived. And in order to confirm this idea, as shown in FIG. 5, in addition to the adoption of the charging pattern A, when performing the second batch of mixed charging (C 2 + O), from the furnace top bunker An attempt was made to reduce the amount of coke (C 2 ) cut out in multiple stages according to the turning timing. The cut-out amount of the iron source material was as shown in FIG.

その結果得られた炉半径方向に沿ったコークスの混合比率の測定値を図4に示す。図4より、炉中心部のコークス量が多くなるという偏在が減少して、炉半径方向に沿ったコークスの混合比率は、図6に示した場合に比べて一様化していることが明らかである。つまり、本発明は、炉頂バンカにそれぞれ保持した鉄源原料及びコークスを、該炉頂バンカの底部に設けた流量調整ゲートを経て同時に切出して混合した後、旋回シュートを介して炉内へ装入するに際して、前記旋回シュートの傾動角の変更に伴い前記コークスの切出し量を複数段階にわたって調整して、前記混合した鉄源原料及びコークスの1回の炉内装入を行い、前記鉄源原料及びコークスの切出し量の比率を変更するものである。この場合、炉壁側から炉中心側へ向けて旋回シュートの傾動角が小さくなるように炉内装入を行う際には、前記コークスの切出し量をシュート旋回数の増加につれて減少させるのが好ましい。   The measured value of the mixing ratio of coke along the furnace radial direction obtained as a result is shown in FIG. From FIG. 4, it is clear that the uneven distribution that the amount of coke at the center of the furnace increases decreases, and the mixing ratio of coke along the furnace radial direction is made uniform compared to the case shown in FIG. is there. That is, according to the present invention, the iron source material and coke respectively held in the furnace top bunker are cut out and mixed simultaneously through the flow rate adjusting gate provided at the bottom of the furnace top bunker, and then loaded into the furnace via the swivel chute. In order to enter, the amount of cut of the coke is adjusted in a plurality of stages in accordance with the change of the tilt angle of the swivel chute, and the mixed iron source material and coke are introduced into the furnace once, and the iron source material and The ratio of the amount of cut out coke is changed. In this case, when entering the furnace interior so that the tilt angle of the turning chute decreases from the furnace wall side toward the furnace center side, it is preferable to reduce the amount of coke cut out as the number of chute turns increases.

なお、上記の試みでは、1回の装入についての旋回シュートの傾動角及び旋回数のパターンとして前記「装入パターンA」を採用したが、そのような装入パターンは、旋回シュートの傾動角及び旋回数を変更すれば、多種のパターンが考えられる。本発明では、特に「装入パターンA」に限定するものではない。   In the above attempt, the “charging pattern A” is used as the pattern of the tilt angle and the number of turns of the turning chute for one charging, but such a charging pattern is the tilt angle of the turning chute. If the number of turns is changed, various patterns can be considered. In the present invention, it is not particularly limited to “charging pattern A”.

また、上記「装入パターンA」での試みでは、1回の装入を、装入物の落下位置が炉壁側から炉中心側へ移動させながら行うものであったが、旋回シュートの機能として、炉中心側より炉壁側へ向けて装入物の落下位置を移動させることもできる。そこで、発明者は、そのような落下位置の移動を行う装入パターンの一例として下記「装入パターンB」を定め、そのパターンを採用すると共に、混合装入時のコークス(C2)の切出し量を、図2に示すように数段階にわたって増加させる試みを行った。 Further, in the trial with the “charge pattern A”, one charge is performed while the fall position of the charge is moved from the furnace wall side to the furnace center side. As mentioned above, the dropping position of the charge can be moved from the furnace center side toward the furnace wall side. Therefore, the inventor defines the following “charging pattern B” as an example of the charging pattern for moving the dropping position, adopts the pattern, and cuts out coke (C 2 ) at the time of mixing charging. Attempts were made to increase the amount over several steps as shown in FIG.

その結果得られた炉半径方向に沿ったコークスの混合比率の測定値を図3に示す。図3より、炉中心部のコークス量が多くなるという偏在が一層減少して、炉半径方向に沿ったコークスの混合比率は、図4に示した装入パターンAの場合に比べて格段と良く一様化していることが明らかである。つまり、本発明では、前記旋回シュートの1旋回毎の傾動角を炉中心側から炉壁側へ向けて大きくなるように炉内装入を行う際には、前記コークスの切出し量をシュート旋回数の増加につれて増加させるのが好ましいのである。なお、「装入パターンB」のように、旋回シュートの傾動角を炉中心側から炉壁側へ向けて大きくなるように炉内装入を行う際にも、傾動角と旋回数の組み合わせは多種考えられるので、本発明では、前記したように、種々の装入パターンを決めて実施すれば良い。

・装入パターンB(装入物の落下位置が炉中心側から炉壁側へ移動させるパターン)
1(コークスのみ):54°×2旋回、53°×2旋回、52°×3旋回、51°×2旋回、50°×1旋回、49°×1旋回、48°×1旋回、47°×1旋回、38°×1旋回、32°×2旋回、26°×1旋回、20°×1旋回
2+O(混合装入):32°×1旋回、36°×1旋回、38°×1旋回、40°×2旋回、42°×2旋回、44°×1旋回、46°×2旋回、38°×1旋回、48°×2旋回
The measured value of the mixing ratio of coke along the radial direction of the furnace obtained as a result is shown in FIG. From FIG. 3, the uneven distribution that the amount of coke at the center of the furnace increases further decreases, and the mixing ratio of coke along the furnace radial direction is much better than in the case of the charging pattern A shown in FIG. It is clear that it is uniform. In other words, according to the present invention, when the furnace interior is filled so that the tilt angle of each turning chute of each turn increases from the furnace center side to the furnace wall side, the amount of cut out coke is set to the number of chute turns. Increasing with increasing is preferred. Note that there are various combinations of the tilt angle and the number of turns when the furnace interior is filled so that the tilt angle of the swivel chute increases from the furnace center side to the furnace wall side as in the “charging pattern B”. Therefore, in the present invention, as described above, various charging patterns may be determined and executed.

・ Charging pattern B (pattern in which the dropping position of the charge is moved from the furnace center side to the furnace wall side)
C 1 (Coke only): 54 ° × 2 turns, 53 ° × 2 turns, 52 ° × 3 turns, 51 ° × 2 turns, 50 ° × 1 turns, 49 ° × 1 turns, 48 ° × 1 turns, 47 ° × 1 turn, 38 ° × 1 turn, 32 ° × 2 turn, 26 ° × 1 turn, 20 ° × 1 turn C 2 + O (mixed charging): 32 ° × 1 turn, 36 ° × 1 turn, 38 ° × 1 turn, 40 ° × 2 turn, 42 ° × 2 turn, 44 ° × 1 turn, 46 ° × 2 turn, 38 ° × 1 turn, 48 ° × 2 turn

本発明の効果を確認するため、実際の高炉操業に、本発明に係る原料装入方法を適用した。利用した高炉は、内容積が5153m3、炉口直径が11.4m、炉床直径が15.0mで、熱風の供給に40本の羽ロを備えたものである。この操業でも、コークス及び鉄源原料の焼結鉱は、別個の炉頂バンカに供給、保持してから、コークスのうちの150kg/ton−pigを焼結鉱と同じタィミングで切出して混合するようにした。旋回シュートの傾動角及び旋回数は、前述の模型実験で定めた「装入パターンB」に従うようにした。コークスと焼結鉱の混合装入を実施するバッチでは、コークスの切出し量を図1に示すように、旋回時期に応じて徐々に3段階に増加させた。また、本発明に係る原料装入方法を適用した操業とは別に、図7で示したように、コークスを全旋回時期にわたって一定の切出し量とした原料装入を行った場合の高炉操業(比較例)も行った。なお、高炉の主な操業条件は、送風量が8000m3(標準状態)/min,送風温度が1100℃、送風湿分が30g/m3(標準状態)、送風の酸素富化量が10000m3(標準状態)/hrである。 In order to confirm the effect of the present invention, the raw material charging method according to the present invention was applied to actual blast furnace operation. The utilized blast furnace has an internal volume of 5153 m 3 , a furnace port diameter of 11.4 m, a hearth diameter of 15.0 m, and is equipped with 40 feathers for supplying hot air. Even in this operation, the coke and the iron source raw material sinter are supplied to and held in separate furnace bunker, and then 150 kg / ton-pig of the coke is cut out and mixed at the same timing as the sinter. I made it. The tilt angle and the number of turns of the turning chute were set to follow the “charging pattern B” defined in the above model experiment. In a batch in which coke and sintered ore were mixed and charged, the amount of coke cut out was gradually increased in three stages according to the turning timing, as shown in FIG. In addition to the operation using the raw material charging method according to the present invention, as shown in FIG. 7, the blast furnace operation (comparison) when the raw material charging with a constant cut amount of coke was performed over the entire turning timing was performed. Example) was also performed. The main operating conditions of the blast furnace are as follows: the blowing rate is 8000 m 3 (standard state) / min, the blowing temperature is 1100 ° C., the blowing moisture is 30 g / m 3 (standard state), and the oxygen enrichment amount of blowing air is 10000 m 3. (Standard state) / hr.

操業成績を表1に一括して示す。表1より、比較例1及び2では、コークスの混合比率を増加するに従って高炉シャフト部全体の通気抵抗(ΔP(圧力;kPa)/V(炉頂ガス量;m3(標準状態)/min))が増大し、炉況が不安定になって、還元剤(コークス比+微粉炭比)比の増大等の悪影響が生じていることが明らかである。これに対し、本発明に係る原料装入方法適用した操業では(実施例1及び2)、コークスの混合比率を従来の4質量%から12質量%まで高めても操業が安定して行えたばかりでなく、ガス利用率の向上、還元剤比低下、通気抵抗減少が確認された。 The operational results are collectively shown in Table 1. From Table 1, in Comparative Examples 1 and 2, the ventilation resistance of the entire blast furnace shaft portion (ΔP (pressure; kPa) / V (furnace top gas amount; m 3 (standard state) / min) as the coke mixing ratio is increased. ) Increases, the furnace conditions become unstable, and it is clear that adverse effects such as an increase in the reducing agent (coke ratio + pulverized coal ratio) ratio occur. On the other hand, in the operation to which the raw material charging method according to the present invention was applied (Examples 1 and 2), even when the coke mixing ratio was increased from 4% by mass to 12% by mass, the operation was just performed stably. As a result, improvement in gas utilization rate, reduction in reducing agent ratio, and reduction in ventilation resistance were confirmed.

以上のように、原料とコークスとを混合した状態で高炉内に装入し、堆積面上での分離を効果的に防止することによって、多量のコークスを鉄源原料に混合しても、混合したコークスの炉中心部への流れ込みによる中心ガス流の阻害や炉芯の空隙率の低下等の悪影響を招くことがなく、高炉操業における鉄源原料の還元性の向上、ガス利用率の向上、還元剤比の低減、炉内通気性の向上、出銑Siの低減等の効果が期待できる。   As described above, even if a large amount of coke is mixed with the iron source raw material, the raw material and coke are mixed and charged into the blast furnace and effectively prevented from separating on the deposition surface. Without causing adverse effects such as obstruction of the central gas flow due to the flow of the coke into the furnace center and a decrease in the porosity of the furnace core, improving the reducibility of the iron source material in blast furnace operation, improving the gas utilization rate, Effects such as a reduction in the reducing agent ratio, improvement in furnace air permeability, and reduction in output Si can be expected.

Figure 0004617689
Figure 0004617689

本発明に係る原料装入方法を実際の高炉に適用し、コークスを鉄源原料に混合する場合の旋回シュートの1旋回あたりのコークス装入量を示す図である。It is a figure which shows the amount of coke charging per turning of the turning chute in the case of applying the raw material charging method which concerns on this invention to an actual blast furnace, and mixing coke with an iron source raw material. 模型実験装置を用い、装入パターンBで本発明に係る混合装入を実施した場合の炉半径方向における混合層中のコークス混合比率の分布を示す図である。It is a figure which shows distribution of the coke mixing ratio in the mixing layer in the furnace radial direction at the time of implementing the mixing charging which concerns on this invention by the charging pattern B using a model experiment apparatus. 模型実験装置を用い、装入パターンBで本発明に係る混合装入を実施する際のコークスの装入量変更を説明する図である。It is a figure explaining the charging amount change of the coke at the time of implementing the mixing charging which concerns on this invention by the charging pattern B using a model experiment apparatus. 模型実験装置を用い、装入パターンAで本発明に係る混合装入を実施した場合の炉半径方向における混合層中のコークス混合比率の分布を示す図である。It is a figure which shows distribution of the coke mixing ratio in the mixed layer in the furnace radial direction at the time of implementing the mixing charging which concerns on this invention by the charging pattern A using a model experiment apparatus. 模型実験装置を用い、装入パターンAで本発明に係る混合装入を実施する際のコークスの装入量変更を説明する図である。It is a figure explaining the charging amount change of the coke at the time of implementing the mixing charging which concerns on this invention by the charging pattern A using a model experiment apparatus. 模型実験装置を用い、装入パターンAでコークス及び鉄源原料の切出し量を一定として混合装入を実施した場合の炉半径方向における混合層中のコークス混合比率の分布を示す図である。It is a figure which shows distribution of the coke mixing ratio in the mixing layer in the furnace radial direction at the time of carrying out mixing charging with the cutting amount of coke and an iron source raw material with charging pattern A using a model experiment apparatus. 模型実験装置を用い、装入パターンAでコークス及び鉄源原料の切出し量を一定として混合装入を実施する際のコークスの装入量を示す図である。It is a figure which shows the charging amount of the coke at the time of implementing mixing charging by using the model experiment apparatus and making the cutting amount of a coke and an iron source raw material with the charging pattern A constant. 模型実験装置を用い、装入パターンAでコークス及び鉄源原料の切出し量を一定として混合装入を実施する際の鉄源原料の装入量を示す図である。It is a figure which shows the charging amount of the iron source material at the time of implementing mixing charging by using the model experiment apparatus and making the cutting amount of coke and an iron source material constant with the charging pattern A. 高炉のベルレス原料装入装置の縦断面を示す図である。It is a figure which shows the longitudinal cross-section of the bellless raw material charging device of a blast furnace. 模型実験で用いた高炉を説明する図である。It is a figure explaining the blast furnace used in the model experiment. 一般的な炉内状況を示す高炉の縦断面図である。It is a longitudinal cross-sectional view of the blast furnace which shows the general in-furnace condition.

符号の説明Explanation of symbols

1 高炉炉体
2 塊状帯(鉄源原料、コークス層及びそれらの混合層からなる)
3 軟化融着帯
4 炉芯
5 滴下帯
6 貯鉱槽
7 貯骸槽
8 計量ホッパ
9 ベルレス原料装入装置
10 鉄源原料(焼結鉱、鉄鉱石等)
11 コークス
12 炉頂バンカ
13 流量調整ゲート
14 旋回シュート
15 ガス吹き込み口
16 ブロア
17 電磁フィーダ
18 ベルト・コンベア
19 羽口
1 Blast Furnace Furnace 2 Bulk Band (consisting of iron source material, coke layer and mixed layer)
3 Softening and Fusion Zone 4 Core 5 Dropping Zone 6 Storage Tank 7 Storage Tank 8 Weighing Hopper 9 Bellless Raw Material Charger 10 Iron Source Raw Material (Sintered Ore, Iron Ore, etc.)
11 Coke 12 Furnace Top Bunker 13 Flow Control Gate 14 Revolving Chute 15 Gas Blow Inlet 16 Blower 17 Electromagnetic Feeder 18 Belt Conveyor 19 Tyre

Claims (1)

炉頂バンカにそれぞれ保持した鉄源原料及びコークスを、該炉頂バンカの底部に設けた流量調整ゲートを経て同時に切出して混合した後、旋回シュートを介して炉内へ装入するに際して、
前記旋回シュートの傾動角を1旋回毎に炉中心側から炉壁側へ向けて大きくなるように炉内装入を行う際には、前記コークスの切出し量をシュート旋回数の増加につれて複数段階にわたって増加し、炉壁側から炉中心側へ向けて小さくなるように炉内装入を行う際には、前記コークスの切出し量をシュート旋回数の増加につれて複数段階にわたって減少させることを特徴とするベルレス原料装入装置を備えた高炉での原料装入方法。
When the iron source material and the coke respectively held in the furnace top bunker are cut out and mixed simultaneously through the flow rate adjusting gate provided at the bottom of the furnace top bunker, and then charged into the furnace via the swivel chute,
When entering the furnace interior so that the tilt angle of the swivel chute increases from the furnace center side to the furnace wall side for each turn, the amount of cut out coke is increased in multiple stages as the number of chute turns increases. When the inside of the furnace is filled so as to become smaller from the furnace wall side toward the furnace center side, the amount of the coke cut out is decreased in a plurality of stages as the number of chute turns increases. Raw material charging method in a blast furnace equipped with a charging device.
JP2004082448A 2004-03-22 2004-03-22 Raw material charging method in a blast furnace equipped with a bellless raw material charging device Expired - Lifetime JP4617689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082448A JP4617689B2 (en) 2004-03-22 2004-03-22 Raw material charging method in a blast furnace equipped with a bellless raw material charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082448A JP4617689B2 (en) 2004-03-22 2004-03-22 Raw material charging method in a blast furnace equipped with a bellless raw material charging device

Publications (2)

Publication Number Publication Date
JP2005264292A JP2005264292A (en) 2005-09-29
JP4617689B2 true JP4617689B2 (en) 2011-01-26

Family

ID=35089143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082448A Expired - Lifetime JP4617689B2 (en) 2004-03-22 2004-03-22 Raw material charging method in a blast furnace equipped with a bellless raw material charging device

Country Status (1)

Country Link
JP (1) JP4617689B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172045A1 (en) * 2012-05-18 2013-11-21 Jfeスチール株式会社 Method for charging starting material into blast furnace
CN113136467B (en) * 2021-04-15 2022-06-14 鞍钢股份有限公司 Efficient central focusing matrix setting method based on charge level iteration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225507A (en) * 1988-07-14 1990-01-29 Kawasaki Steel Corp Method and apparatus for charging raw material in bell-less type blast furnace
JPH03193806A (en) * 1989-12-25 1991-08-23 Kawasaki Steel Corp Method for charging raw material in blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225507A (en) * 1988-07-14 1990-01-29 Kawasaki Steel Corp Method and apparatus for charging raw material in bell-less type blast furnace
JPH03193806A (en) * 1989-12-25 1991-08-23 Kawasaki Steel Corp Method for charging raw material in blast furnace

Also Published As

Publication number Publication date
JP2005264292A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP5585729B2 (en) Raw material charging apparatus for blast furnace and raw material charging method using the same
EP2851435B1 (en) Method for charging starting material into blast furnace
JP5515288B2 (en) Raw material charging method to blast furnace
JP4604849B2 (en) Granulation method of sintering raw material
JP4617689B2 (en) Raw material charging method in a blast furnace equipped with a bellless raw material charging device
JP5338309B2 (en) Raw material charging method to blast furnace
JP6102462B2 (en) Raw material charging method to blast furnace
JP6819011B2 (en) How to charge raw materials for blast furnace
JP5338308B2 (en) Raw material charging method to blast furnace
JP5338310B2 (en) Raw material charging method to blast furnace
JP3841014B2 (en) Blast furnace operation method
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
JP6102495B2 (en) Blast furnace raw material charging device and blast furnace raw material charging method
JP7003725B2 (en) How to charge blast furnace raw materials
WO2019187997A1 (en) Method for loading raw materials into blast furnace
JP5217650B2 (en) Raw material charging method to blast furnace
JP5842738B2 (en) Blast furnace operation method
JP5338311B2 (en) Raw material charging method to blast furnace
JP3700457B2 (en) Blast furnace operation method
JP6558519B1 (en) Raw material charging method for blast furnace
JP2018070954A (en) Method for loading raw materials into blast furnace
KR101977356B1 (en) Charging apparatus for raw material
JP4045897B2 (en) Raw material charging method for bell-less blast furnace
JP5853904B2 (en) Raw material charging method for bell-type blast furnace
JP2005248278A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090807

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250