WO2016125487A1 - Method for introducing feed into blast furnace - Google Patents

Method for introducing feed into blast furnace Download PDF

Info

Publication number
WO2016125487A1
WO2016125487A1 PCT/JP2016/000530 JP2016000530W WO2016125487A1 WO 2016125487 A1 WO2016125487 A1 WO 2016125487A1 JP 2016000530 W JP2016000530 W JP 2016000530W WO 2016125487 A1 WO2016125487 A1 WO 2016125487A1
Authority
WO
WIPO (PCT)
Prior art keywords
coke
charged
blast furnace
raw material
ore
Prior art date
Application number
PCT/JP2016/000530
Other languages
French (fr)
Japanese (ja)
Inventor
和平 市川
寿幸 廣澤
大山 伸幸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to TR2017/10896T priority Critical patent/TR201710896T1/en
Priority to KR1020177022746A priority patent/KR102022312B1/en
Priority to JP2016535252A priority patent/JP6041072B1/en
Priority to CN201680008360.3A priority patent/CN107208166B/en
Publication of WO2016125487A1 publication Critical patent/WO2016125487A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Definitions

  • the present invention relates to a raw material charging method for a blast furnace in which the raw material is charged into the furnace with a turning chute.
  • Non-patent Document 1 Japanese Patent Application Laidification
  • Patent Document 1 in a bell-less blast furnace, coke is charged into a downstream hopper among ore hoppers, and coke is deposited on the ore on a conveyor, and then charged into a furnace bunker.
  • a technique for charging ore and coke into a blast furnace through a turning chute is disclosed.
  • Patent Document 2 discloses that coke and ore are mixed and charged simultaneously in a bunker at the top of the furnace, and coke and ore are mixed and charged at the same time. A technique for simultaneously performing three kinds of charging batches is disclosed.
  • Patent Document 3 as a raw material charging method in a blast furnace, instability of the cohesive zone shape in blast furnace operation and reduction of gas utilization rate in the vicinity of the central part are prevented, and stable operation and improvement in thermal efficiency are aimed at.
  • a technique for charging raw materials into a blast furnace after mixing all ore and all coke is disclosed.
  • Patent Document 4 as a means of enjoying the effect of improving the reactivity by mixed coke, by mixing highly reactive coke and ore having a low JIS reduction rate, the low reactive ore is reacted with high efficiency, A technique for improving the reactivity is disclosed.
  • Patent Document 5 60 to 75% by mass of the total amount of coke charged in the furnace is charged as a mixed layer with the ore raw material, while the remaining coke amount is 25 to 40% by mass. Has been disclosed as a technique for eliminating the deterioration of air permeability, which is a concern when the ore raw material and coke are mixed into a furnace as a mixed layer.
  • JP-A-3-211210 JP 2004-107794 A Japanese Patent Publication No.59-010402 Japanese Patent Publication No. 07-076366 International Publication No. 2013/172044
  • Patent Documents 1 to 3 only describe means for mixing coke into the ore layer, and no suitable coke mixing rate distribution in the blast furnace radial direction is disclosed.
  • Patent Document 4 only describes the reactivity of coke and ore and the maximum particle size thereof, and neither the suitable mixing ratio of coke and ore nor the preferable distribution in the furnace port direction is disclosed.
  • Patent Document 5 no consideration is given to the use of acidic pellets.
  • the present invention has been developed to solve the above-mentioned problems. As described above, paying attention to the gas flow distribution in the blast furnace, a large amount of coke is mixed in a place where the flow is small, and the acidic pellets are low in reactivity. It is an object of the present invention to provide a raw material charging method capable of improving the in-furnace reactivity by effectively charging the blast furnace into the blast furnace and further reducing the reducing material ratio.
  • the gist configuration of the present invention is as follows. 1.
  • the blast furnace charging raw material contains an ore raw material containing at least one selected from the group consisting of sintered ore, pellets, and massive ore, and coke, 10 mass% or more of the raw material charged in the blast furnace charged with one charge is an acidic pellet, 60 to 75% by mass of coke charged in one charge is charged as a mixed layer with the ore raw material, The remaining 25 to 40% by mass of coke is a raw material charging method for blast furnace in which coke is charged alone.
  • a large amount of coke is mixed in a place where the gas flow is small, and the reactivity in the furnace is improved by charging the acidic pellets, and the reducing material is suppressed by suppressing the deterioration of operation when using the acidic pellets.
  • the ratio can be reduced.
  • the gas flow is A large amount of coke is mixed in a small number of portions, and acidic pellets are charged to improve the reactivity in the furnace, and the reduction of the reducing material ratio is suppressed by suppressing deterioration of operation when acidic pellets are used.
  • FIG. 1 is a diagram schematically showing an embodiment of a method for charging a raw material into a blast furnace according to the present invention.
  • the ore raw material normally used as a blast furnace charging raw material including at least one of sintered ore, pellets, and lump ore, and the raw material using coke are swirled for each charge.
  • 1 charge in this invention means that after forming the coke slit (coke layer) using coke, a series of flows which charge the mixed layer which mixed the ore raw material with coke are performed once. .
  • reference numeral 1 denotes an ore raw material hopper that stores an ore raw material 2 including at least one of sintered ore, pellets, and massive ore
  • reference numeral 3 denotes a coke hopper that stores coke 4.
  • the ore raw material 2 and the coke 4 cut out from the ore raw material hopper 1 and the coke hopper 3 at a predetermined ratio are conveyed upward by the ore conveyor 5, and the ore raw material 2 and the coke 4 are mixed with the reserve hopper 6. And stored as a blast furnace charging raw material 7.
  • the blast furnace charging raw material 7 cut out from the reserve hopper 6 is conveyed to the furnace top of the blast furnace 10 by the charging conveyor 8, and one of a plurality of, for example, three furnace top bunkers 12 through the receiving chute 11.
  • reference numeral 14 denotes a collecting hopper
  • reference numeral 15 denotes a bell-less charging device.
  • the raw material charging destination of the swivel chute 16 is the inner peripheral part of the furnace wall of the blast furnace
  • a coke layer is formed by charging only the coke from the furnace top bunker 12 charged only with coke.
  • a central coke layer is formed in the central part of the blast furnace, or the central axis part (furnace port dimensionless radius: 0) from the furnace wall part (furnace port dimensionless radius: 1.0) to the inner peripheral part of the furnace wall. ), A peripheral coke layer may be formed.
  • the flow rate adjusting gate 13 of the furnace top bunker 12 charged with the ore raw material is closed, and the furnace top bunker charged only with coke.
  • the flow control gate 13 of only 12 is opened, and only the coke stored in the furnace top bunker 12 is supplied to the turning chute 16, thereby forming a coke slit or forming a central coke layer at the center of the blast furnace.
  • the feature of the present invention is that when charging coke or ore raw material into a blast furnace, 10% by mass or more of the blast furnace charging raw material charged with one charge is made into an acidic pellet. This is because when the use ratio of acidic pellets is 10% by mass or more, the reduction ratio is significantly increased. In addition, it is preferable that the ratio of the acidic pellet in the blast furnace charging raw material charged by 1 charge shall be 50 mass% or less from a viewpoint of preventing the significant deterioration of blast furnace operation.
  • the ore raw material may contain at least one selected from the group consisting of sintered ore, pellets, and massive ore.
  • coke charged with one charge 60 to 75% by mass of the coke charged with one charge is charged as a mixed layer with the ore raw material, while the remaining 25 to 40% by mass of coke is charged with coke alone.
  • the coke charged alone forms a coke slit (coke layer) in a blast furnace.
  • the amount of coke charged as a mixed layer 60% by mass or more of the total coke charged in one charge, it is possible to obtain an effect of improving air permeability and reduction by mixing coke.
  • the amount of coke charged as a mixed layer is set to 75% by mass or less of the total coke charged in one charge, the remaining coke is charged alone without being mixed with ore raw materials. It can be left as a coke slit. As a result, the air permeability of the coke slit can be ensured. Therefore, 60 to 75% by mass of the coke amount in one charge is charged as a mixed layer with the ore raw material, and the remaining 25 to 40% by mass of coke is charged by coke alone.
  • FIG. 2 shows the gas flow distribution in the blast furnace.
  • the area where the furnace port dimensionless radius is 0.4 or less and the area where 0.7 is greater than 0.7 are easy to flow gas, and the area where the furnace port dimensionless radius is 0.4 to 0.7 is difficult to flow gas. It can be seen that there is a concern about the delay of the reduction reaction.
  • FIG. 3 shows the status of raw material deposition in the blast furnace.
  • the first batch is charged in the region of the furnace port dimensionless radius of 0.0 to 0.8
  • the second batch of ore is charged in the region of the furnace port dimensionless radius of 0.6 or more.
  • the second batch is charged in the vicinity of the furnace where gas is likely to flow. That is, if mixed coke is segregated in the first batch and acidic pellets are segregated in the second batch, it is expected that the reactivity in the reaction delay region can be improved.
  • the first batch is charged in the range of 0.0 to 0.8 of the non-dimensional radius of the furnace port, and the second batch is 0.6 to 1.0 of the non-dimensional radius of the furnace port. It is preferable to charge the range. Further, 60 to 80% by mass of coke charged as the mixed layer is charged in the first batch, and 70 to 100% by mass of acidic pellets charged in the first charge is charged in the second batch. It is preferable to charge.
  • the first batch of raw material charging is charged in the range of 0.0 to 0.8 (at least 0.1 to 0.7) in the dimensionless radius of the furnace port, and the second batch of ore is supplied to the furnace. It is charged in an area up to a furnace wall (furnace port dimensionless radius: 1.0) having a dimensionless radius of 0.6 or more.
  • the second batch is generally charged in the periphery of the furnace where gas tends to flow. Therefore, when the mixed coke is segregated in the first batch and the low-reactive ore is segregated in the second batch, an improvement in reactivity in the reaction delay region is expected.
  • the amount of coke mixed in the first batch is set to a ratio of 60 to 80% by mass in the amount of coke in the mixed layer (meaning 60 to 75% by mass of the amount of coke in one charge). Therefore, the reactivity in the furnace can be further improved, and a more stable blast furnace operation can be performed.
  • the ore raw material charged in the second batch contains 70 to 100% by mass of the total amount of acidic pellets, and the dimensionless radius of the furnace port is 0.0 to By reducing the amount of acidic pellets charged in the 0.8 region, it is possible to suppress the deterioration of reactivity caused by acidic pellets.
  • Example 1 The blast furnace charging raw material containing acidic pellets was charged into the blast furnace for each charge using a turning chute. At that time, a part of the coke to be charged was charged as a mixed layer with the ore raw material. The remaining coke was charged alone without mixing with the ore raw material to form a coke slit.
  • the amount of acidic pellets in the raw material charged in the blast furnace charged by one charge, the amount of coke charged as a mixed layer, and the amount of coke charged alone to form a coke slit are as shown in Table 1. (Test Nos. 1 to 5).
  • the ore raw material used contained 58% by mass of Fe. Acid pellets used were iron is contained 65 mass%, and the ratio CaO / SiO 2 of CaO and SiO 2 were of 0.05. The coke used contained 88% by mass of carbon.
  • the air permeability index is defined as a value obtained by dividing the total pressure loss of the blast furnace by the air flow rate, and can be obtained by the following formula.
  • the reducing index is the percentage of the CO 2 concentration in the sum of the CO and CO 2 concentrations of the gas components at the top of the blast furnace, and can be determined by the following equation.
  • Reducing index [CO 2 (vol%) / ⁇ CO 2 (vol%) + CO (vol%) ⁇ ] ⁇ 100
  • the reducibility index indicates that the higher the CO 2 concentration, the more the CO gas and iron oxide react to increase the amount of CO 2 produced, and the reactivity of the ore with the CO gas is high (the reducibility index is high). Represents better reactivity).
  • Example 2 The raw material was charged into the blast furnace by the method of charging one charge in Example 1 in two batches.
  • the amount of coke charged in the first batch is 50 to 90% by mass of the amount of mixed coke in the mixed layer, and the ore raw material charged in the second batch is included in the total amount of acidic pellets. 50 to 100% by mass was contained.
  • the test conditions (Test Nos. 6 to 17) are shown in Table 2.
  • the ore raw materials used in the test, the acidic pellets, and the like have the same physical properties as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Blast Furnaces (AREA)

Abstract

Provided is a feed introduction method whereby in-furnace reactivity is improved and a further decrease in reducing-material ratio is rendered possible. The method for introducing a feed into a blast furnace uses, for each charge, a revolving chute to introduce the feed into the blast furnace, wherein the feed to be introduced into the blast furnace comprises coke and an ore feed comprising at least one ore selected from the group consisting of sintered ores, pellets, and massive ores, 10 mass% or more of the feed to be introduced as each charge is accounted for by acidic pellets, 60-75 mass% of the coke to be introduced as each charge is introduced as a layer of a mixture with the ore feed, and the remaining 25-40 mass% of the coke is introduced alone.

Description

高炉への原料装入方法Raw material charging method to blast furnace
 本発明は、炉内への原料装入を旋回シュートで行う高炉への原料装入方法に関するものである。 The present invention relates to a raw material charging method for a blast furnace in which the raw material is charged into the furnace with a turning chute.
 近年、地球温暖化防止の観点からCO削減が求められている。鉄鋼業においてはCO排出量の約70%が高炉によるものであり、高炉におけるCO排出量の削減が求められる。高炉におけるCO削減は、高炉で使用する還元材(コークス、微粉炭、天然ガスなど)の削減により可能である。 In recent years, CO 2 reduction has been demanded from the viewpoint of preventing global warming. In the steel industry, about 70% of CO 2 emissions are due to blast furnaces, and reduction of CO 2 emissions in blast furnaces is required. Reduction of CO 2 in the blast furnace is possible by reducing reducing materials (coke, pulverized coal, natural gas, etc.) used in the blast furnace.
 さらに、最近では、鉄鋼需要の増大に伴い、製造がより容易である酸性ペレット(成分中のCaO(質量%)とSiO(質量%)の比(CaO/SiO)が0.5以下のもの)の使用量が増大している。 Furthermore, recently, with the increase in steel demand, acidic pellets (CaO (mass%) and SiO 2 (mass%) in the component (CaO / SiO 2 ) ratio of 0.5% or less) are easier to manufacture. ) Is increasing.
 そして、かかる酸性ペレットは、高炉内における還元性ならびに高温での溶融性状が悪く、その利用により、高炉の還元性ならびに通気性を悪化させることが知られて(非特許文献1)いる。 And, it is known that such acidic pellets have poor reducibility in the blast furnace and melting property at high temperature, and the utilization thereof deteriorates the reducibility and air permeability of the blast furnace (Non-patent Document 1).
 従って、酸性ペレットの利用時には、酸性ペレットの還元性ならびに通気性を改善し、還元材使用量の増加を抑制することが要求される。 Therefore, when using acidic pellets, it is required to improve the reducing property and air permeability of the acidic pellets and suppress the increase in the amount of reducing material used.
 ここで、融着帯の通気抵抗を改善するためには、鉱石層にコークスを混合することが有効であることが知られており、鉱石層にコークスを混合するための様々な方法が報告されている。 Here, in order to improve the ventilation resistance of the cohesive zone, it is known that mixing coke with the ore layer is effective, and various methods for mixing coke with the ore layer have been reported. ing.
 例えば、特許文献1には、ベルレス式高炉において、鉱石ホッパーのうち下流側のホッパーにコークスを装入し、コンベア上で鉱石の上にコークスを堆積させた後、炉頂バンカーに装入して、鉱石とコークスとを旋回シュートを介して高炉内に装入せしめる技術が開示されている。 For example, in Patent Document 1, in a bell-less blast furnace, coke is charged into a downstream hopper among ore hoppers, and coke is deposited on the ore on a conveyor, and then charged into a furnace bunker. A technique for charging ore and coke into a blast furnace through a turning chute is disclosed.
 また、特許文献2には、炉頂のバンカーに鉱石とコークスを別々に貯留しつつ、コークスと鉱石を同時に混合装入することで、コークス装入用バッチ、コークスの中心装入用バッチ及び混合装入用バッチの3通りを同時に行う技術が開示されている。 Further, Patent Document 2 discloses that coke and ore are mixed and charged simultaneously in a bunker at the top of the furnace, and coke and ore are mixed and charged at the same time. A technique for simultaneously performing three kinds of charging batches is disclosed.
 さらに、特許文献3には、高炉における原料装入方法として、高炉操業における融着帯形状の不安定性及び中心部付近におけるガス利用率の低下を防止し、安定操業と熱効率の向上を図るために、全鉱石と全コークスを混合した後、原料を高炉内に装入する技術が開示されている。 Furthermore, in Patent Document 3, as a raw material charging method in a blast furnace, instability of the cohesive zone shape in blast furnace operation and reduction of gas utilization rate in the vicinity of the central part are prevented, and stable operation and improvement in thermal efficiency are aimed at. A technique for charging raw materials into a blast furnace after mixing all ore and all coke is disclosed.
 また、特許文献4には、混合コークスによる反応性向上効果を享受する手段として、高反応コークスとJIS還元率が低い鉱石を混合することで、低反応性鉱石を高効率に反応させて高炉の反応性を向上させる技術が開示されている。 Further, in Patent Document 4, as a means of enjoying the effect of improving the reactivity by mixed coke, by mixing highly reactive coke and ore having a low JIS reduction rate, the low reactive ore is reacted with high efficiency, A technique for improving the reactivity is disclosed.
 加えて、特許文献5には、炉内に装入される全コークス量の60~75質量%については、鉱石類原料との混合層として装入する一方、残り25~40質量%のコークス量はコークススリットとして残存させることによって、鉱石類原料とコークスとを混合層として炉内装入する場合に懸念される通気性の劣化を解消する技術が開示されている。 In addition, in Patent Document 5, 60 to 75% by mass of the total amount of coke charged in the furnace is charged as a mixed layer with the ore raw material, while the remaining coke amount is 25 to 40% by mass. Has been disclosed as a technique for eliminating the deterioration of air permeability, which is a concern when the ore raw material and coke are mixed into a furnace as a mixed layer.
特開平3-211210号公報JP-A-3-211210 特開2004-107794号公報JP 2004-107794 A 特公昭59-010402号公報Japanese Patent Publication No.59-010402 特公平07-076366号公報Japanese Patent Publication No. 07-076366 国際公開第2013/172044号International Publication No. 2013/172044
 前述した酸性ペレットは、高炉内における還元性や、高温での溶融性状が悪く、その利用によって、高炉の還元性ならびに通気性を悪化させることが知られている(前掲非特許文献1参照)。従って、酸性ペレット利用時には、酸性ペレットの還元性ならびに通気性を改善すると共に、還元材使用量の増加を抑制する必要がある。 It is known that the above-described acidic pellets have poor reducibility within the blast furnace and high melting properties at high temperatures, and their use reduces the reducibility and air permeability of the blast furnace (see Non-Patent Document 1 above). Therefore, when using acidic pellets, it is necessary to improve the reducing property and breathability of the acidic pellets and to suppress an increase in the amount of reducing material used.
 また、一般的に高炉の炉内は、中心部と周辺部は共にガスが流れやすい一方で、中間部はガスが流れにくいことが多いため、高炉の半径方向でガス流分布が存在している。従って、そのガス流分布に応じて、コークス混合率ならびに酸性ペレットの半径方向における配置を設計する必要がある。 In general, in the furnace of a blast furnace, gas tends to flow in both the central part and the peripheral part, but gas flows in the middle part in many cases, so there is a gas flow distribution in the radial direction of the blast furnace. . Therefore, it is necessary to design the coke mixing ratio and the arrangement of the acidic pellets in the radial direction according to the gas flow distribution.
 しかしながら、特許文献1~3には、鉱石層へコークスを混合する手段が記載されているのみで、高炉半径方向の好適なコークス混合率分布は明示されていない。また、特許文献4にも、コークスと鉱石の反応性ならびにその最大粒度が記載されているのみで、コークスと鉱石の、好適な配合比と炉口方向の好適な分布はいずれも明示されていない。さらに、特許文献5でも、酸性ペレットの利用については何ら考慮されていない。 However, Patent Documents 1 to 3 only describe means for mixing coke into the ore layer, and no suitable coke mixing rate distribution in the blast furnace radial direction is disclosed. In addition, Patent Document 4 only describes the reactivity of coke and ore and the maximum particle size thereof, and neither the suitable mixing ratio of coke and ore nor the preferable distribution in the furnace port direction is disclosed. . Furthermore, even in Patent Document 5, no consideration is given to the use of acidic pellets.
 従って、酸性ペレット利用時においては、好適なペレット配置及び炉内の混合コークス分布を新規に構築する必要がある。 Therefore, when using acidic pellets, it is necessary to newly construct a suitable pellet arrangement and mixed coke distribution in the furnace.
 本発明は、上記の課題を解決すべく開発されたもので、前述のように高炉内のガス流分布に注目し、流れが少ない箇所にコークスを多量混合し、かつ低反応性である酸性ペレットを効果的に高炉内に装入することで炉内反応性の改善を図り、より還元材比の低減が可能となる原料装入方法を提供することを目的としている。 The present invention has been developed to solve the above-mentioned problems. As described above, paying attention to the gas flow distribution in the blast furnace, a large amount of coke is mixed in a place where the flow is small, and the acidic pellets are low in reactivity. It is an object of the present invention to provide a raw material charging method capable of improving the in-furnace reactivity by effectively charging the blast furnace into the blast furnace and further reducing the reducing material ratio.
 すなわち、本発明の要旨構成は次のとおりである。
1. 高炉装入原料を旋回シュートを用いて1チャージ毎に高炉内へ装入する高炉への原料装入方法であって、
 前記高炉装入原料が、焼結鉱、ペレット、及び塊状鉱石からなる群より選択される少なくとも1つを含有する鉱石類原料と、コークスとを含有し、
 前記1チャージで装入される高炉装入原料の10質量%以上を酸性ペレットとし、
 前記1チャージで装入されるコークスの60~75質量%を、前記鉱石類原料との混合層として装入し、
 残り25~40質量%のコークスはコークス単独で装入する、高炉への原料装入方法。
That is, the gist configuration of the present invention is as follows.
1. A raw material charging method to a blast furnace in which a blast furnace charging raw material is charged into the blast furnace for each charge using a turning chute,
The blast furnace charging raw material contains an ore raw material containing at least one selected from the group consisting of sintered ore, pellets, and massive ore, and coke,
10 mass% or more of the raw material charged in the blast furnace charged with one charge is an acidic pellet,
60 to 75% by mass of coke charged in one charge is charged as a mixed layer with the ore raw material,
The remaining 25 to 40% by mass of coke is a raw material charging method for blast furnace in which coke is charged alone.
2.前記1に記載の高炉への原料装入方法において、
 前記鉱石類原料を前記1チャージ当たり2バッチで装入し、
 1バッチ目を炉口無次元半径のうち0.0~0.8の範囲に装入し、
 2バッチ目を炉口無次元半径の0.6~1.0の範囲に装入し、
 前記混合層として装入されるコークスの60~80質量%を前記1バッチ目に装入し、
 前記1チャージで装入される酸性ペレットの70~100質量%を前記2バッチ目に装入する、高炉への原料装入方法。
2. In the raw material charging method to the blast furnace as described in 1 above,
Charging the ore raw material in two batches per charge;
The first batch is charged in the range of 0.0 to 0.8 of the dimensionless radius of the furnace port,
The second batch is charged in the range of 0.6 to 1.0 of the furnace port dimensionless radius,
60 to 80% by mass of coke charged as the mixed layer is charged to the first batch,
A method for charging a raw material into a blast furnace, wherein 70 to 100% by mass of the acidic pellets charged in one charge is charged in the second batch.
 本発明によれば、ガス流れが少ない箇所にコークスを多量混合し、かつ酸性ペレットを装入することで炉内反応性の向上を図り、酸性ペレット使用時の操業悪化を抑制することにより還元材比の低減が可能となる。 According to the present invention, a large amount of coke is mixed in a place where the gas flow is small, and the reactivity in the furnace is improved by charging the acidic pellets, and the reducing material is suppressed by suppressing the deterioration of operation when using the acidic pellets. The ratio can be reduced.
本発明による高炉への原料装入方法の一実施形態を模式的に示す図である。It is a figure which shows typically one Embodiment of the raw material charging method to the blast furnace by this invention. 高炉内のガス流速分布を示す図である。It is a figure which shows gas flow velocity distribution in a blast furnace. 高炉への原料堆積状況を示す図である。It is a figure which shows the raw material deposition condition to a blast furnace.
 本発明は、焼結鉱、ペレットおよび塊状鉱石を含む鉱石類原料並びにコークスの高炉装入原料を、旋回シュートを用いて、1チャージ毎に、高炉内へ装入する高炉操業において、ガス流れが少ない箇所にコークスを多量混合し、かつ酸性ペレットを装入することで炉内反応性の向上を図り、酸性ペレット使用時の操業悪化を抑制することにより還元材比の低減を図るものである。 In the blast furnace operation in which ore raw materials including sintered ore, pellets and massive ore and blast furnace charging raw materials for coke are charged into the blast furnace for each charge using a turning chute, the gas flow is A large amount of coke is mixed in a small number of portions, and acidic pellets are charged to improve the reactivity in the furnace, and the reduction of the reducing material ratio is suppressed by suppressing deterioration of operation when acidic pellets are used.
 以下、本発明の一実施形態を、図面を用いて説明する。
 図1は、本発明による高炉への原料装入方法の一実施形態を模式的に示す図である。
 ここに、本発明では、焼結鉱、ペレット、塊鉱石のうち少なくとも一つを含む、高炉装入原料として通常用いられる鉱石類原料、およびコークスを用いた原料を、1チャージ毎に旋回シュートを使って高炉内へ装入する。なお、本発明における1チャージとは、コークスを用いたコークススリット(コークス層)を形成したのち、鉱石類原料をコークスと混合した混合層を装入する一連の流れを1回行うことを意味する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing an embodiment of a method for charging a raw material into a blast furnace according to the present invention.
Here, in the present invention, the ore raw material normally used as a blast furnace charging raw material including at least one of sintered ore, pellets, and lump ore, and the raw material using coke are swirled for each charge. Use to charge into the blast furnace. In addition, 1 charge in this invention means that after forming the coke slit (coke layer) using coke, a series of flows which charge the mixed layer which mixed the ore raw material with coke are performed once. .
 図1中、符号1は、焼結鉱、ペレット及び塊状鉱石のうち少なくとも一つを含む鉱石類原料2を貯蔵する鉱石類原料ホッパー、符号3は、コークス4を貯蔵するコークスホッパーである。これら鉱石類原料ホッパー1及びコークスホッパー3から所定比率で切出された鉱石類原料2及びコークス4は、鉱石コンベア5によって上方に搬送され、リザービングホッパー6に鉱石類原料2及びコークス4が混合されて高炉装入原料7として貯留される。このリザービングホッパー6から切出された高炉装入原料7は装入コンベア8によって高炉10の炉頂に搬送され、レシービングシュート11を介して、複数の、例えば3つの炉頂バンカー12の1つに投入されて貯留される。なお、図1中、符号14は集合ホッパー、符号15はベルレス式装入装置である。 1, reference numeral 1 denotes an ore raw material hopper that stores an ore raw material 2 including at least one of sintered ore, pellets, and massive ore, and reference numeral 3 denotes a coke hopper that stores coke 4. The ore raw material 2 and the coke 4 cut out from the ore raw material hopper 1 and the coke hopper 3 at a predetermined ratio are conveyed upward by the ore conveyor 5, and the ore raw material 2 and the coke 4 are mixed with the reserve hopper 6. And stored as a blast furnace charging raw material 7. The blast furnace charging raw material 7 cut out from the reserve hopper 6 is conveyed to the furnace top of the blast furnace 10 by the charging conveyor 8, and one of a plurality of, for example, three furnace top bunkers 12 through the receiving chute 11. To be stored. In FIG. 1, reference numeral 14 denotes a collecting hopper, and reference numeral 15 denotes a bell-less charging device.
 また、炉頂バンカーからの原料装入順序としては、まず、高炉の中心部に、コークススリットを形成する場合には、旋回シュート16の原料装入先を高炉の炉壁内周部とし、コークスのみを装入した炉頂バンカー12からコークスのみを装入することによって、コークス層を形成する。その際、高炉の中心部に、中心コークス層を形成したり、炉壁内周部に、炉壁部(炉口無次元半径:1.0)から中心軸部(炉口無次元半径:0)に向かって、周辺コークス層を形成したりしても良い。 Moreover, as a raw material charging order from the furnace top bunker, first, when forming a coke slit in the center of the blast furnace, the raw material charging destination of the swivel chute 16 is the inner peripheral part of the furnace wall of the blast furnace, A coke layer is formed by charging only the coke from the furnace top bunker 12 charged only with coke. At that time, a central coke layer is formed in the central part of the blast furnace, or the central axis part (furnace port dimensionless radius: 0) from the furnace wall part (furnace port dimensionless radius: 1.0) to the inner peripheral part of the furnace wall. ), A peripheral coke layer may be formed.
 旋回シュート16の原料装入先が高炉の炉壁部を向いている状態では、鉱石類原料が装入された炉頂バンカー12の流量調整ゲート13を閉じ、コークスのみを装入した炉頂バンカー12のみの流量調整ゲート13を開き、この炉頂バンカー12に貯留されているコークスのみを旋回シュート16に供給することによって、コークススリットを形成したり、高炉の中心部に、中心コークス層を形成したりする。 In a state where the raw material charging destination of the turning chute 16 faces the furnace wall of the blast furnace, the flow rate adjusting gate 13 of the furnace top bunker 12 charged with the ore raw material is closed, and the furnace top bunker charged only with coke. The flow control gate 13 of only 12 is opened, and only the coke stored in the furnace top bunker 12 is supplied to the turning chute 16, thereby forming a coke slit or forming a central coke layer at the center of the blast furnace. To do.
 ついで、炉頂バンカー12からコークス装入と鉱石類原料装入とを同時切り出しで行うのであるが、その際の装入順序は、高炉の中心軸に近い、すなわち炉口無次元半径が0の位置から上方に順次移動し、その後高炉の中心軸から外側に離れ、最後に傾斜側壁の上端(炉口無次元半径:1.0)側が装入されることが好ましい。 Next, coke charging and ore raw material charging are simultaneously cut out from the furnace top bunker 12, but the charging sequence at that time is close to the central axis of the blast furnace, that is, the furnace port dimensionless radius is zero. It is preferable to move upward sequentially from the position, then move away from the center axis of the blast furnace, and finally the upper end (furnace port dimensionless radius: 1.0) side of the inclined side wall is charged.
 本発明の特徴は、コークスや鉱石類原料を高炉に装入するに際し、その1チャージで装入される高炉装入原料の10質量%以上を酸性ペレットとすることである。というのは、酸性ペレットの使用比率が10質量%以上になると、還元材比の上昇が顕著になるからである。なお、1チャージで装入される高炉装入原料における酸性ペレットの比率は、高炉操業の大幅な悪化を防止する観点から50質量%以下とすることが好ましい。 The feature of the present invention is that when charging coke or ore raw material into a blast furnace, 10% by mass or more of the blast furnace charging raw material charged with one charge is made into an acidic pellet. This is because when the use ratio of acidic pellets is 10% by mass or more, the reduction ratio is significantly increased. In addition, it is preferable that the ratio of the acidic pellet in the blast furnace charging raw material charged by 1 charge shall be 50 mass% or less from a viewpoint of preventing the significant deterioration of blast furnace operation.
 本発明で、鉱石類原料は、焼結鉱、ペレット及び塊状鉱石からなる群より選択される少なくとも1つを含んで入ればよい。 In the present invention, the ore raw material may contain at least one selected from the group consisting of sintered ore, pellets, and massive ore.
 そして、上記1チャージで装入されるコークスの60~75質量%については、鉱石類原料との混合層として装入する一方で、残り25~40質量%のコークスはコークス単独で装入する。単独で装入されたコークスは、高炉中でコークススリット(コークス層)を形成する。 Further, 60 to 75% by mass of the coke charged with one charge is charged as a mixed layer with the ore raw material, while the remaining 25 to 40% by mass of coke is charged with coke alone. The coke charged alone forms a coke slit (coke layer) in a blast furnace.
 混合層として装入されるコークスの量を、1チャージで装入される全コークスの60質量%以上とすることにより、コークスの混合による通気性と還元性の向上効果を得ることができる。一方、混合層として装入されるコークスの量を、1チャージで装入される全コークスの75質量%以下とすることにより、残りのコークスを鉱石類原料と混合せずに単独で装入し、コークススリットとして残存させることができる。その結果、コークススリットの通気性を確保することができる。そのため、上記1チャージ中のコークス量の60~75質量%については、鉱石類原料との混合層として装入し、残り25~40質量%のコークスはコークス単独で装入する。 By making the amount of coke charged as a mixed layer 60% by mass or more of the total coke charged in one charge, it is possible to obtain an effect of improving air permeability and reduction by mixing coke. On the other hand, by setting the amount of coke charged as a mixed layer to 75% by mass or less of the total coke charged in one charge, the remaining coke is charged alone without being mixed with ore raw materials. It can be left as a coke slit. As a result, the air permeability of the coke slit can be ensured. Therefore, 60 to 75% by mass of the coke amount in one charge is charged as a mixed layer with the ore raw material, and the remaining 25 to 40% by mass of coke is charged by coke alone.
 また、本発明では、鉱石類原料を1チャージ当たり2バッチで装入することができる。
 図2に、高炉内のガス流分布を示す。炉口無次元半径が0.4以下の領域並びに0.7以上の領域はガスが流れやすく、炉口無次元半径が0.4~0.7の領域はガスが流れにくいため、他の領域と比較し還元反応の遅れが懸念されることが分かる。
In the present invention, ore materials can be charged in two batches per charge.
FIG. 2 shows the gas flow distribution in the blast furnace. The area where the furnace port dimensionless radius is 0.4 or less and the area where 0.7 is greater than 0.7 are easy to flow gas, and the area where the furnace port dimensionless radius is 0.4 to 0.7 is difficult to flow gas. It can be seen that there is a concern about the delay of the reduction reaction.
 また、図3に高炉への原料堆積状況を示す。1バッチ目は炉口無次元半径で0.0~0.8の領域に装入され、2バッチ目の鉱石は炉口無次元半径で0.6以上の領域に装入されている。このように2バッチ目はおおむねガスが流れやすい炉周辺部に装入されることが好ましい。
 すなわち、1バッチ目には混合コークスを偏析させ、2バッチ目には酸性ペレットを偏析させると、反応遅れ領域の反応性の改善ができることが期待されるので、鉱石類原料を1チャージ当たり2バッチで装入するに際し、1バッチ目を炉口無次元半径のうち0.0~0.8の範囲に装入し、さらに2バッチ目を炉口無次元半径の0.6~1.0の範囲に装入することが好ましい。そしてさらに、前記混合層として装入されるコークスの60~80質量%を前記1バッチ目に装入し、前記1チャージで装入される酸性ペレットの70~100質量%を前記2バッチ目に装入することが好ましい。
FIG. 3 shows the status of raw material deposition in the blast furnace. The first batch is charged in the region of the furnace port dimensionless radius of 0.0 to 0.8, and the second batch of ore is charged in the region of the furnace port dimensionless radius of 0.6 or more. As described above, it is preferable that the second batch is charged in the vicinity of the furnace where gas is likely to flow.
That is, if mixed coke is segregated in the first batch and acidic pellets are segregated in the second batch, it is expected that the reactivity in the reaction delay region can be improved. The first batch is charged in the range of 0.0 to 0.8 of the non-dimensional radius of the furnace port, and the second batch is 0.6 to 1.0 of the non-dimensional radius of the furnace port. It is preferable to charge the range. Further, 60 to 80% by mass of coke charged as the mixed layer is charged in the first batch, and 70 to 100% by mass of acidic pellets charged in the first charge is charged in the second batch. It is preferable to charge.
 本発明において、原料装入の1バッチ目は、炉口無次元半径で0.0~0.8(少なくとも0.1~0.7)の領域に装入され、2バッチ目の鉱石は炉口無次元半径で0.6以上の炉壁(炉口無次元半径:1.0)までの領域に装入されている。
 このような装入状態では、2バッチ目がおおむねガスが流れやすい炉周辺部に装入される。従って、1バッチ目には混合コークスを偏析させると共に、2バッチ目には低反応性鉱石を偏析させると、反応遅れ領域における反応性の改善が期待されるのである。
In the present invention, the first batch of raw material charging is charged in the range of 0.0 to 0.8 (at least 0.1 to 0.7) in the dimensionless radius of the furnace port, and the second batch of ore is supplied to the furnace. It is charged in an area up to a furnace wall (furnace port dimensionless radius: 1.0) having a dimensionless radius of 0.6 or more.
In such a charging state, the second batch is generally charged in the periphery of the furnace where gas tends to flow. Therefore, when the mixed coke is segregated in the first batch and the low-reactive ore is segregated in the second batch, an improvement in reactivity in the reaction delay region is expected.
 また、1バッチ目に混合するコークス量を、上記混合層中のコークス量(1チャージ中のコークス量の60~75質量%を意味する)のうちで、さらに60~80質量%の比率とすると、より炉内反応性の向上が図れ、一層安定した高炉操業を行うことができる。 Further, when the amount of coke mixed in the first batch is set to a ratio of 60 to 80% by mass in the amount of coke in the mixed layer (meaning 60 to 75% by mass of the amount of coke in one charge). Therefore, the reactivity in the furnace can be further improved, and a more stable blast furnace operation can be performed.
 さらに、2バッチ目に装入する鉱石類原料に、酸性ペレットの合計量のうちの70~100質量%を含ませ、ガス流が少なく還元遅滞の懸念される炉口無次元半径0.0~0.8の領域に装入される酸性ペレットの量を低減することで、酸性ペレットに起因する反応性悪化を抑制することができる。 Furthermore, the ore raw material charged in the second batch contains 70 to 100% by mass of the total amount of acidic pellets, and the dimensionless radius of the furnace port is 0.0 to By reducing the amount of acidic pellets charged in the 0.8 region, it is possible to suppress the deterioration of reactivity caused by acidic pellets.
 [実施例1]
 酸性ペレットを含有する高炉装入原料を、旋回シュートを用いて1チャージ毎に高炉内へ装入した。その際、装入するコークスの一部は鉱石類原料との混合層として装入した。残りのコークスについては鉱石類原料と混合せずに単独で装入し、コークススリットを形成した。1チャージで装入される高炉装入原料中の酸性ペレット量、混合層として装入されるコークスの量、単独で装入されてコークススリットを形成するコークスの量は、表1に示す通りとした(試験No.1~5)。
[Example 1]
The blast furnace charging raw material containing acidic pellets was charged into the blast furnace for each charge using a turning chute. At that time, a part of the coke to be charged was charged as a mixed layer with the ore raw material. The remaining coke was charged alone without mixing with the ore raw material to form a coke slit. The amount of acidic pellets in the raw material charged in the blast furnace charged by one charge, the amount of coke charged as a mixed layer, and the amount of coke charged alone to form a coke slit are as shown in Table 1. (Test Nos. 1 to 5).
 使用した鉱石類原料は、Feを58質量%含有するものであった。使用した酸性ペレットは、鉄分が65質量%含有し、かつCaOとSiOの比CaO/SiOが0.05のものであった。また、使用したコークスはカーボンを88質量%含むものであった。 The ore raw material used contained 58% by mass of Fe. Acid pellets used were iron is contained 65 mass%, and the ratio CaO / SiO 2 of CaO and SiO 2 were of 0.05. The coke used contained 88% by mass of carbon.
 さらに、上記試験No.1~5の高炉原料装入の条件における通気性指標と、還元性指標を以下の手順で評価した。評価結果を表1に併記する。 Furthermore, the above test No. The air permeability index and the reducibility index under the blast furnace raw material charging conditions 1 to 5 were evaluated by the following procedure. The evaluation results are also shown in Table 1.
[通気性指標]
 通気性指標は、高炉の全圧損を送風量で除した値として定義され、以下の式で求めることができる。前記通気性指標は、単位風量の風が流通するのに要する通気抵抗を表す指標である。
  通気性指標=全圧損(Pa)/送風量(m/min)
[Breathability index]
The air permeability index is defined as a value obtained by dividing the total pressure loss of the blast furnace by the air flow rate, and can be obtained by the following formula. The air permeability index is an index representing the air resistance required for a unit air volume to flow.
Breathability index = total pressure loss (Pa) / air flow (m 3 / min)
[還元性指標]
 還元性指標は、高炉上部のガス成分のうち、COとCOの濃度の和に占める、CO濃度の百分率であり、以下の式によって求めることができる。
 還元性指標=[CO(体積%)/{CO(体積%)+CO(体積%)}]×100
 還元性指標は、CO濃度が高いほど、COガスと酸化鉄が反応しCOの生成量が増えていることを表しており、鉱石のCOガスによる反応性の良否(還元性指標が高いほうが反応性が良好)を表している。
[Reducibility index]
The reducing index is the percentage of the CO 2 concentration in the sum of the CO and CO 2 concentrations of the gas components at the top of the blast furnace, and can be determined by the following equation.
Reducing index = [CO 2 (vol%) / {CO 2 (vol%) + CO (vol%)}] × 100
The reducibility index indicates that the higher the CO 2 concentration, the more the CO gas and iron oxide react to increase the amount of CO 2 produced, and the reactivity of the ore with the CO gas is high (the reducibility index is high). Represents better reactivity).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、発明例と比較例を比べると、発明例の還元性指標は、いずれも比較例に比べ高い値を示していることが分かる。 From Table 1, it can be seen that when the inventive example and the comparative example are compared, the reducing index of the inventive example shows a higher value than the comparative example.
 [実施例2]
 実施例1における1チャージを2バッチで装入する方法で、高炉への原料装入を行った。1バッチ目で装入されるコークス量を、混合層中の混合コークス量のうちの50~90質量%とし、かつ2バッチ目に装入する鉱石類原料に、酸性ペレットの合計量のうちの50~100質量%を含有させた。試験条件(試験No.6~17)を表2に示す。なお、試験に用いた鉱石類原料や、酸性ペレット等は、実施例1と同じ物性のものを用いた。
[Example 2]
The raw material was charged into the blast furnace by the method of charging one charge in Example 1 in two batches. The amount of coke charged in the first batch is 50 to 90% by mass of the amount of mixed coke in the mixed layer, and the ore raw material charged in the second batch is included in the total amount of acidic pellets. 50 to 100% by mass was contained. The test conditions (Test Nos. 6 to 17) are shown in Table 2. In addition, the ore raw materials used in the test, the acidic pellets, and the like have the same physical properties as in Example 1.
 さらに、上記試験No.6~17の高炉原料装入の条件における通気性指標と、還元性指標を実施例1と同じ手順で評価した。評価結果を表2に併記する。 Furthermore, the above test No. The air permeability index and the reducibility index under the blast furnace raw material charging conditions of 6 to 17 were evaluated by the same procedure as in Example 1. The evaluation results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、発明例の還元性指標は、いずれも比較例に比べ高い値を示していることが分かる。 From Table 2, it can be seen that all the reducing indexes of the inventive examples show higher values than the comparative examples.
 以上の実施例より、本発明の方法によれば、炉内反応性を向上できることが分かる。 From the above examples, it can be seen that the reactivity in the furnace can be improved according to the method of the present invention.
 1  鉱石類原料ホッパー
 2  鉱石類原料
 3  コークスホッパー
 4  コークス
 5  鉱石コンベア 
 6  リザービングホッパー
 7  高炉装入原料
 8  装入コンベア
 10 高炉の炉頂 
 11 レシービングシュート
 12 炉頂バンカー
 13 流量調整ゲート
 14 集合ホッパー
 15 ベルレス式装入装置
 16 旋回シュート
  
1 Ore raw material hopper 2 Ore raw material 3 Coke hopper 4 Coke 5 Ore conveyor
6 Reserving hopper 7 Raw materials charged in blast furnace 8 Charging conveyor 10 Top of blast furnace
DESCRIPTION OF SYMBOLS 11 Receiving chute 12 Furnace top bunker 13 Flow control gate 14 Collective hopper 15 Bell-less type charging device 16 Turning chute

Claims (2)

  1.  高炉装入原料を旋回シュートを用いて1チャージ毎に高炉内へ装入する高炉への原料装入方法であって、
     前記高炉装入原料が、焼結鉱、ペレット、及び塊状鉱石からなる群より選択される少なくとも1つを含有する鉱石類原料と、コークスとを含有し、
     前記1チャージで装入される高炉装入原料の10質量%以上を酸性ペレットとし、
     前記1チャージで装入されるコークスの60~75質量%を、前記鉱石類原料との混合層として装入し、
     残り25~40質量%のコークスはコークス単独で装入する、高炉への原料装入方法。
    A raw material charging method to a blast furnace in which a blast furnace charging raw material is charged into the blast furnace for each charge using a turning chute,
    The blast furnace charging raw material contains an ore raw material containing at least one selected from the group consisting of sintered ore, pellets, and massive ore, and coke,
    10 mass% or more of the raw material charged in the blast furnace charged with one charge is an acidic pellet,
    60 to 75% by mass of coke charged in one charge is charged as a mixed layer with the ore raw material,
    The remaining 25 to 40% by mass of coke is a raw material charging method for blast furnace in which coke is charged alone.
  2.  請求項1に記載の高炉への原料装入方法において、
     前記鉱石類原料を前記1チャージ当たり2バッチで装入し、
     1バッチ目を炉口無次元半径のうち0.0~0.8の範囲に装入し、
     2バッチ目を炉口無次元半径の0.6~1.0の範囲に装入し、
     前記混合層として装入されるコークスの60~80質量%を前記1バッチ目に装入し、
     前記1チャージで装入される酸性ペレットの70~100質量%を前記2バッチ目に装入する、高炉への原料装入方法。 
     
    In the raw material charging method to the blast furnace according to claim 1,
    Charging the ore raw material in two batches per charge;
    The first batch is charged in the range of 0.0 to 0.8 of the dimensionless radius of the furnace port,
    The second batch is charged in the range of 0.6 to 1.0 of the furnace port dimensionless radius,
    60 to 80% by mass of coke charged as the mixed layer is charged to the first batch,
    A method for charging a raw material into a blast furnace, wherein 70 to 100% by mass of the acidic pellets charged in one charge is charged in the second batch.
PCT/JP2016/000530 2015-02-03 2016-02-02 Method for introducing feed into blast furnace WO2016125487A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TR2017/10896T TR201710896T1 (en) 2015-02-03 2016-02-02 Method of loading raw material into blast furnace.
KR1020177022746A KR102022312B1 (en) 2015-02-03 2016-02-02 Method of charging raw material into blast furnace
JP2016535252A JP6041072B1 (en) 2015-02-03 2016-02-02 Raw material charging method to blast furnace
CN201680008360.3A CN107208166B (en) 2015-02-03 2016-02-02 The method of charging feedstock into blast furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015019392 2015-02-03
JP2015-019392 2015-02-03

Publications (1)

Publication Number Publication Date
WO2016125487A1 true WO2016125487A1 (en) 2016-08-11

Family

ID=56563841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000530 WO2016125487A1 (en) 2015-02-03 2016-02-02 Method for introducing feed into blast furnace

Country Status (5)

Country Link
JP (1) JP6041072B1 (en)
KR (1) KR102022312B1 (en)
CN (1) CN107208166B (en)
TR (1) TR201710896T1 (en)
WO (1) WO2016125487A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007079A (en) * 2017-06-26 2019-01-17 Jfeスチール株式会社 Operation method of blast furnace
JP2020015933A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Bell-less blast furnace charge method
CN112522460A (en) * 2020-11-18 2021-03-19 山东钢铁集团日照有限公司 Method for adjusting airflow distribution by spreading blast furnace burden
EP3760744A4 (en) * 2018-03-30 2021-05-05 JFE Steel Corporation Method for loading raw materials into blast furnace

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210095353A1 (en) * 2018-03-30 2021-04-01 Jfe Steel Corporation Method for charging raw materials into blast furnace
CN112481432B (en) * 2020-11-15 2022-04-08 山西太钢不锈钢股份有限公司 Method for discharging lump coke in blast furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106333A (en) * 2008-10-31 2010-05-13 Jfe Steel Corp Method for charging raw material into bell-less blast furnace
JP2011162845A (en) * 2010-02-10 2011-08-25 Jfe Steel Corp Method for operating blast furnace with the use of ferrocoke

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910402A (en) 1982-07-10 1984-01-19 Toshiba Corp Rolling mill and rolling method
JP2820478B2 (en) 1990-01-16 1998-11-05 川崎製鉄株式会社 Feeding method for bellless blast furnace
JPH0663008B2 (en) * 1990-02-06 1994-08-17 川崎製鉄株式会社 Coke split charging method to blast furnace
JP3124658B2 (en) 1993-09-08 2001-01-15 株式会社細川洋行 Connected body of bag for milk bag-in-box
KR20020046713A (en) * 2000-12-15 2002-06-21 이구택 Basicity control method of blast furnace cohesive zone
KR100435491B1 (en) * 2000-12-22 2004-06-10 주식회사 포스코 Operating method for removing scabs in the lower part of the blast furnace
JP4269847B2 (en) 2002-08-30 2009-05-27 Jfeスチール株式会社 Raw material charging method for bell-less blast furnace
JPWO2013172043A1 (en) * 2012-05-18 2016-01-12 Jfeスチール株式会社 Raw material charging method to blast furnace
WO2013172044A1 (en) 2012-05-18 2013-11-21 Jfeスチール株式会社 Method for charging starting material into blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106333A (en) * 2008-10-31 2010-05-13 Jfe Steel Corp Method for charging raw material into bell-less blast furnace
JP2011162845A (en) * 2010-02-10 2011-08-25 Jfe Steel Corp Method for operating blast furnace with the use of ferrocoke

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007079A (en) * 2017-06-26 2019-01-17 Jfeスチール株式会社 Operation method of blast furnace
EP3760744A4 (en) * 2018-03-30 2021-05-05 JFE Steel Corporation Method for loading raw materials into blast furnace
US11680748B2 (en) 2018-03-30 2023-06-20 Jfe Steel Corporation Method for charging raw materials into blast furnace
JP2020015933A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Bell-less blast furnace charge method
JP7073962B2 (en) 2018-07-24 2022-05-24 日本製鉄株式会社 How to charge the bellless blast furnace
CN112522460A (en) * 2020-11-18 2021-03-19 山东钢铁集团日照有限公司 Method for adjusting airflow distribution by spreading blast furnace burden
CN112522460B (en) * 2020-11-18 2022-05-17 山东钢铁集团日照有限公司 Method for adjusting airflow distribution by spreading blast furnace burden

Also Published As

Publication number Publication date
JP6041072B1 (en) 2016-12-07
CN107208166B (en) 2019-04-16
TR201710896T1 (en) 2017-08-21
CN107208166A (en) 2017-09-26
JPWO2016125487A1 (en) 2017-04-27
KR20170104582A (en) 2017-09-15
KR102022312B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6041072B1 (en) Raw material charging method to blast furnace
WO2010137748A1 (en) Blast furnace operation method
JP5776866B1 (en) Raw material charging method to blast furnace
JP5299446B2 (en) Blast furnace operation method using ferro-coke
WO2013172045A1 (en) Method for charging starting material into blast furnace
JP6260751B2 (en) Raw material charging method to blast furnace
JP5515288B2 (en) Raw material charging method to blast furnace
JP5834922B2 (en) Blast furnace operation method
JP5768563B2 (en) Blast furnace operation method
JP5338309B2 (en) Raw material charging method to blast furnace
WO2013183170A1 (en) Blast furnace operation method using ferrocoke
JP5338310B2 (en) Raw material charging method to blast furnace
JP5338308B2 (en) Raw material charging method to blast furnace
JP2006206982A (en) Method of operating blast furnace
JP6041073B1 (en) Raw material charging method to blast furnace
JP2014111813A (en) Method of manufacturing reduced iron
JP4706583B2 (en) How to charge the bellless blast furnace
JP6627717B2 (en) Raw material charging method for blast furnace
JP5338311B2 (en) Raw material charging method to blast furnace
JP2023080449A (en) Blast furnace operation method
JP2013241641A (en) Method for charging raw material into blast furnace

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016535252

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017/10896

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177022746

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16746319

Country of ref document: EP

Kind code of ref document: A1