JPH0313513A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH0313513A
JPH0313513A JP14652089A JP14652089A JPH0313513A JP H0313513 A JPH0313513 A JP H0313513A JP 14652089 A JP14652089 A JP 14652089A JP 14652089 A JP14652089 A JP 14652089A JP H0313513 A JPH0313513 A JP H0313513A
Authority
JP
Japan
Prior art keywords
coke
blast furnace
ore
blended
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14652089A
Other languages
Japanese (ja)
Other versions
JP2724208B2 (en
Inventor
Mitsutoshi Isobe
磯部 光利
Takeshi Sugiyama
健 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1146520A priority Critical patent/JP2724208B2/en
Publication of JPH0313513A publication Critical patent/JPH0313513A/en
Application granted granted Critical
Publication of JP2724208B2 publication Critical patent/JP2724208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve reduction characteristic and to execute stable and efficient blast furnace operation by changing grain size of coke according to blending ratio at the time of beforehand blending the coke to ore charged from furnace top part in the blast furnace. CONSTITUTION:At the time of executing the blast furnace operation by alternately charging the ore and coke from the furnace top part in the blast furnace to pile the ore layer and coke layer, beforehand the coke is blended to the ore. The grain size of the coke is adjusted according to the blending ratio so that when this coke blending ratio is <3wt.%, the grain size of the blending coke is made to 8-11mm, and when the blending ratio is >=3wt.%, the grain size of the blending coke is made to >11mm. By this method, effective heating and reduction to the charged material can be obtd. and the stable blast furnace operation is executed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高炉を安定にしかも効率よく操業する為の方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for operating a blast furnace stably and efficiently.

[従来の技術] 第2図は高炉操業状況を示す断面模式図であり、図中O
Aは鉱石層、CAはコークス層、Lは塊状帯、SMZは
軟化融着帯、DMは炉芯コークス層、Rはレースウェイ
、Tは羽口、PIは溶銑、THは出銑口を夫々示す、即
ち高炉々頂部から交互に装入される鉱石とコークスは層
状を呈しつつ徐々に降下し、羽口Tから吹込まれる熱風
とコークスとの反応によって生成する還元性ガス(Co
とH2)の作用で鉱石0は塊状帯りを降下する過程で還
元され、軟化融着”ll’sMZを形成した後炉芯コー
クス層DMの隙間を伝って炉底部に溜まる。そしてこの
溶銑PIは、定期的にまたは連続的に出銑口THより抜
き出される。
[Prior art] Figure 2 is a schematic cross-sectional diagram showing the operational status of a blast furnace.
A is the ore layer, CA is the coke layer, L is the lumpy zone, SMZ is the softened cohesive zone, DM is the core coke layer, R is the raceway, T is the tuyere, PI is the hot metal, and TH is the taphole. In other words, the ore and coke that are alternately charged from the top of the blast furnace gradually descend in a layered manner, reducing the amount of reducing gas (Co
and H2), the ore 0 is reduced in the process of descending through the lumpy band, and after forming a softened fusion bond MZ, it passes through the gap in the furnace core coke layer DM and accumulates at the bottom of the furnace.Then, this hot metal PI is extracted from the tap hole TH periodically or continuously.

高炉を安定にしかも効率良く操業する為には、炉内を上
昇するガス流を適正に制御し、上昇ガスと装入物が十分
に接触して加熱還元が有効に行なわれることが重要であ
り、このガス流分布は鉱石やコークスの高炉内への装入
方法によって大きく左右されることが知られている。例
えば特公昭52−43169号には、鉱石層の炉内ガス
通気性を改善することを目的として、鉱石層に小塊コー
クスを配合する技術が提案されている。この技術では、
粒径3〜15mmの小塊コークスを5 kg/l−pi
g以上配合することにより、通気性を補償して適切なガ
ス流分布が得られること、および−数的に好ましい配合
の上限が100 kg/l−pigであること等が開示
されている。しかしながら上記公報は配合コークスの粒
径範囲を非常に狭い範囲に制限したものである。
In order to operate a blast furnace stably and efficiently, it is important to properly control the gas flow rising inside the furnace so that the rising gas and the charge come into sufficient contact to ensure effective thermal reduction. It is known that this gas flow distribution is greatly influenced by the method of charging ore and coke into the blast furnace. For example, Japanese Patent Publication No. 52-43169 proposes a technique of blending small coke into an ore layer for the purpose of improving the in-furnace gas permeability of the ore layer. With this technology,
5 kg/l-pi of small coke with a particle size of 3 to 15 mm
It is disclosed that an appropriate gas flow distribution can be obtained by compensating for air permeability by adding more than 100 kg/l-pig, and that a numerically preferred upper limit of the mixing ratio is 100 kg/l-pig. However, the above publication limits the particle size range of the blended coke to a very narrow range.

一方装入物自体の還元効率を向上するという観点からは
、例えば特公昭57−45258号に開示された技術が
提案されている。この技術では、自溶性ベレットを30
〜70%配合した場合に、粒径10〜15mmの小塊コ
ークスを自溶性ベレット量に対して容量比で5〜20%
配合することにより、自溶性ベレットを含む鉱石の還元
特性を焼結鉱並みに向上させようとするものである。し
かしながらこの技術においても上述の技術の場合と同様
の問題があった。
On the other hand, from the viewpoint of improving the reduction efficiency of the charge itself, a technique disclosed in Japanese Patent Publication No. 57-45258 has been proposed, for example. This technique uses self-fusing pellets of 30
When blending ~70%, the volume ratio of small coke with a particle size of 10 to 15 mm to the amount of self-soluble pellets is 5 to 20%.
By blending, it is intended to improve the reducing properties of ores containing self-fusing pellets to the same level as sintered ores. However, this technique also has the same problems as the above-mentioned technique.

[発明が解決しようとする課題] 本発明は上述の様な従来方法を改良すべくなされたもの
であって、その目的は、コークスの使用可能粒径範囲を
拡大すると共に、上昇ガスによる装入物の加熱、還元を
有効に達成することによって、高炉操業が安定にしかも
効率よく行なわれる方法を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made to improve the conventional method as described above, and its purpose is to expand the usable particle size range of coke and to improve charging by rising gas. The object of the present invention is to provide a method for stably and efficiently operating a blast furnace by effectively heating and reducing materials.

[課題を解決する為の手段] 上記目的を達成した本発明とは、高炉々頂部から鉱石お
よびコークスを交互に装入し、鉱石層およびコークス層
を堆積させつつ行なう高炉操業方法であって、前記鉱石
には予めコークスを配合しておき、該配合コークスの配
合割合に応じて配合コークスの粒度を調整することによ
り、操業の安定化を図る点に要旨を有する高炉操業方法
である。
[Means for Solving the Problems] The present invention that achieves the above object is a blast furnace operating method in which ore and coke are alternately charged from the top of the blast furnace and the ore layer and coke layer are deposited, This is a blast furnace operating method that aims to stabilize the operation by blending coke into the ore in advance and adjusting the particle size of the blended coke according to the blending ratio of the blended coke.

上記方法であれば、配合割合が3重量%未満のときは、
配合コークスの粒度を8〜11mmとすると共に、配合
割合が3重量%以上のときは、配合コークスの粒度をl
lamより大きくするという調整方法を採用するこ、と
が可能であり、またこれによって上記効果がもっとも有
効に達成されることを見出した。
With the above method, when the blending ratio is less than 3% by weight,
The particle size of the blended coke is 8 to 11 mm, and when the blending ratio is 3% by weight or more, the particle size of the blended coke is 1.
It has been found that it is possible to adopt an adjustment method of making the value larger than lam, and that the above effect can be achieved most effectively by this.

[作用および実施例] 本発明は上述の如く構成されるが、要するに、投入鉱石
に予めコークスを配合する際に、配合するコークス(以
下配合コークスと呼ぶ)の配合割合に応じてその粒度を
変更することにより、装入物の有効な加熱、還元が達成
され、安定した高炉操業が図れることを見出したもので
ある。
[Operations and Examples] The present invention is configured as described above, but in short, when coke is blended with input ore in advance, the particle size is changed depending on the blending ratio of coke to be blended (hereinafter referred to as blended coke). It has been discovered that by doing so, effective heating and reduction of the charge can be achieved and stable blast furnace operation can be achieved.

配合コークスを選択するに際しては、次の様な適用限界
が考えられる。
When selecting a blended coke, the following application limits can be considered.

(a)急激な吸熱反応を示す最大直接還元速度が増大し
ないこと、即ち吸熱反応が急激に発生することによる炉
熱変動を防止することが必要である。
(a) It is necessary to prevent the maximum direct reduction rate, which indicates a rapid endothermic reaction, from increasing, that is, to prevent furnace heat fluctuations due to the sudden occurrence of an endothermic reaction.

(b)軟化融着帯SMZの下端形状を決める滴下開始温
度が低下しないこと。即ち滴下開始温度の低下により従
来と同じ溶銑温度を維持することが困難となるため、こ
れを防止することが必要である。
(b) The dropping start temperature, which determines the shape of the lower end of the softened cohesive zone SMZ, does not decrease. That is, since it becomes difficult to maintain the same hot metal temperature as before due to a drop in the dropping start temperature, it is necessary to prevent this.

(C)軟化融着帯SMZと炉芯DMの間にあるコークス
移動帯MCZ (第2図参照)に、CO2ガスによるソ
リューションロス反応(C+CO2−2CO)を受は粒
径の小さくなった配合コークスの一部が混入しないこと
。即ち小粒径の残留した配合コークスがコークス移動帯
MCZの通気を悪化させることを防止することが必要で
ある。
(C) The coke transfer zone MCZ (see Figure 2) between the softened cohesive zone SMZ and the furnace core DM receives the solution loss reaction (C + CO2-2CO) caused by CO2 gas, and the mixed coke has a reduced particle size. No part of it should be mixed in. That is, it is necessary to prevent the remaining mixed coke of small particle size from deteriorating the aeration of the coke moving zone MCZ.

本発明者らは上記適用限界を重視し、本発明の如きコー
クス配合技術を実施するに当たっては、鉱石層内におけ
る配合コークスの反応挙動を定量的に把握しておく必要
がある旨認識し、次に示す様な荷重還元実験を行なった
。即ち高炉の実操業に使用する鉱石及びコークスを用い
て充填層を作り、実炉の高さ方向のガス温度分布、ガス
組成分布を忠実に再現することにより荷重還元実験を実
施し、還元特性に及ぼす配合コークスの影響について調
査した。
The present inventors place importance on the above-mentioned application limits, and recognize that in implementing the coke blending technology of the present invention, it is necessary to quantitatively understand the reaction behavior of the blended coke in the ore layer, and the following: We conducted a load reduction experiment as shown in . That is, we created a packed bed using the ore and coke used in the actual operation of a blast furnace, conducted a load reduction experiment by faithfully reproducing the gas temperature distribution and gas composition distribution in the height direction of the actual furnace, and determined the reduction characteristics. The effect of blended coke on this was investigated.

第3図は実験で用いた荷重還元試験装置を示す要部説明
図であり、図中1は黒鉛るつぼ、2は鉱石・コークス配
合層(荷重還元用試料)、3はアルミナ球充填層、4は
アルミナペースト層を夫々示す。尚荷重還元試験用試料
としては、一定重量(626g)の配合鉱石(焼結鉱5
0%、ベレット30%、塊鉱石20%)に、所定のコー
クスを配合したものを用いた。また昇温条件とガス組成
は第4図に示す通りであり、この条件は高炉内の周辺領
域を想定したものである。
Figure 3 is an explanatory diagram of the main parts of the load reduction test equipment used in the experiment, in which 1 is a graphite crucible, 2 is an ore/coke blend layer (sample for load reduction), 3 is an alumina sphere packed layer, and 4 is a graphite crucible. indicate alumina paste layers, respectively. As a sample for the load reduction test, a certain weight (626 g) of blended ore (sintered ore 5
0%, pellets: 30%, lump ore: 20%) and a predetermined amount of coke was used. Further, the temperature raising conditions and gas composition are as shown in FIG. 4, and these conditions are based on the assumption of the surrounding area inside the blast furnace.

まず本発明者らは、配合コークスの粒度を一定としく粒
径8〜11 mm) 、配合量を変化させた場合の還元
特性を調査した。
First, the present inventors investigated the reduction characteristics when the particle size of the blended coke was kept constant (8 to 11 mm) and the blended amount was varied.

第1図は配合コークス量と消費コークス量の関係を示す
グラフである。尚図中の破線は配合コークスが全量消費
された場合を示し、該破線と実線の差が滴下時に残留し
た配合コークス量を示す。
FIG. 1 is a graph showing the relationship between the amount of mixed coke and the amount of consumed coke. In addition, the broken line in the figure shows the case where the entire amount of blended coke is consumed, and the difference between the broken line and the solid line shows the amount of blended coke remaining at the time of dropping.

この第1図はコークスを3%(43kg/l−pigに
相当)以上配合すると残留コークスが増加していく傾向
があることを示している。
FIG. 1 shows that when coke is added in an amount of 3% or more (corresponding to 43 kg/l-pig), residual coke tends to increase.

第5図は配合コークス量と滴下開始温度の関係を示すグ
ラフである。この結果から配合コークス量を1%増加す
れば滴下開始温度が8℃程度低下することが分かった。
FIG. 5 is a graph showing the relationship between the amount of coke blended and the dropping start temperature. From this result, it was found that if the amount of coke blended was increased by 1%, the dropping start temperature was lowered by about 8°C.

第6図は配合コークス量と最大直接還元速度の関係を示
すグラフである。この結果から、最大直接還元速度は、
配合コークス量を3%以上とすれば増大することが分か
った。
FIG. 6 is a graph showing the relationship between the amount of coke blended and the maximum direct reduction rate. From this result, the maximum direct reduction rate is
It was found that the amount of coke increases when the amount of coke is increased to 3% or more.

第1図および第5.6図から次の様に考察できる。即ち
滴下開始温度の低下は認められるにしても、粒径8〜1
11III11のコークスを鉱石層に配合するときには
、その配合割合は3%未満までは許容できる。
The following can be considered from Figures 1 and 5.6. That is, even if a drop in the starting temperature for dropping is observed, the particle size is 8 to 1.
When coke 11III11 is blended into the ore layer, a blending ratio of less than 3% is permissible.

次に本発明者らは、配合コークスの配合量を一定としく
5重量%)、粒径を変化させた場合についての還元特性
を調査した。。
Next, the present inventors investigated the reduction characteristics in the case where the amount of blended coke was kept constant (5% by weight) and the particle size was varied. .

第7図は配合コークス量と消費コークス量の関係を示す
グラフである。尚図中の破線は、配合コークスが全量消
費された場合を示し、該破線と実線の差が滴下時に残留
した配合コークス量を示す。この結果から、配合コーク
スの粒径を大きくするにつれて残留コークス量が増加し
ていく傾向があることが確認される。尚コークスを3重
量%以上配合すると残留コークスが認められるが、この
場合は前記(C)の通用限界を考慮すると、配合コーク
スの粒径を大きくして残留コークスの粒径を大きくする
のが効果的である。即ちコークス移動帯MCZの通気性
は、この領域のコークス粒径に依存し、コークス粒径が
大きいほど通気性が良いからである。
FIG. 7 is a graph showing the relationship between the amount of mixed coke and the amount of consumed coke. The broken line in the figure indicates the case where the entire amount of blended coke is consumed, and the difference between the broken line and the solid line indicates the amount of blended coke remaining during dropping. This result confirms that the amount of residual coke tends to increase as the particle size of the blended coke increases. If more than 3% by weight of coke is mixed, residual coke will be observed, but in this case, considering the practical limit of (C) above, it is effective to increase the particle size of the mixed coke to increase the particle size of the residual coke. It is true. That is, the air permeability of the coke moving zone MCZ depends on the coke particle size in this region, and the larger the coke particle size, the better the air permeability.

第8図は配合コークスの粒径と滴下開始温度の関係を示
すグラフである。この結果から、配合コークスの粒径を
大きくするにつれて滴下開始温度が上昇することが分か
る。また前記第5図と第8図を対比しても明らかである
が、配合コークス量を5重量%とじ且つ粒径を22〜2
5mmとした場合は、コークスを配合しない場合の滴下
開始温度にほぼ等しくなる。
FIG. 8 is a graph showing the relationship between the particle size of blended coke and the dropping start temperature. This result shows that the dropping start temperature increases as the particle size of the blended coke increases. It is also clear from comparing Figures 5 and 8 that the amount of coke blended is 5% by weight and the particle size is 22 to 2.
When it is 5 mm, it becomes approximately equal to the dropping start temperature when no coke is mixed.

第9図は配合コークスの粒径と最大直接還元速度の関係
を示すグラフである。第9図から明らかな様に、最大直
接還元速度は配合コークスの粒径を大きくするにつれて
減少することが分かる。
FIG. 9 is a graph showing the relationship between the particle size of blended coke and the maximum direct reduction rate. As is clear from FIG. 9, the maximum direct reduction rate decreases as the particle size of the blended coke increases.

以上のことから、次の様に考察できる。即ち配合コーク
スの配合量が3重量%未満では、完全に消失する8〜1
1mmの粒径のものを用い、配合量が3重量%以上では
上記よりも粒径の大きい配合コークスを使用できること
が判明した0例えば、配合コークスの配合量が5重量%
の場合は、粒径16〜25mmのコークスを用いる必要
がある。
From the above, the following can be considered. That is, if the amount of blended coke is less than 3% by weight, 8 to 1 will completely disappear.
It has been found that when using coke with a particle size of 1 mm and the blending amount is 3% by weight or more, blended coke with a larger particle size than the above can be used.0 For example, if the blending amount of blended coke is 5% by weight
In this case, it is necessary to use coke with a particle size of 16 to 25 mm.

[発明の効果] 以上述べた如く本発明によれば、投入鉱石に予めコーク
スを予め配合する際に、配合割合に応じてその粒径を変
更するようにしたので、還元特性の向上が図れ、安定し
た効率の良い高炉操業が約束される。
[Effects of the Invention] As described above, according to the present invention, when coke is pre-blended with the input ore, the particle size is changed according to the blending ratio, so that the reducing properties can be improved. Stable and efficient blast furnace operation is guaranteed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配合コークス量と消費コークス量の関係を示す
グラフ、第2図は高炉操業時の内部状況を示す縦断面模
式図、第3図は実験で用いた荷重還元装置を示す要部説
明図、第4図は荷重還元試験における昇温条件とガス組
成を示すグラフ、第5図は配合コークス量と滴下開始温
度の関係を示すグラフ、第6図は配合コークス量と最大
直接還元速度の関係を示すグラフ、第7図は配合コーク
ス量と消費コークス量の関係を示すグラフ、第8図は配
合コークスの粒径と滴下開始温度の関係を示すグラフ、
第9図は配合コークスの粒径と最大直接還元速度の関係
を示すグラフである。 1・・・黒鉛るつぼ 2・・・鉱石・コークス配合層 3・・・アルミナ球充填層 4・・・アルミナペースト層 OA・・・鉱石層    CA・・・コークス層LZ・
・・塊状帯    SMZ・・・軟化融着帯MCZ・・
・コークス移動帯 T・・・羽口      R・・・レースウェイDM・
・・炉芯コークス層
Figure 1 is a graph showing the relationship between the amount of mixed coke and the amount of consumed coke, Figure 2 is a schematic vertical cross-sectional view showing the internal situation during blast furnace operation, and Figure 3 is an explanation of the main parts showing the load reduction device used in the experiment. Figure 4 is a graph showing the temperature increase conditions and gas composition in the load reduction test, Figure 5 is a graph showing the relationship between the amount of mixed coke and the dropping start temperature, and Figure 6 is a graph showing the relationship between the amount of mixed coke and the maximum direct reduction rate. A graph showing the relationship, FIG. 7 is a graph showing the relationship between the amount of mixed coke and the amount of coke consumed, and FIG. 8 is a graph showing the relationship between the particle size of the mixed coke and the dripping start temperature.
FIG. 9 is a graph showing the relationship between the particle size of blended coke and the maximum direct reduction rate. 1...Graphite crucible 2...Ore/coke blend layer 3...Alumina sphere packed layer 4...Alumina paste layer OA...Ore layer CA...Coke layer LZ...
・・Clumped zone SMZ・・Soft cohesive zone MCZ・・
・Coke transfer zone T...Tuyere R...Raceway DM・
・Furnace core coke layer

Claims (2)

【特許請求の範囲】[Claims] (1)高炉々頂部から鉱石およびコークスを交互に装入
し、鉱石層およびコークス層を堆積させつつ行なう高炉
操業方法であって、前記鉱石には予めコークスを配合し
ておき、該配合コークスの配合割合に応じて配合コーク
スの粒度を調整することにより、操業の安定化を図るこ
とを特徴とする高炉操業方法。
(1) A blast furnace operating method in which ore and coke are alternately charged from the top of the blast furnace and the ore layer and coke layer are deposited, the ore being mixed with coke in advance and the mixed coke being mixed with the ore. A method of operating a blast furnace characterized by stabilizing the operation by adjusting the particle size of the mixed coke according to the mixing ratio.
(2)配合割合が3重量%未満のときは、配合コークス
の粒度を8〜11mmとすると共に、配合割合が3重量
%以上のときは、配合コークスの粒度を11mmより大
きくする請求項(1)に記載の高炉操業方法。
(2) When the blending ratio is less than 3% by weight, the particle size of the blended coke is 8 to 11 mm, and when the blending ratio is 3% by weight or more, the particle size of the blended coke is larger than 11 mm (claim 1) ) The blast furnace operating method described in
JP1146520A 1989-06-08 1989-06-08 Blast furnace operation method Expired - Fee Related JP2724208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1146520A JP2724208B2 (en) 1989-06-08 1989-06-08 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1146520A JP2724208B2 (en) 1989-06-08 1989-06-08 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH0313513A true JPH0313513A (en) 1991-01-22
JP2724208B2 JP2724208B2 (en) 1998-03-09

Family

ID=15409511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146520A Expired - Fee Related JP2724208B2 (en) 1989-06-08 1989-06-08 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2724208B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243169A (en) * 1975-10-01 1977-04-04 Matsushita Electric Ind Co Ltd Water-oil separator
JPS6017004A (en) * 1983-07-07 1985-01-28 Nippon Steel Corp Operating method of blast furnace
JPS60230925A (en) * 1984-04-27 1985-11-16 Nippon Kokan Kk <Nkk> Method for operating blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243169A (en) * 1975-10-01 1977-04-04 Matsushita Electric Ind Co Ltd Water-oil separator
JPS6017004A (en) * 1983-07-07 1985-01-28 Nippon Steel Corp Operating method of blast furnace
JPS60230925A (en) * 1984-04-27 1985-11-16 Nippon Kokan Kk <Nkk> Method for operating blast furnace

Also Published As

Publication number Publication date
JP2724208B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
RU2613007C2 (en) Method of blast furnace operation and method of molten cast iron production
EP2210959B1 (en) Process for producing molten iron
US6090181A (en) Blast furnace operating method
JPH04263003A (en) Method for operating blast furnace
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
JPH0313513A (en) Method for operating blast furnace
JP3829516B2 (en) Blast furnace operation method
JP3014556B2 (en) Blast furnace operation method
JP4078285B2 (en) Blast furnace operation method
JP3068967B2 (en) Blast furnace operation method
JP2002020810A (en) Blast furnace operating method
JP2733566B2 (en) Blast furnace operation method
JP4598256B2 (en) Blast furnace operation method
KR100376513B1 (en) method for controlling heat level in melter gasifier
JPH06145730A (en) Operation method for blast furnace
JPH0788522B2 (en) Blast furnace operation method
JP3531464B2 (en) Method for producing sintered ore with low SiO2 content
JPH06145734A (en) Operation method of blast furnace
JP5693768B2 (en) Blast furnace operating method and hot metal manufacturing method
JPH02179804A (en) Method for operating blast furnace
JPH08269506A (en) Blast furnace operation method
JPH08260008A (en) Operation of blast furnace
JP2001107115A (en) Operation of blast funace using highly reducible sintered ore
JPH11131151A (en) Production of sintered ore and operation of blast furnace in injecting a large quantity of pulverized fine coal.
JPS62227018A (en) Production of molten metal from powdery ore

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees