JPS60167366A - Manufacture of solid-state image pickup device - Google Patents

Manufacture of solid-state image pickup device

Info

Publication number
JPS60167366A
JPS60167366A JP60001826A JP182685A JPS60167366A JP S60167366 A JPS60167366 A JP S60167366A JP 60001826 A JP60001826 A JP 60001826A JP 182685 A JP182685 A JP 182685A JP S60167366 A JPS60167366 A JP S60167366A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion section
switching element
charge storage
signal charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60001826A
Other languages
Japanese (ja)
Inventor
Satoshi Hirose
広瀬 諭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60001826A priority Critical patent/JPS60167366A/en
Publication of JPS60167366A publication Critical patent/JPS60167366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To eliminate the need for a light-shielding film while remarkably extending photoelectric conversion sections, and to improve an open area ratio and the storage capacity of carriers, i.e. the amount of saturated light, largely by forming a second photoelectric conversion section electrically connected to a first photoelectric conversion section in an adjacent picture element onto a reading switching element. CONSTITUTION:A source 32 in a MOS transistor 50 functions as a first photoelectric conversion section and a junction surface 51 between the source 32 and a substrate 31 as a first signal charge storage region, and the photoelectric conversion section 32 and the signal charge storage region 51 are called collectively a first photoelectric conversion section 60. The whole transistor 50 having a switching function serves as a switching element reading charges in the first photoelectric conversion section 60, and a scanning circuit section is constituted by the switching element and a vertical signal line 36. An N type semiconductor layer 39 forms a second photoelectric conversion section and a junction surface 52 between both semiconductor layers 38, 39 a second signal charge storage region. The photoelectric conversion section 39 and the signal charge storage region 52 are called collectively as a second photoelectric conversion section 70.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体基板上に走査同時及び光電変換素子を集
積化した固体撮像装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a solid-state imaging device in which simultaneous scanning and photoelectric conversion elements are integrated on a semiconductor substrate.

〔従来の技術〕[Conventional technology]

第3図は従来のMOS型固体撮像装置の一画素の断面を
示す。図において、1はp型半導体基板、2はMOS)
ランジスタ14のソース、3.4゜7はそれぞれ上記M
O3)ランジスタ14のドレイン、チャネル、ゲート、
5はフィールド酸化膜、6は垂直信号線、8は透明絶縁
膜である。また9は表面平坦化膜、10は色フィルタ、
11は保護膜、12は遮光膜である。なお本装置ではM
OSトランジスタ14のソース2が光電変換部、ソース
2と基板1との接合面13に形成された接合キャパシタ
ンスが信号電荷蓄積部となっており、以下この光電変換
部2及び信号電荷蓄積部13を合わせて単に光電変換部
60と呼称する。そしてスイッチング機能を有する上記
トランジスタ14及び垂直信号線6によって、当該画素
の蓄積電荷量を外部に読出すようになっている。
FIG. 3 shows a cross section of one pixel of a conventional MOS type solid-state imaging device. In the figure, 1 is a p-type semiconductor substrate, 2 is a MOS)
The source of transistor 14, 3.4°7, is the M
O3) drain, channel, gate of transistor 14,
5 is a field oxide film, 6 is a vertical signal line, and 8 is a transparent insulating film. Further, 9 is a surface flattening film, 10 is a color filter,
11 is a protective film, and 12 is a light shielding film. In this device, M
The source 2 of the OS transistor 14 is a photoelectric conversion section, and the junction capacitance formed at the junction surface 13 between the source 2 and the substrate 1 is a signal charge storage section. Together, they will be simply referred to as a photoelectric conversion section 60. The amount of charge accumulated in the pixel is read out to the outside by the transistor 14 having a switching function and the vertical signal line 6.

第3図は固体撮像装置の一画素の断面構造を示すもので
あるが、これを配列した装置全体の回路図を第4図に示
す。第4図において、21は水平走査回路、22は垂直
走査回路、23は垂直信号線、24は水平信号線であり
、これは各MOSトランジスタ14のゲートに接続され
ている。また上記トランジスタ14を含む破線で囲まれ
た部分25が第3図でその断面を示した画素単位に相当
する。
FIG. 3 shows the cross-sectional structure of one pixel of the solid-state imaging device, and FIG. 4 shows a circuit diagram of the entire device in which this is arranged. In FIG. 4, 21 is a horizontal scanning circuit, 22 is a vertical scanning circuit, 23 is a vertical signal line, and 24 is a horizontal signal line, which is connected to the gate of each MOS transistor 14. Further, a portion 25 surrounded by a broken line including the transistor 14 corresponds to a pixel unit whose cross section is shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の固体撮像装置は以上のように構成されており、そ
の製造は従来広く行なわれているMOSトランジスタ形
成プロセスによってなされる。しかし、受光部がMO3
I−ランジスタのソース部のみであるということから、
遮光膜がない場合は、他の部分に入射した光はMOSト
ランジスタのスイッチング動作にかかわらない擬信号と
なってしまう等の悪影響を及ぼすことになる。このため
に部分的に遮光膜を設けているのであるが、同時にこれ
は光の利用率を低くしていることにもつながる。即ち、
第3図に示すような従来装置では、有効に光電変換され
る光量の割合を示す開口率が20%〜30%と大変低く
、またキャリアの蓄積部がソース部の下のpn接合容量
だけであるので、飽和信号量が低いという欠点があった
A conventional solid-state imaging device is constructed as described above, and is manufactured by a MOS transistor forming process that has been widely used in the past. However, the light receiving part is MO3
Since it is only the source part of the I-transistor,
If there is no light-shielding film, light incident on other parts will have an adverse effect, such as turning into a pseudo signal that is not related to the switching operation of the MOS transistor. For this reason, a light-shielding film is partially provided, but this also leads to a lower light utilization rate. That is,
In the conventional device shown in Fig. 3, the aperture ratio, which indicates the proportion of the amount of light that is effectively photoelectrically converted, is very low at 20% to 30%, and the carrier accumulation region is limited to only the pn junction capacitance under the source region. Therefore, there was a drawback that the saturation signal amount was low.

この発明は、かかる点に鑑みてなされたもので、遮光膜
が不要となると同時に光電変換部を著しく広くすること
ができ、開口率及びキャリアの蓄積能力、即ち飽和光量
が大幅に向上する固体撮像装置を得ることのできる固体
撮像装置の製造方法を提供することを目的としている。
This invention was made in view of the above points, and at the same time eliminates the need for a light-shielding film, the photoelectric conversion section can be made significantly wider, and the aperture ratio and carrier accumulation ability, that is, the saturation light amount, can be greatly improved. It is an object of the present invention to provide a method for manufacturing a solid-state imaging device, which makes it possible to obtain a solid-state imaging device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る固体撮像装置の製造方法は、半導体基板
内に画素毎に第1の光電変換部及び読出しスイッチング
素子を形成する工程と、上記読出しスイッチング素子上
に絶縁膜を介して半導体層を形成し、該半導体層をレー
ザアニールにより再結晶化した後イオン注入及び熱アニ
ールを行なうことによって、上記読出しスイッチング素
子上に隣接する画素の上記第1の光電変換部に電気的に
接続された第2の光電変換部を形成する工程とからなる
ものである。
The method for manufacturing a solid-state imaging device according to the present invention includes the steps of forming a first photoelectric conversion section and a readout switching element for each pixel in a semiconductor substrate, and forming a semiconductor layer on the readout switching element via an insulating film. Then, by recrystallizing the semiconductor layer by laser annealing and then performing ion implantation and thermal annealing, a second photoelectric conversion section electrically connected to the first photoelectric conversion section of the pixel adjacent to the readout switching element is formed. The process consists of a step of forming a photoelectric conversion section.

〔作用〕[Effect]

この発明においては、基板内に第1の光電変換部と読出
しスイッチング素子を形成した後、隣接画素上に形成さ
れた半導体層にレーザアニールを施すことによって、該
隣接画素上に上記第1の光電変換部の単結晶層に連続す
る単結晶シリコン層が形成され、さらに該単結晶層にイ
オン注入及び熱アニールを行なうことによって、上記第
1の光電変換部のpn接合面と連続するpn接合面を有
する第2の光電変換部が形成される。
In the present invention, after forming the first photoelectric conversion section and the readout switching element in the substrate, laser annealing is performed on the semiconductor layer formed on the adjacent pixel, so that the first photoelectric conversion section and the readout switching element are formed on the adjacent pixel. A single crystal silicon layer continuous with the single crystal layer of the conversion section is formed, and by further performing ion implantation and thermal annealing on the single crystal layer, a pn junction surface continuous with the pn junction surface of the first photoelectric conversion section is formed. A second photoelectric conversion section is formed.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

ここで、本実施例の固体撮像装置の製造方法は、特に第
2の光電変換部の製造方法に特徴を有しており、これは
絶縁膜上に単結晶シリコンを形成する方法として最近そ
の手法が確立されてきたレーザアニール法を用いるもの
である。レーザアニールによる単結晶成長技術としては
文献(J、P、Golinge 。
Here, the manufacturing method of the solid-state imaging device of this embodiment is particularly characterized by the manufacturing method of the second photoelectric conversion section, which is a method that has recently been adopted as a method of forming single crystal silicon on an insulating film. This method uses the well-established laser annealing method. A single crystal growth technique using laser annealing is described in the literature (J. P. Golinge).

et al ;Appl、Phys、Lett、、41
 (1982) 346.)がある。そしてレーザアニ
ールによって単結晶化された領域に更にイオン注入を行
ない、熱アニールを加えることにより、光電変換領域及
び信号電荷蓄積領域を形成するものである。
et al; Appl, Phys, Lett, 41
(1982) 346. ). Then, ions are further implanted into the region made into a single crystal by laser annealing, and thermal annealing is applied to form a photoelectric conversion region and a signal charge storage region.

第1図は本発明の一実施例による製造方法により得られ
た固体撮像装置を示し、図において、31はp型半導体
基板、32はMO3I−ランジスタ50のソース、33
は同じくドレイン、34.35は同じくチャネル、ゲー
トである。36は垂直信号線であり、画素の信号を外部
へ読出すための配線である。この配線には、ドープポリ
シリコン5モリブデン、タングステン等、高融点の材料
を用いる。37はトランジスタ50及び垂直信号線36
を覆う絶縁膜である。
FIG. 1 shows a solid-state imaging device obtained by a manufacturing method according to an embodiment of the present invention. In the figure, 31 is a p-type semiconductor substrate, 32 is a source of an MO3I transistor 50, and 33
is also the drain, and 34 and 35 are the channel and gate. A vertical signal line 36 is a wiring for reading out pixel signals to the outside. For this wiring, a high melting point material such as doped polysilicon 5 molybdenum or tungsten is used. 37 is a transistor 50 and a vertical signal line 36
It is an insulating film that covers the

そして本装置ではMOS)ランジスタ50のソース32
が第1の光電変換部、ソース32と基板31との接合面
51が第1の信号電荷蓄積領域となっており、以下光電
変換部32及び信号電荷蓄積領域51を合わせて単に第
1の5光電変換部60と呼称する。またスイッチング機
能を有するトランジスタ50全体が上記第1の光電変換
部60の電荷を読み出すスイッチング素子となっており
、このスイッチング素子と垂直信号線36とにより走査
回路部が構成されている。
In this device, the source 32 of the transistor 50 (MOS)
is the first photoelectric conversion section, and the bonding surface 51 between the source 32 and the substrate 31 is the first signal charge accumulation region. It is called a photoelectric conversion section 60. Further, the entire transistor 50 having a switching function serves as a switching element for reading out the charge of the first photoelectric conversion section 60, and this switching element and the vertical signal line 36 constitute a scanning circuit section.

また38.39は上記走査回路部上に絶縁膜37を介し
て形成されたp型半導体層、及びn型半導体層で、n型
半導体層39は第2の光電変換部を、両半導体層38.
39の接合面52は第2の信号電荷蓄積領域を形成して
いる。以下光電変換部39及び信号電荷蓄積領域52を
合わせて単に第2の光電変換部70と呼称する。また4
0はフィールド酸化膜、41は絶縁膜、42は平用化膜
、43は色フィルタ、44は保護膜である。
Reference numerals 38 and 39 denote a p-type semiconductor layer and an n-type semiconductor layer formed on the scanning circuit section with an insulating film 37 interposed therebetween. ..
The bonding surface 52 of 39 forms a second signal charge accumulation region. Hereinafter, the photoelectric conversion section 39 and the signal charge storage region 52 will be simply referred to as a second photoelectric conversion section 70. Also 4
0 is a field oxide film, 41 is an insulating film, 42 is a flattening film, 43 is a color filter, and 44 is a protective film.

このように、本実施例における1画素は、各色フイルタ
下方のMOS)ランジスタ50及び第1の光電変換部6
0と、その隣の色フイルタ下方の第2の光電変換部70
により構成されており、また第1図に示した従来装置の
遮光膜は形成されていない。
In this way, one pixel in this embodiment consists of the MOS transistor 50 below each color filter and the first photoelectric conversion unit 6.
0 and the second photoelectric conversion unit 70 below the color filter next to it.
Furthermore, the light shielding film of the conventional device shown in FIG. 1 is not formed.

このような構成になる本装置では、MOSトランジスタ
50のソース32と基板31とのpn接合面51に逆バ
イアス電圧をかけておくが、絶縁いる。これは半導体層
39がソース32と同じn型導電性を示す領域であり、
半導体層38が基板31と同じp型導電性を示すからで
ある。そして、入射した光は、ソース32近傍及び半導
体領域38.39で吸収され、このとき発生した電子正
孔対が、pn接合面51及び52に拡散し、蓄積電荷と
再結合を行なうことにより、逆バイアス電圧の大きさを
減少させることになる。即ち、光信号が蓄積される時間
は、MOS)ランジスタ50が非導通状態にある時間で
あり、基板31及びp型半導体層38の一定電位に対し
てフローティング状態のn型半導体領域32及び39の
電位が変化した大きさが、蓄積時間内の入射光総量に対
応する。この蓄積信号量は、信号読出し時にMOS)ラ
ンジスタ50が導通状態となり、信号線36から流れ込
んでくる電荷量と等しいので、外部で電流値を測定する
ことによって入射光信号の大きさがめられる。
In this device having such a configuration, a reverse bias voltage is applied to the pn junction surface 51 between the source 32 of the MOS transistor 50 and the substrate 31, but insulation is required. This is a region where the semiconductor layer 39 exhibits the same n-type conductivity as the source 32,
This is because the semiconductor layer 38 exhibits the same p-type conductivity as the substrate 31. Then, the incident light is absorbed in the vicinity of the source 32 and the semiconductor regions 38 and 39, and the electron-hole pairs generated at this time diffuse to the pn junction surfaces 51 and 52 and recombine with the accumulated charges, so that This will reduce the magnitude of the reverse bias voltage. That is, the time during which the optical signal is accumulated is the time during which the MOS transistor 50 is in a non-conducting state, and when the n-type semiconductor regions 32 and 39 are in a floating state with respect to a constant potential of the substrate 31 and the p-type semiconductor layer 38. The magnitude of the change in potential corresponds to the total amount of incident light within the accumulation time. This accumulated signal amount is equal to the amount of charge that flows in from the signal line 36 when the MOS transistor 50 becomes conductive during signal reading, so the magnitude of the incident optical signal can be determined by measuring the current value externally.

以上述べた動作を行なう固体撮像装置の製造方法を第2
図(a)〜(h)に示したプロセスフロー図を用いて説
明する。第2図(a)ではMOS)ランジスタ50のゲ
ート35.ソース32.ドレイン33が形成されており
、同図中)で第一層配線、即ち垂直走査線36が高融点
材料を用いてドレイン33側に形成される。次に絶縁膜
(例え、ば5i02)37を減圧CVD法等により全面
に形成し、そののちMOS)ランジスタ50のソース3
2上部の絶縁膜のみを同図(C)に示すようにエツチン
グ除去する。このエツチング除去の時点において、ソー
ス32と基板31間のpn接合は外表面に露出している
必要がある。これにp型のポリシリコン45を堆積する
と同図(d)に示すような構造になる。このp型ポリシ
リコン45は、例えば減圧CVD法によって形成できる
。更にポリシリコン45を部分的にエツチングし、同図
(e)に示すような構造にする。なおこのときp型ポリ
シリコン45とn型のソース32とは接触せずに離れて
いる方が好ましい。また、このポリシリコン45のエツ
チングを行なう際、例えばCFaプラズマを用いること
ができるが、下地のSiが露出した時点でエツチングを
止める必要がある。同図(Pi)の状態でレーザアニー
ルによりp型ポリシリコン45をp型車結晶シリコンに
再結晶化する。このとき、p型ポリシリコン45は基板
31と接触しているために、基板31の面方位を保って
再結晶化が行なわれる。
The second method for manufacturing a solid-state imaging device that performs the operations described above is described below.
This will be explained using process flow diagrams shown in FIGS. (a) to (h). In FIG. 2(a), the gate 35 of a MOS transistor 50. Source 32. A drain 33 is formed, and a first layer wiring, that is, a vertical scanning line 36 (in the figure) is formed on the drain 33 side using a high melting point material. Next, an insulating film (for example, 5i02) 37 is formed on the entire surface by low pressure CVD, and then the source 3 of the MOS transistor 50 is formed.
Only the insulating film on top of 2 is removed by etching as shown in FIG. 2(C). At the time of this etching removal, the pn junction between the source 32 and the substrate 31 must be exposed to the outer surface. When p-type polysilicon 45 is deposited on this, a structure as shown in FIG. 2(d) is obtained. This p-type polysilicon 45 can be formed by, for example, a low pressure CVD method. Furthermore, the polysilicon 45 is partially etched to form a structure as shown in FIG. 4(e). Note that at this time, it is preferable that the p-type polysilicon 45 and the n-type source 32 be separated from each other without being in contact with each other. Further, when etching the polysilicon 45, for example, CFa plasma can be used, but it is necessary to stop the etching when the underlying Si is exposed. In the state shown in the figure (Pi), the p-type polysilicon 45 is recrystallized into p-type wheel crystal silicon by laser annealing. At this time, since the p-type polysilicon 45 is in contact with the substrate 31, recrystallization is performed while maintaining the plane orientation of the substrate 31.

またレーザアニールの際は、レーザビームの制御によっ
て、n型半導体領域32には照射されないようにしたほ
うが、n型不純物の再拡散を抑える上で好ましい。次に
ひ素等のn型不純物の注入及び熱アニールによって、再
結晶化したシリコン層45の表面及び9表面に露出して
いるp型半導体部61の表面をn型半導体に変化させる
。この時の断面図が同図(f)である。同図(f)では
、n型半導体層32とn型半導体層39とが電気的に接
続され、またp型半導体層38は、再結晶化によって基
板31のp型半導体と電気的に接続される。従ってそれ
らの界面であるpn接合面51及び52は連続して形成
されている。これにバンシベーション膜41を形成した
ものが同図(旬であり、平坦化膜429色フィルタ43
.保護膜44を形成すると同図(h)に示す完成した構
造となる。
Further, during laser annealing, it is preferable to control the laser beam so that it does not irradiate the n-type semiconductor region 32, in order to suppress re-diffusion of n-type impurities. Next, by implanting an n-type impurity such as arsenic and thermal annealing, the surface of the p-type semiconductor portion 61 exposed on the surface of the recrystallized silicon layer 45 and 9 is changed into an n-type semiconductor. The cross-sectional view at this time is shown in FIG. In FIG. 3F, the n-type semiconductor layer 32 and the n-type semiconductor layer 39 are electrically connected, and the p-type semiconductor layer 38 is electrically connected to the p-type semiconductor of the substrate 31 by recrystallization. Ru. Therefore, the pn junction surfaces 51 and 52, which are the interfaces between them, are formed continuously. The same figure shows the one on which a bancivation film 41 is formed (currently, a flattening film 429 and a color filter 43 are shown).
.. After the protective film 44 is formed, the completed structure shown in FIG. 4(h) is obtained.

ここで上記MO3)ランジスタ50のゲート35、ドレ
イン33.フィールド酸化膜40の上層に絶縁膜37を
介して形成されている第2の光電変換部70は、可視光
を十分吸収できるように厚くつくられている。例えば、
光電変換部の材料が上に示したような単結晶シリコンの
場合、その禁制帯幅以上のエネルギーの光に対する吸収
係数の値は104cm”以上であるので、1μmの厚さ
で60%以上、2μmの厚さで90%以上の光を吸収で
きる。
Here, the MO3) gate 35, drain 33 . The second photoelectric conversion section 70, which is formed on the field oxide film 40 with the insulating film 37 in between, is made thick so that it can sufficiently absorb visible light. for example,
If the material of the photoelectric conversion part is single crystal silicon as shown above, the value of the absorption coefficient for light with energy above the forbidden band width is 104 cm or more, so it is 60% or more at a thickness of 1 μm, and 2 μm can absorb more than 90% of light with a thickness of .

このように、本実施例では画素毎に形成される光電変換
部を当該画素に隣接する画素の読み出しスイッチング素
子上にもレーザアニール法を利用して形成するようにし
たので、有効に光電変換される光量の割合を示す開口率
及びキ中リアの蓄積能力が大幅に向上した固体撮像装置
を再現性良く製造できる。
In this way, in this example, the photoelectric conversion section formed for each pixel is also formed on the readout switching element of the pixel adjacent to the pixel using the laser annealing method, so that photoelectric conversion can be performed effectively. It is possible to manufacture a solid-state imaging device with high reproducibility in which the aperture ratio, which indicates the proportion of the amount of light that is generated, and the storage capacity of the central rear are significantly improved.

なお、上記実施例では、再結晶化させる材料として多結
晶シリコンを用いたが、これはアモルファスシリコンを
用いてもよい。
In the above embodiment, polycrystalline silicon was used as the material to be recrystallized, but amorphous silicon may also be used.

また、上記実施例ではp型基板上に撮像装置を形成する
場合について説明したが、これはn型半導体でもよく、
この場合は形成する半導体領域の導電性を上記実施例の
場合とすべて逆にすればよい。
Further, in the above embodiment, the case where the imaging device is formed on a p-type substrate has been described, but this may also be an n-type semiconductor.
In this case, the conductivity of the semiconductor region to be formed may be reversed from that in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る固体撮像装置の製造方法
によれば、基板内に第1の光電変換部と読出しスイッチ
ング素子を形成した後、隣接画素上に形成された半導体
層をレーザアニールによって再結晶化し、該再結晶化層
にイオン注入及び熱アニールを行なって、隣接画素上に
上記第1の光電変換部に連続する第2の光電変換部を形
成したので、開口率の大きい高感度のものを再現性良く
製造できる効果がある。
As described above, according to the method for manufacturing a solid-state imaging device according to the present invention, after forming the first photoelectric conversion section and the readout switching element in the substrate, the semiconductor layer formed on the adjacent pixel is removed by laser annealing. The recrystallized layer is then subjected to ion implantation and thermal annealing to form a second photoelectric conversion section continuous with the first photoelectric conversion section on an adjacent pixel, resulting in high sensitivity with a large aperture ratio. This has the effect of making it possible to manufacture products with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例により製造された固体撮像装
置を示す断面図、第2図(a)〜(hlは本発明の一実
施例による固体撮像装置の製造方法を示すプロセスフロ
ー図、第3図は従来の固体撮像装置の一画素を示す断面
図、第4図は第3図の一画素を配列してなる従来装置の
全体構成を示す回路図である。 31・・・p型半導体基板、32・・・ソース、33・
・・ドレイ、ン、34・・・チャネル、35・・・ゲー
ト、36・・・垂直信号線、37・・・絶縁膜、38・
・・p型半導体層、39・・・n型半導体層、51.5
2・・・接合面、50・・・MOS)ランジスタ(読出
しスイッチング素子)、60・・・第1の光電変換部、
70・・・第2の光電変換部。 代理人 早 瀬 憲 − 第2図 第2Wi 第2図 第3図 9
FIG. 1 is a sectional view showing a solid-state imaging device manufactured according to an embodiment of the present invention, and FIGS. 2(a) to (hl are process flow diagrams showing a method for manufacturing a solid-state imaging device according to an embodiment of the present invention , FIG. 3 is a cross-sectional view showing one pixel of a conventional solid-state imaging device, and FIG. 4 is a circuit diagram showing the overall configuration of a conventional device formed by arranging one pixel of FIG. 3. 31...p type semiconductor substrate, 32...source, 33.
...Dray, N, 34...Channel, 35...Gate, 36...Vertical signal line, 37...Insulating film, 38...
...p-type semiconductor layer, 39...n-type semiconductor layer, 51.5
2... Junction surface, 50... MOS) transistor (readout switching element), 60... First photoelectric conversion unit,
70...Second photoelectric conversion section. Agent Ken Hayase - Figure 2 Figure 2Wi Figure 2 Figure 3 Figure 9

Claims (1)

【特許請求の範囲】[Claims] (1) 半導体基板内に画素毎に第1の光電変換部及び
該第1の光電変換部より入射光量に応じた電荷を読み出
す読出しスイッチング素子を形成する第1の工程と、上
記読出しスイッチング素子上にこれと絶縁してかつ隣接
−する画素の上記第1の光電変換部に電気的に接続して
第2の光電変換部を形成する第2の工程とを備えた固体
撮像装置の製造方法であって、上記第2の工程は、上記
読出しスイッチング素子上の第2の光電変換部となるべ
き部分に絶縁膜を介して半導体層を形成する工程。 該半導体層をレーザアニールにより再結晶化する工程、
及び該再結晶化層にイオン注入及び熱アニールを行ない
光電変換領域、信号電荷蓄積領域のそれぞれを上記第1
の光電変換部のそれと接続して形成する工程を含むもの
であることを特徴ζする固体撮像装置の製造方法。
(1) A first step of forming a first photoelectric conversion section for each pixel in a semiconductor substrate and a readout switching element for reading out charges according to the amount of incident light from the first photoelectric conversion section, and forming a readout switching element on the readout switching element. and a second step of electrically connecting to the first photoelectric conversion section of an adjacent pixel to form a second photoelectric conversion section. The second step is a step of forming a semiconductor layer via an insulating film on a portion of the readout switching element that is to become a second photoelectric conversion section. recrystallizing the semiconductor layer by laser annealing;
Then, ion implantation and thermal annealing are performed on the recrystallized layer to form each of the photoelectric conversion region and the signal charge storage region as described above.
A method for manufacturing a solid-state imaging device, comprising the step of forming a photoelectric conversion section connected to the photoelectric conversion section.
JP60001826A 1985-01-08 1985-01-08 Manufacture of solid-state image pickup device Pending JPS60167366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60001826A JPS60167366A (en) 1985-01-08 1985-01-08 Manufacture of solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001826A JPS60167366A (en) 1985-01-08 1985-01-08 Manufacture of solid-state image pickup device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58192878A Division JPS6084870A (en) 1983-10-14 1983-10-14 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS60167366A true JPS60167366A (en) 1985-08-30

Family

ID=11512364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001826A Pending JPS60167366A (en) 1985-01-08 1985-01-08 Manufacture of solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS60167366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670382A (en) * 1992-07-29 1997-09-23 Nikon Corporation Method for producing a solid state imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670382A (en) * 1992-07-29 1997-09-23 Nikon Corporation Method for producing a solid state imaging device

Similar Documents

Publication Publication Date Title
JP3177514B2 (en) Solid-state image sensor
JP4127416B2 (en) Optical sensor, optical sensor manufacturing method, linear image sensor, and area sensor
JPH07176781A (en) Photoelectric transducer
US4665422A (en) Solid state image sensing device
US7485939B2 (en) Solid-state imaging device having a defect control layer and an inversion layer between a trench and a charge accumulating area
JPS58138187A (en) Solid-state image sensor
US6403994B1 (en) Solid-state imaging device and method of fabricating the same
KR100365744B1 (en) Photodiode in image sensor and method for fabricating the same
JPS6089967A (en) Photoelectric conversion element
JPS60167366A (en) Manufacture of solid-state image pickup device
US20190051682A1 (en) Solid-state imaging device and method of manufacturing the same
JPS61187267A (en) Solid-state image pickup device
US20160093660A1 (en) Semiconductor apparatus and method of manufacturing semiconductor apparatus
JP2003347537A (en) Solid-state image pickup element
JP2000260972A (en) Solid-state image pickup device and its manufacture
JPH07335936A (en) Optoelectric transducer
KR840001604B1 (en) Method for fabrication a solid - state imaging device
JPS5870685A (en) Solid-state image pickup device
JPS6084870A (en) Solid-state image pickup device
JPH0459828B2 (en)
JPH0444467B2 (en)
JPS62269356A (en) Solid-state image sensing device
JPH10163466A (en) Solid state image pickup device
JPH0473346B2 (en)
JPH0473345B2 (en)