JPS60161399A - Manufacture of low dislocation single crystal - Google Patents

Manufacture of low dislocation single crystal

Info

Publication number
JPS60161399A
JPS60161399A JP59018024A JP1802484A JPS60161399A JP S60161399 A JPS60161399 A JP S60161399A JP 59018024 A JP59018024 A JP 59018024A JP 1802484 A JP1802484 A JP 1802484A JP S60161399 A JPS60161399 A JP S60161399A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
mol
low dislocation
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59018024A
Other languages
Japanese (ja)
Other versions
JPH0310600B2 (en
Inventor
Seiji Mizuniwa
清治 水庭
Konichi Nakamura
中村 渾一
Shinkichi Nakagawa
中川 真吉
Kazuhiro Kurata
倉田 一宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP59018024A priority Critical patent/JPS60161399A/en
Publication of JPS60161399A publication Critical patent/JPS60161399A/en
Publication of JPH0310600B2 publication Critical patent/JPH0310600B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To manufacture low dislocation single crystal wherein low dislocation has been performed effectively by adding two kinds of the specified elements to the raw material of GaAs single crystal and growing up the crystal. CONSTITUTION:An element of th group III (e.g. In) and an element of the group IV(e.g. Sb) excepting Ga and As which have not effect on electrical characteristics are added by 0.02-1.0mol% to the raw material of GaAs single crystal respectively, and the GaAs single crystal is grown up by a horizontal type boat method or a pickup method.

Description

【発明の詳細な説明】 〔発明の背景と目的〕 本発明の低転位単結晶の製造方法に係り、特に効果的に
低転位化をはかるのに好適な低転位単結晶の製造方法に
関するものである。
[Detailed Description of the Invention] [Background and Objectives of the Invention] The present invention relates to a method for producing a low dislocation single crystal, and particularly relates to a method for producing a low dislocation single crystal suitable for effectively reducing dislocation. be.

GaAs単結晶の製造方法は、大きくわりると横型ボー
ト法と引き上げ法とにわけられる。横型ボート法は、引
き上げ法に比較して低転位単結晶が得られるが、半導体
レーザ用ζこ使用される転位密度(EPD)≦500ケ
/ cyn2の結晶は81 ドープ結晶においてのみ確
立的に得られている段階であり、歩留りが悪い。また、
引き上げ法では、直接合成引き上げ法によるFET、I
C向けのアンドープ半絶縁生結晶の開発、製造を各社で
行っているが、転位密度に関しては、EPD≦100,
000ケ/ am″のものは製造可能であるが、EPD
≦50 、000ケ/ am2のものは製造困難のよう
である。
Methods for producing GaAs single crystals can be roughly divided into horizontal boat methods and pulling methods. The horizontal boat method can obtain a single crystal with low dislocations compared to the pulling method, but crystals with a dislocation density (EPD) ≦500/cyn2, which is used for semiconductor lasers, can be reliably obtained only in 81-doped crystals. It is still in the process of being sold, and the yield is poor. Also,
In the pull-up method, FET, I
Each company develops and manufactures undoped semi-insulating raw crystals for C, but in terms of dislocation density, EPD≦100,
000 pieces/am'' can be manufactured, but EPD
≦50,000 cells/am2 seems to be difficult to manufacture.

引き上げ法による半絶縁主結晶の低転位化は急務であり
、EPD≦10,000ケ/ cXから最終的はEPD
≦1000ケ/ cr?のものができないと、IC。
There is an urgent need to reduce dislocations in semi-insulating main crystals using the pulling method.
≦1000 pieces/cr? If you can't do it, IC.

LSIの発展は望めないといわれている。It is said that there is no hope for the development of LSI.

低転位化の試みとして、結晶成長界面の温度匂配を低く
して、熱歪による転位の発生を防止することが考えられ
ており、原料融液の表面を覆うカプセル剤(B203)
の厚さを増加させたり、カプセル剤の中で結晶化させる
ことが行われ始めている。
As an attempt to reduce dislocations, it has been considered to lower the temperature gradient at the crystal growth interface to prevent the generation of dislocations due to thermal strain.
Efforts are beginning to be made to increase the thickness of the compound or to crystallize it in capsules.

もう1つの試みとして、結晶そのものの強度を上げて、
転位を取り込まないようにする工夫がなされている。い
わゆる不純物硬化(Impurity1+arden 
i ng)といわれている方法であり、 電気的特性に
影響を与えないGa、As以外のIII族、■族の元素
を添加する方法である。これに関するものとして、I「
1 (インジウム)、Sb(アンチモン)、B(ホウ素
)等の単元素を添加した報告がある。特に、In添加の
効果が最も大きいようであり、外径20mm、長さ40
mm程度の無転位結晶が得られているという報告がある
。しかし、実用的な直径50mm以上の結晶では、EP
D≦to、oo。
Another attempt was to increase the strength of the crystal itself,
Efforts have been made to prevent the introduction of dislocations. So-called impurity hardening (Impurity1+arden)
This is a method of adding Group III and Group II elements other than Ga and As, which do not affect the electrical characteristics. Regarding this, I'
There are reports of adding single elements such as 1 (indium), Sb (antimony), and B (boron). In particular, the effect of adding In seems to be the greatest, with an outer diameter of 20 mm and a length of 40 mm.
There are reports that dislocation-free crystals of about mm size have been obtained. However, for practical crystals with a diameter of 50 mm or more, EP
D≦to, oo.

ケ/ cm ’のものはほとんど得られていない。Almost no one has been obtained.

また、ボート法によるIn添加も試みられているが、1
モル%以上添加しても効果はなく、逆にInの析出と思
われる欠陥が発生してしまうことが明らかにされている
。°また、Inが偏析の関係で結晶後端に押し出されて
しまい、結晶中に入りにくいこと、押し出されたInと
石英ボートとの「ぬれ」も問題になるなどの欠点を有す
ることも明らかにされている。
Also, attempts have been made to add In using the boat method;
It has been revealed that addition of more than mol % has no effect and, on the contrary, causes defects that are thought to be caused by In precipitation. °Also, it is clear that due to segregation, In is pushed out to the rear end of the crystal, making it difficult to enter the crystal, and that it has drawbacks such as "wetting" of the extruded In and the quartz boat. has been done.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、不純物硬化法によって効果的に低転位化をは
かることができる低転位単結晶の製造方法を提供するこ
とにある。
The present invention has been made in view of the above, and an object thereof is to provide a method for producing a low dislocation single crystal that can effectively reduce dislocations by an impurity hardening method.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、横型ボート法または引き上げ法によっ
てG a A s単結晶を製造するときに、電気的特性
に影響を及ぼさないGa、As以外の■族と■族の元素
のそれぞれ少なくとも1種類を上記GaAs単結晶の原
料に添加して結晶成長を行うようにした点にある。
A feature of the present invention is that when producing a GaAs single crystal by a horizontal boat method or a pulling method, at least one of each of group Ⅰ and group Ⅰ elements other than Ga and As, which do not affect the electrical properties, is used. is added to the raw material of the GaAs single crystal for crystal growth.

〔実施例〕〔Example〕

以下本発明の製造方法の一実施例を第1図、第2図を用
いて詳細に説明する。
An embodiment of the manufacturing method of the present invention will be described in detail below with reference to FIGS. 1 and 2.

(1)実施例1(横型ボート法による場合)石英ガラス
製反応管の一端に種結晶と原料のGa800g 、In
 2.5 g (0,1モル%)、Sb2.7g(帆1
モル%)を入れた石英ボートを置き、また、他方の一端
にA3890gを入れて溶接した後、I X 10−’
T orr以下て1時間以上真空弓1きし、その後封じ
切る。
(1) Example 1 (by horizontal boat method) A seed crystal and 800 g of Ga as a raw material were placed at one end of a quartz glass reaction tube, and In
2.5 g (0.1 mol%), Sb 2.7 g (sail 1
After placing a quartz boat containing mol%) and welding A3890g at the other end, I X 10-'
Use the vacuum bow for at least 1 hour under Torr, then seal it off.

この反応管を二連式電気炉に設置し、ボート側(高温炉
)を1200℃以上に、As側(低温炉)を610℃に
昇温する。そして、GaAs合成反応終了後、低温炉の
温度を一定にしたまま高温炉の温度をさらに昇温し、シ
ード例部分なGaAs融点の1238°Cに、ボート本
体側をさらに高pz温度となるように温度匂配な1.0
 dig /Cmに調整する。このようにして挿入した
種結晶の一部を溶した後、温度匂配を一定にしたまま約
1.0 dig /llrの速度で降温させる。そして
、結晶全体が固化したのを(ill認後、+00 di
g /llrの速度て室温まて冷却し、結晶を取り出す
This reaction tube is installed in a double electric furnace, and the boat side (high temperature furnace) is heated to 1200°C or higher, and the As side (low temperature furnace) is heated to 610°C. After the GaAs synthesis reaction is completed, the temperature of the high-temperature furnace is further raised while keeping the temperature of the low-temperature furnace constant, and the temperature of the seed part is raised to 1238°C, which is the GaAs melting point, and the boat body side is brought to an even higher pz temperature. The temperature difference is 1.0
Adjust to dig/Cm. After a portion of the seed crystal inserted in this manner is dissolved, the temperature is lowered at a rate of about 1.0 dig/llr while keeping the temperature gradient constant. Then, after confirming that the entire crystal had solidified (+00 di
Cool to room temperature at a rate of 2 g/llr and remove the crystals.

以上の方法により重さ約1600gのG a A s単
結晶が得られた。得られた結晶はII型で、キャリア濃
度がη==IX10”〜3.5 X 10@Cm−’て
あり、電気的特性としては特に問題なかった。さらζこ
転位密度を溶融K OHてエツチングして測定したとこ
ろ、ボート壁に接していた部分から内側へ約5mmの部
分を除き、結晶全体がEPP≦500PP−500ケ位
密度であった。第1図は得られた結晶のウェハは面内転
位密度分布を示した図で、各枠内に示した数値は転位密
度を示す数値(単位;×100ケ/cm”)である。
By the above method, a GaAs single crystal weighing about 1600 g was obtained. The obtained crystal was of type II, with a carrier concentration of η==IX10'' to 3.5×10@Cm−', and there were no particular problems in terms of electrical properties. When etched and measured, the entire crystal had a density of EPP≦500PP-500, except for the part about 5 mm inward from the part that was in contact with the boat wall.Figure 1 shows that the obtained crystal wafer is In the figure showing the in-plane dislocation density distribution, the numerical values shown in each frame are numerical values (unit: x 100 cells/cm'') indicating the dislocation density.

なお、30回以上の繰り返し実験を行い、In。In addition, the experiment was repeated more than 30 times, and In.

sbを添加しない場合と比較したところ、2倍以上の歩
留りてEPD≦500’7/cm”の結晶が得られるこ
とがわかった。
When compared with the case where sb was not added, it was found that the yield was more than twice as high and crystals with EPD≦500'7/cm'' could be obtained.

(2)実施例2 実施例(1)において、I n 0.50g (0,0
2モル%)、 Sb O,52g (0,02モル%)
を添加した同様の単結晶成長を行った。その結果、EP
D≦500ケ/cm”の単結晶が得られ、歩留りは、何
も添加しない場合と比較して20〜30%よくなること
がわかった。
(2) Example 2 In Example (1), In 0.50g (0,0
2 mol%), SbO, 52g (0.02 mol%)
Similar single crystal growth was performed with the addition of . As a result, E.P.
It was found that single crystals with D≦500 crystals/cm” were obtained, and the yield was 20 to 30% better than when nothing was added.

(3)実施例3(引き上げ法による場合)P B N 
(T’yrolitic Boron N1tride
、)るつぼの中にGa1O,00g 、As1100g
 、In3.3g(0,1モル%) 、 Sb 3.5
g (0,1モル%)を入れ、さらに+3zOi(酸化
硼素)カプセル剤を500g乗せ、引き上げ装置内に設
置し、700℃、70気圧のもとでGaAs合成反応を
行わせた後、20気圧に降圧して、GaAs単結晶の引
き上げを行フた。その結果、外径65〜75cmの単結
晶的1500gが得られた。得られた単結晶をHOO)
面でスライスした後、溶融K OHてエツチングしたと
ころ、中心部の直径約50mmの部分はEPD≦100
00 ’7 / cm” の低転位密度半絶縁性結晶で
あった。第2図は得られた結晶のウェハ面内転位密度分
布を示した図で、各枠内に示した数値は転位密度を示ず
数値(単位;X100’z /cm” )である。 次
に比較例について説明する。
(3) Example 3 (by pulling method) P B N
(T'yrolitic Boron N1tride
,) Ga1O,00g, As1100g in a crucible
, In 3.3g (0.1 mol%), Sb 3.5
g (0.1 mol%), and further placed 500 g of +3zOi (boron oxide) capsules, placed in a lifting device, and carried out the GaAs synthesis reaction at 700°C and 70 atm, and then at 20 atm. The GaAs single crystal was pulled by lowering the pressure to . As a result, 1500 g of a single crystal with an outer diameter of 65 to 75 cm was obtained. The obtained single crystal is HOO)
After slicing it on the surface and etching it with molten KOH, the center portion with a diameter of about 50 mm had an EPD ≦100.
It was a semi-insulating crystal with a low dislocation density of 0.00'7/cm". Figure 2 shows the in-wafer dislocation density distribution of the obtained crystal, and the numbers shown in each frame indicate the dislocation density. It is a numerical value (unit: X100'z/cm"). Next, a comparative example will be explained.

(4)比較例 実施例(1)において、In25g(1モル%)。(4) Comparative example In Example (1), 25 g (1 mol %) of In.

Sb27g(1モル%)を添加して同様の単結晶成長を
行った。その結果、転位密度は小さくなるものの、次の
ような欠点を有することがわかった。
A similar single crystal growth was performed by adding 27 g (1 mol %) of Sb. As a result, it was found that although the dislocation density was reduced, it had the following drawbacks.

(イ)結晶成長後半にInの析出と思われる欠陥が発生
する。
(a) Defects that appear to be caused by In precipitation occur during the latter half of crystal growth.

(D)Inが固溶限を越えて結晶周囲に析出し、ボート
との「ぬれ」が発生し、滑り転位が発生しすい。
(D) In exceeds the solid solubility limit and precipitates around the crystal, causing "wetting" with the boat and causing sliding dislocations.

(ハ)「めれ」と関連して双晶が発生しやすい。(c) Twins are likely to occur in conjunction with "male".

また、In、Sbを個別に添加した場合は、1モル%以
下では転位密度減少にほとんど効果がなく、1モル%以
上添加すると、G a A s結晶というよりInxG
a (1−x )AsまたはGaAs (1−x ) 
Sbx混晶となってしまい、格子定数その他の特性が変
わる可能性がある。また、現実的には、Inを1モル%
以上添加すると、結晶成長後半にInの析出と思われる
欠陥が発生しやすくなり、GaAs単結晶として使用不
可能になってしまう。
Furthermore, when In and Sb are added individually, if it is less than 1 mol %, it has almost no effect on reducing dislocation density, and if it is added more than 1 mol %, it becomes InxG rather than Ga As crystal.
a (1-x) As or GaAs (1-x)
It becomes an Sbx mixed crystal, and the lattice constant and other properties may change. In addition, realistically, In is 1 mol%
If the above amount is added, defects likely to be caused by In precipitation tend to occur in the latter half of crystal growth, making the GaAs single crystal unusable.

ところで、本発明の製造方法のように、Inとsbを同
時に添加した場合は、各々0.1モル%添加しただけで
低転位化に対して顕著な効果が現われ、各々0.02モ
ル%添加した場合が効果の有無の境界領域となる。なお
、In、 Sbを各々1モル%添加した場合は、In単
独の場合と同様、結晶成長後半にInの析出と思われる
欠陥が発生1−るので、このように多く添加することは
さける必要力1ある。
By the way, when In and sb are added at the same time as in the production method of the present invention, a remarkable effect on lowering dislocations appears with just 0.1 mol% of each added, and when 0.02 mol% of each is added, This is the boundary area between whether or not there is an effect. Note that when In and Sb are added at 1 mol% each, defects that appear to be In precipitation occur in the latter half of crystal growth, as in the case of In alone, so it is necessary to avoid adding such large amounts. There is 1 power.

上記したように、本発明の方法の実施例によhば、不純
物硬化法を適用するにあたり、Inとsbとを同時に添
加するようにしたので、相乗効果により、次のような効
果がある。
As described above, according to the embodiment of the method of the present invention, when applying the impurity curing method, In and sb were added at the same time, resulting in the following effects due to the synergistic effect.

(a)単元素のみを添加する場合に比較して少量の添加
量で済むため、G a A S結晶の特性を変化させる
ことが少ない。
(a) Compared to the case where only a single element is added, a smaller amount is required, so the characteristics of the Ga AS crystal are less likely to change.

(b)同時に添加した不純物の析出、あるいは、横型ボ
ート法による場合の「ぬれj等の発生が抑えられる。
(b) Precipitation of impurities added at the same time or occurrence of "wetting" when using the horizontal boat method can be suppressed.

(C)相乗効果により、単元素を同量添加した場合に比
較して効果か著しく大きい。
(C) Due to the synergistic effect, the effect is significantly greater than when the same amount of a single element is added.

なお、上記した実施例では、Inとsbとを添加したが
、電気的特性に影響を与えない■族元素としては、In
以外にB(ホウ素)、AI(アルミニウム)等があり、
■族元素としては、sb以外にN(窒素)、P(燐)等
があり、これらの組合わせとしてもよいことはいうまで
もない。
In the above-mentioned example, In and sb were added, but as a group Ⅰ element that does not affect the electrical characteristics, In
In addition, there are B (boron), AI (aluminum), etc.
In addition to sb, group (2) elements include N (nitrogen), P (phosphorus), etc., and it goes without saying that a combination of these may also be used.

また、G a A s単結晶の場合について説明したが
、これ以外のIII −V族化合物半導体2例えは、I
nP、Gar’等の場合でも同様である。
In addition, although the case of GaAs single crystal has been explained, two other examples of III-V group compound semiconductors are I
The same applies to nP, Gar', etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、不純物硬化法に
よって効果的に低転位化をはかることができるという効
果がある。
As explained above, according to the present invention, there is an effect that dislocation can be effectively reduced by the impurity hardening method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は横型ボート法を用いて本発明によって得られた
結晶のウェハ面内転位密度分布を示す図。 第2図は引き上げ法を用いて本発明によって得られた結
晶のウェハ面内転位密度分布を示す図である。
FIG. 1 is a diagram showing the in-plane dislocation density distribution of a crystal obtained according to the present invention using the horizontal boat method. FIG. 2 is a diagram showing the in-plane dislocation density distribution of a crystal obtained according to the present invention using the pulling method.

Claims (2)

【特許請求の範囲】[Claims] (1)横型ボート法または引き上げ法によってGaAs
単結晶を製造するときに、電気的特性に影響を及ぼさな
いGa、As以外の■族と■族の元素のそれぞれ少なく
とも1種類を前記GaAs単結晶の原料中に添加して結
晶成長を行うことを特徴とする低転位単結晶の製造方法
(1) GaAs by horizontal boat method or pulling method
When manufacturing a single crystal, crystal growth is performed by adding at least one type of each of Group 1 and Group 2 elements other than Ga and As, which do not affect electrical characteristics, to the raw material of the GaAs single crystal. A method for producing a low dislocation single crystal characterized by:
(2)前記■族の元素はInであフて、前記■族の元素
はsbであって、それぞれ0.02モル%以上、1.0
モル%以下添加する特許請求の範囲第1項記載の低転位
単結晶の製造方法。
(2) The above-mentioned group Ⅰ element is In, and the above-mentioned group Ⅰ element is sb, which is 0.02 mol% or more and 1.0 mol% or more, respectively.
The method for producing a low dislocation single crystal according to claim 1, wherein the addition amount is mol % or less.
JP59018024A 1984-02-02 1984-02-02 Manufacture of low dislocation single crystal Granted JPS60161399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018024A JPS60161399A (en) 1984-02-02 1984-02-02 Manufacture of low dislocation single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018024A JPS60161399A (en) 1984-02-02 1984-02-02 Manufacture of low dislocation single crystal

Publications (2)

Publication Number Publication Date
JPS60161399A true JPS60161399A (en) 1985-08-23
JPH0310600B2 JPH0310600B2 (en) 1991-02-14

Family

ID=11960095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018024A Granted JPS60161399A (en) 1984-02-02 1984-02-02 Manufacture of low dislocation single crystal

Country Status (1)

Country Link
JP (1) JPS60161399A (en)

Also Published As

Publication number Publication date
JPH0310600B2 (en) 1991-02-14

Similar Documents

Publication Publication Date Title
JP4235711B2 (en) Manufacturing method of GaAs single crystal by vertical boat method
JPS60161399A (en) Manufacture of low dislocation single crystal
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
Morioka et al. Development of high-quality InP single crystals
JP2018095490A (en) Method for manufacturing silicon single crystal, silicon single crystal and silicon single crystal wafer
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JPS5912639B2 (en) crystal growth method
JP3560180B2 (en) Method for producing ZnSe homoepitaxial single crystal film
JPH08758B2 (en) Method for producing chromium-doped semi-insulating gallium arsenide single crystal
JPH08756B2 (en) Inorganic compound single crystal growth method
JPH0645249A (en) Growth method of gaas layer
CN116324047A (en) Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single-crystal ingot, and method for producing indium phosphide substrate
JPH029796A (en) Production of gallium arsenide single crystal
JPH04362082A (en) Apparatus and method for producing compound semiconductor crystal
JPH0517196B2 (en)
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPH01138190A (en) Production of single crystal of iii-v group compound semiconductor
JPH11147799A (en) Production of single crystal of compound semiconductor and single crystal of compound semiconductor produced by the same production
JPH061700A (en) Production of indium antimonide single crystal
JPS6380527A (en) Formation of compound semiconductor layer
JPS6313960B2 (en)
JPS58176200A (en) Preparation of single crystal of gallium arsenide
JPH01201100A (en) Semi-insulating gallium arsenide single crystal having low dislocation density