JPH0310600B2 - - Google Patents

Info

Publication number
JPH0310600B2
JPH0310600B2 JP59018024A JP1802484A JPH0310600B2 JP H0310600 B2 JPH0310600 B2 JP H0310600B2 JP 59018024 A JP59018024 A JP 59018024A JP 1802484 A JP1802484 A JP 1802484A JP H0310600 B2 JPH0310600 B2 JP H0310600B2
Authority
JP
Japan
Prior art keywords
crystal
mol
gaas
crystals
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59018024A
Other languages
Japanese (ja)
Other versions
JPS60161399A (en
Inventor
Seiji Mizuniwa
Konichi Nakamura
Shinkichi Nakagawa
Kazuhiro Kurata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP59018024A priority Critical patent/JPS60161399A/en
Publication of JPS60161399A publication Critical patent/JPS60161399A/en
Publication of JPH0310600B2 publication Critical patent/JPH0310600B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明の低転位単結晶の製造方法に係り、特に
効果的に低転位化をはかるのに好適な低転位単結
晶の製造方法に関するものである。
[Detailed Description of the Invention] [Background and Objectives of the Invention] The present invention relates to a method for producing a low dislocation single crystal, and particularly relates to a method for producing a low dislocation single crystal suitable for effectively reducing dislocation. be.

GaAs単結晶の製造方法は、大きくわけると横
型ボート法と引き上げ法とにわけられる。横型ボ
ート法は、引き上げ法に比較して低転位単結晶が
得られるが、半導体レーザ用に使用される転位密
度(EPD)≦500ケ/cm2の結晶はSiドープ結晶に
おいてのみ確率的に得られている段階であり、歩
留りが悪い。また、引き上げ法では、直接合成引
き上げ法によるFET、IC向けのアンドープ半絶
縁性結晶の開発、製造を各社で行つているが、転
位密度に関しては、EPD≦100000ケ/cm2のもの
は製造可能であるが、EPD≦50000ケ/cm2のもの
は製造困難のようである。
Methods for producing GaAs single crystals can be roughly divided into horizontal boat methods and pulling methods. The horizontal boat method can obtain low-dislocation single crystals compared to the pulling method, but crystals with a dislocation density (EPD) ≦500/cm 2 used for semiconductor lasers can only be obtained stochastically in Si-doped crystals. It is still in the process of being sold, and the yield is poor. In addition, with regard to the pulling method, various companies are developing and manufacturing undoped semi-insulating crystals for FETs and ICs using the direct synthesis pulling method, but in terms of dislocation density, it is possible to manufacture crystals with EPD≦100,000 cells/ cm2 . However, it seems difficult to manufacture those with EPD≦50,000 cells/cm 2 .

引き上げ法による半絶縁性結晶の低転位化は急
務であり、EPD≦100000ケ/cm2から最終的EPD
≦1000ケ/cm2のものができないと、IC、LSIの発
展は望めないといわれている。
There is an urgent need to reduce dislocations in semi-insulating crystals using the pulling method.
It is said that unless something with a density of ≦1000 cells/cm 2 can be produced, there will be no hope for the development of ICs and LSIs.

低転位化の試みとして、結晶成長界面の温度勾
配を低くして、熱歪による転位の発生を防止する
ことが考えられており、原料融液の表面を覆うカ
プセル剤(B2O3)の厚さを増加させたり、カプ
セル剤の中で結晶化させることが行われ始めてい
る。
As an attempt to reduce dislocations, it has been considered to lower the temperature gradient at the crystal growth interface to prevent the generation of dislocations due to thermal strain . Increased thickness and crystallization within capsules are beginning to be used.

もう一つの試みとして、結晶そのものの強度を
上げて、転位を取り込まないようにする工夫がな
されている。いわゆる不純物硬化(Impurity
hardening)といわれている方法であり、電気的
特性に影響を与えないGa、As以外の族、族
の元素を添加する方法である。これに関するもの
として、In(インジウム)、Sb(アンチモン)、B
(ホウ素)等の単元素を添加した報告がある。特
に、In添加の効果が最も大きいようであり、外径
20mm、長さ40mm程度の無転位結晶が得られている
という報告がある。しかし、実用的な直径50mm以
上の結晶では、EPD≦10000ケ/cm2のものはほと
んど得られていない。
Another attempt is to increase the strength of the crystal itself to prevent dislocations from being incorporated. So-called impurity hardening
This is a method called "hardening" and is a method of adding elements of groups other than Ga and As that do not affect the electrical characteristics. Regarding this, In (indium), Sb (antimony), B
There are reports of adding single elements such as (boron). In particular, the effect of In addition seems to be the greatest, and the outer diameter
There are reports that dislocation-free crystals of approximately 20 mm and length of 40 mm have been obtained. However, practical crystals with a diameter of 50 mm or more with EPD≦10,000 crystals/cm 2 have hardly been obtained.

また、ボート法によるIn添加も試みられている
が、1モル%以上添加しても効果はなく、逆にIn
の析出と思われる欠陥が発生してしまうことが明
らかにされている。また、Inが偏析の関係で結晶
後端に押し出されてしまい、結晶中に入りにくい
こと、押し出されたInと石英ボートとの「ぬれ」
も問題になるなどの欠点を有することも明らかに
されている。
In addition, attempts have been made to add In using the boat method, but adding more than 1 mol% has no effect;
It has been revealed that defects that are thought to be caused by precipitation occur. In addition, due to segregation, In is pushed out to the rear end of the crystal, making it difficult to enter the crystal, and "wetting" between the pushed out In and the quartz boat.
It has also been revealed that there are some drawbacks, such as problems.

本発明は上記に鑑みてなされたもので、その目
的とするところは、不純物硬化法によつて効果的
GaAs単結晶の低転位化をはかることができる低
転位単結晶の製造方法を提供することにある。
The present invention has been made in view of the above, and its purpose is to effectively cure the
An object of the present invention is to provide a method for manufacturing a low dislocation single crystal that can reduce the dislocation of a GaAs single crystal.

[発明の概要] 本発明の特徴は、横型ボート法または引き上げ
法によつてGaAs単結晶を製造する方法におい
て、電気的特性に影響を及ぼさないInとSbを上
記GaAs単結晶の原料にそれぞれ0.02モル%以上、
1.0モル%未満添加して結晶成長を行うようにし
た点にある。
[Summary of the Invention] The feature of the present invention is that in a method for manufacturing GaAs single crystals by a horizontal boat method or a pulling method, 0.02% of each of In and Sb, which do not affect the electrical characteristics, are added to the raw materials of the GaAs single crystal. mole% or more,
The point is that crystal growth is performed by adding less than 1.0 mol%.

[実施例] 以下本発明の製造方法の一実施例を第1図、第
2図を用いて詳細に説明する。
[Example] An example of the manufacturing method of the present invention will be described in detail below with reference to FIGS. 1 and 2.

実施例 1 横型ボート法による場合 石英ガラス製反応管の一端に種結晶と原料の
Ga800g、In2.5g(0.1モル%)、Sb2.7g(0.1モ
ル%)を入れた石英ボートを置き、また、他方の
一端にAs890gを入れて溶接した後、1×
10-6Torr以下で1時間以上真空引きし、その後
封じ切る。
Example 1 When using the horizontal boat method A seed crystal and a raw material were placed at one end of a quartz glass reaction tube.
A quartz boat containing 800 g of Ga, 2.5 g of In (0.1 mol%), and 2.7 g of Sb (0.1 mol%) was placed, and 890 g of As was placed at one end of the other side and welded.
Evacuate at 10 -6 Torr or less for more than 1 hour, then seal.

この反応管を二連式電気炉に設置し、ボート側
(高温炉)を1200℃以上に、As側(低温炉)を
610℃に昇温する。そして、GaAs合成反応終了
後、低温炉の温度を一定にしたまま高温炉の温度
をさらに昇温し、シード付部分をGaAs融点の
1238℃に、ボート本体側をさらに高い温度となる
ように温度勾配を1.0deg/cmに調製する。このよ
うにして挿入した種結晶の一部を溶かした後、温
度勾配を一定にしたまま約1.0deg/hrの速度で降
温させる。そして、結晶全体が固化したのを確認
後、100deg/Hrの速度で室温まで冷却し、結晶
を取り出す。
This reaction tube was installed in a double electric furnace, with the boat side (high temperature furnace) heated to over 1200℃ and the As side (low temperature furnace) heated.
Raise the temperature to 610℃. After the GaAs synthesis reaction is completed, the temperature of the high-temperature furnace is further increased while keeping the temperature of the low-temperature furnace constant, and the seeded portion is heated to the melting point of GaAs.
Adjust the temperature gradient to 1.0deg/cm so that the temperature on the boat body side is higher than that of 1238℃. After partially melting the inserted seed crystal in this way, the temperature is lowered at a rate of about 1.0 deg/hr while keeping the temperature gradient constant. After confirming that the entire crystal has solidified, it is cooled to room temperature at a rate of 100 deg/hr, and the crystal is taken out.

以上の方法により重さ約1600gのGaAs単結晶
が得られた。得られた結晶はn型で、キヤリア濃
度がn=1×1018〜3.5×1018cm-3であり、電気的
特性としては特に問題なかつた。さらに転位密度
を溶融KOHでエツチングして測定したところ、
ボート壁に接していた部分から内側へ約5mmの部
分を除き、結晶全体がEPP≦500ケ/cm2の低転位
密度であつた。第1図は得られた結晶のウエハは
内面転位密度分布を示した図で、各枠内に示した
数値は転位密度を示す数値(単位:×100ケ/cm2
である。
A GaAs single crystal weighing approximately 1600 g was obtained by the above method. The obtained crystal was of n-type, had a carrier concentration of n=1×10 18 to 3.5×10 18 cm −3 , and had no particular problems in terms of electrical properties. Furthermore, when we measured the dislocation density by etching with molten KOH, we found that
The entire crystal had a low dislocation density of EPP≦500/cm 2 except for a portion approximately 5 mm inward from the portion in contact with the boat wall. Figure 1 shows the internal dislocation density distribution of the obtained crystal wafer, and the numbers shown in each frame indicate the dislocation density (unit: x 100 cells/cm 2 ).
It is.

なお、30回以上の繰り返し実験を行い、In、
Sbを添加しない場合と比較したところ、2倍以
上の歩留りでEPD≦500ケ/cm2の結晶が得られる
ことがわかつた。
In addition, the experiment was repeated more than 30 times, and In,
When compared with the case without adding Sb, it was found that crystals with an EPD≦500/cm 2 could be obtained with a yield that was more than twice as high.

実施例 2 実施例1において、In0.50g(0.02モル%)、
Sb0.52g(0.02モル%)を添加した同様の単結晶
成長を行つた。その結果、EPD≦500ケ/cm2の単
結晶が得られ、歩留りは、何も添加しない場合と
比較して20〜30%よくなることがわかつた。
Example 2 In Example 1, In0.50g (0.02 mol%),
Similar single crystal growth was performed with the addition of 0.52 g (0.02 mol%) of Sb. As a result, it was found that single crystals with EPD≦500/cm 2 were obtained, and the yield was 20 to 30% better than when nothing was added.

実施例 3 引き上げ法による場合 PBN(Pyrolitic Boron Nitride)るつぼの中
にGa1000g、As1100g、In3.3g(0.1モル%)、
Sb3.5g(0.1モル%)を入れ、さらにB2O3(酸化
ホウ素)カプセル剤を500g乗せ、引き上げ装置
内に設置し、700℃、70気圧のもとでGaAs合成
反応を行わせた後、20気圧に降圧して、GaAs単
結晶の引き上げを行つた。その結果、外径65〜75
cmの単結晶約1500gが得られた。得られた単結晶
を{100}面でスライスした後、溶融KOHでエツ
チングしたところ、中心部の直径約50mmの部分は
EPD≦10000ケ/cm2の低転位密度半絶縁性結晶で
あつた。第2図は得られた結晶のウエハ面内転位
密度分布を示した図で、各枠内に示した数値は転
位密度を示す数値(単位:×100ケ/cm2)である。
次に比較例について説明する。
Example 3 Using the pulling method 1000 g of Ga, 1100 g of As, 3.3 g of In (0.1 mol%) in a PBN (Pyrolitic Boron Nitride) crucible,
After adding 3.5 g (0.1 mol%) of Sb and 500 g of B 2 O 3 (boron oxide) capsules and placing it in a pulling device, the GaAs synthesis reaction was carried out at 700°C and 70 atm. , the pressure was lowered to 20 atm and GaAs single crystal was pulled. As a result, outer diameter 65-75
Approximately 1500 g of single crystals of cm were obtained. After slicing the obtained single crystal along {100} planes and etching it with molten KOH, the central portion with a diameter of approximately 50 mm was
It was a semi-insulating crystal with a low dislocation density of EPD≦10,000/cm 2 . FIG. 2 is a diagram showing the dislocation density distribution within the wafer plane of the obtained crystal, and the numerical values shown in each frame are numerical values indicating the dislocation density (unit: ×100 cells/cm 2 ).
Next, a comparative example will be explained.

比較例 実施例1において、In25g(1モル%)、Sb27
g(1モル%)を添加して同様の単結晶成長を行
つた。その結果、転位密度は小さくなるものの、
次のような欠点を有することがわかつた。
Comparative example In Example 1, In25g (1 mol%), Sb27
Similar single crystal growth was performed by adding g (1 mol %). As a result, although the dislocation density becomes smaller,
It was found that it has the following drawbacks.

(1) 結晶成長後半にInの析出と思われる欠陥が発
生する。
(1) Defects that appear to be caused by In precipitation occur in the latter half of crystal growth.

(2) Inが固溶限を越えて結晶周囲に析出し、ボー
トとの「ぬれ」が発生し、滑り転位が発生しや
すい。
(2) In exceeds the solid solubility limit and precipitates around the crystal, causing "wetting" with the boat and causing slip dislocations.

(3) 「ぬれ」と関連して双晶が発生しやすい。ま
た、In、Sbを個別に添加した場合は、1モル
%未満では転位密度減少にほとんど効果がな
く、1モル%以上添加すると、GaAs結晶とい
うよりIn×Ga(1−X)AsまたはGaAs(1−
X)Sbx混晶となつてしまい、格子定数その他
の特性が変わる可能性がある。また、現実的に
は、Inを1モル%以上添加すると、結晶成長後
半にInの析出と思われる欠陥が発生しやすくな
り、GaAs単結晶として使用不可能になつてし
まう。
(3) Twinning is likely to occur in conjunction with "wetting." Furthermore, when In and Sb are added individually, less than 1 mol% has little effect on reducing dislocation density, and when more than 1 mol% is added, In×Ga(1-X)As or GaAs( 1-
X) It becomes an Sbx mixed crystal, and the lattice constant and other properties may change. Furthermore, in reality, if 1 mol % or more of In is added, defects likely to be caused by In precipitation tend to occur in the latter half of crystal growth, making it unusable as a GaAs single crystal.

ところで、本発明の製造方法のように、Inと
Sbを同時に添加した場合は、各々0.1モル%添加
しただけで低転位化に対して顕著な効果が現わ
れ、各々0.02モル%添加した場合が効果の有無の
境界領域となる。なお、In、Sbを各々1モル%
添加した場合、In単独の場合と同様、結晶成長後
半にInの析出と思われる欠陥が発生するので、こ
のように多く添加することはさける必要がある。
By the way, as in the manufacturing method of the present invention, In and
When Sb is added at the same time, adding only 0.1 mol % of each has a remarkable effect on lowering dislocations, and adding 0.02 mol % of each is the boundary region between whether or not it is effective. In addition, In and Sb were each 1 mol%
If In is added, defects likely to be caused by In precipitation will occur in the latter half of crystal growth, as in the case of In alone, so it is necessary to avoid adding such a large amount.

上記したように、本発明の方法の実施例によれ
ば、不純物硬化法を適用するにあたり、InとSb
とを同時に添加するようにしたので、相乗効果に
より、次のような効果がある。
As mentioned above, according to the embodiment of the method of the present invention, when applying the impurity curing method, In and Sb
Since these are added at the same time, the synergistic effect produces the following effects.

(1) 単元素のみを添加する場合に比較して少量の
添加量で済むため、GaAs結晶の特性を変化さ
せることが少ない。
(1) Compared to the case where only a single element is added, a smaller amount is required, so the characteristics of the GaAs crystal are less likely to change.

(2) 同時に添加した不純物の析出、あるいは横型
ボート法による場合の「ぬれ」等の発生が抑え
られる。
(2) Precipitation of impurities added at the same time or occurrence of "wetting" when using the horizontal boat method can be suppressed.

(3) 相乗効果により、単元素を同量添加した場合
に比較して効果が著しく大きい。
(3) Due to the synergistic effect, the effect is significantly greater than when the same amount of a single element is added.

[発明の効果] 以上説明したように、本発明によれば、Inと
Sbをそれぞれ0.02モル%以上、1.0モル%未満の
量だけGaAsに添加することにより不純物硬化法
によつて効果的にGaAs単結晶の低転位化をはか
ることができるという効果がある。
[Effect of the invention] As explained above, according to the present invention, In and
By adding Sb to GaAs in an amount of 0.02 mol % or more and less than 1.0 mol %, respectively, it is possible to effectively reduce dislocations in the GaAs single crystal by an impurity hardening method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は横型ボート法を用いて本発明によつて
得られた結晶ウエハ面内転位密度分布を示す図、
第2図は引き上げ法を用いて本発明によつて得ら
れた結晶のウエハ面内転位密度分布を示す図であ
る。
FIG. 1 is a diagram showing the in-plane dislocation density distribution of a crystal wafer obtained by the present invention using the horizontal boat method;
FIG. 2 is a diagram showing the in-plane dislocation density distribution of a crystal obtained according to the present invention using a pulling method.

Claims (1)

【特許請求の範囲】[Claims] 1 横型ボート法または引き上げ法によつて
GaAs単結晶を製造する方法において前記GaAs
単結晶の原料中にIn及びSbをそれぞれ0.02モル%
以上、1.0モル%未満添加して結晶成長を行うこ
とを特徴とする低転位単結晶の製造方法。
1 By horizontal boat method or hoisting method
In the method of manufacturing a GaAs single crystal, the GaAs
0.02 mol% each of In and Sb in the single crystal raw material
A method for producing a low dislocation single crystal, characterized in that crystal growth is performed with addition of less than 1.0 mol%.
JP59018024A 1984-02-02 1984-02-02 Manufacture of low dislocation single crystal Granted JPS60161399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018024A JPS60161399A (en) 1984-02-02 1984-02-02 Manufacture of low dislocation single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018024A JPS60161399A (en) 1984-02-02 1984-02-02 Manufacture of low dislocation single crystal

Publications (2)

Publication Number Publication Date
JPS60161399A JPS60161399A (en) 1985-08-23
JPH0310600B2 true JPH0310600B2 (en) 1991-02-14

Family

ID=11960095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018024A Granted JPS60161399A (en) 1984-02-02 1984-02-02 Manufacture of low dislocation single crystal

Country Status (1)

Country Link
JP (1) JPS60161399A (en)

Also Published As

Publication number Publication date
JPS60161399A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
McGuigan et al. Effects of indium lattice hardening upon the growth and structural properties of large‐diameter, semi‐insulating GaAs crystals
JPH06298588A (en) Production of compound semiconductor single crystal by vertical type boat method
JP4235711B2 (en) Manufacturing method of GaAs single crystal by vertical boat method
JPH0310600B2 (en)
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
JP2576131B2 (en) Method for treating compound semiconductor crystal
JPS5912639B2 (en) crystal growth method
JPH0517196B2 (en)
JPH08756B2 (en) Inorganic compound single crystal growth method
JPH08758B2 (en) Method for producing chromium-doped semi-insulating gallium arsenide single crystal
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JP2736343B2 (en) Method for producing semi-insulating InP single crystal
KR950003430B1 (en) Method of growing p-type gaas single crystal by double doping
JP2637210B2 (en) Single crystal growth method and apparatus
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPH01201100A (en) Semi-insulating gallium arsenide single crystal having low dislocation density
JP2773441B2 (en) Method for producing GaAs single crystal
JP3633212B2 (en) Single crystal growth method
JPH029796A (en) Production of gallium arsenide single crystal
JPH08104591A (en) Apparatus for growing single crystal
JPH01179796A (en) Seed crystal for producing non-dislocation gaas single crystal
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPH11147799A (en) Production of single crystal of compound semiconductor and single crystal of compound semiconductor produced by the same production
JPH05163094A (en) Production of compound semiconductor crystal
JPS6313960B2 (en)