KR950003430B1 - Method of growing p-type gaas single crystal by double doping - Google Patents

Method of growing p-type gaas single crystal by double doping Download PDF

Info

Publication number
KR950003430B1
KR950003430B1 KR1019910000211A KR910000211A KR950003430B1 KR 950003430 B1 KR950003430 B1 KR 950003430B1 KR 1019910000211 A KR1019910000211 A KR 1019910000211A KR 910000211 A KR910000211 A KR 910000211A KR 950003430 B1 KR950003430 B1 KR 950003430B1
Authority
KR
South Korea
Prior art keywords
single crystal
gaas
growing
type gaas
type
Prior art date
Application number
KR1019910000211A
Other languages
Korean (ko)
Other versions
KR920015454A (en
Inventor
정낙진
최민호
이호성
양영규
Original Assignee
금성전선 주식회사
박원근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성전선 주식회사, 박원근 filed Critical 금성전선 주식회사
Priority to KR1019910000211A priority Critical patent/KR950003430B1/en
Publication of KR920015454A publication Critical patent/KR920015454A/en
Application granted granted Critical
Publication of KR950003430B1 publication Critical patent/KR950003430B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The single crystalline growth of P type gallium arsenide with the horizontal Bridgeman method is achieved by double doping GaAs parent alloy with zinc and amphoteric silicon together. Then the double doping process is succeeded that the net carrier concentration (Nnet=Na-Nd) of GaAs single crystal get to be Na>Nd state and electrically P type. And the conditions in growing the single crystal comprise the followings; temperature gradient of interface is 3-7 deg.C; crystal growth rate 0.3-1.0 cm/hr; diameter and length of seed crystal are 2 in and 20 cm.,etc.

Description

더블-도우핑(double-doping)에 의한 p-type GaAs 단결정 성장방법P-type GaAs single crystal growth method by double-doping

제 1 도는 <111>면의 EPD(etch pit density) 분포도.1 is an etch density distribution diagram of the <111> plane.

제 2 도는 본 발명의 결정 성장 전기로 및 온도 프로파일(profile).2 is a crystal growth furnace and temperature profile of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 고온·중온·저온부 히터(heater) 2 : 히트-파이프(heat-pipe)1: high temperature, medium temperature, low temperature heater 2: heat-pipe

3 : 쿼츠 앰풀(quartz ampule) 4 : GaAs 종결정(seed crystai)3: quartz ampule 4: GaAs seed crystal (seed crystai)

5 : Si이 도우핑(doping)된 다결정 GaAs+Zn5: polycrystalline GaAs + Zn doped with Si

6 : GaAs용 석영 보우트(quartz boat) 7 : 과잉(excess)6: quartz boat for GaAs 7: excess

8 : As-zone 제어용 열전쌍(thermocouple)8: Thermocouple for As-zone Control

9 : 인터페이스(interface) 관측용 열전쌍(thermocouple)9: thermocouple for interface observation

10 : 앰풀 엔드(ampule end) 관측용 열전쌍(thermocouple)10: thermocouple for ampule end observation

본 발명은 수평-브리지만(HB)법으로 GaAs 단결정을 제조함에 있어, Zn과 Si을 더블-도우핑(double-doping)하여 p-type GaAs 단결정 성장시 p-type 도우판트(dopant)인 Zn 이외에 Si을 미량 첨가하여 결정성장 조건을 완화하므로써 단결정 수율을 향상토록 한 더블-도우핑(double-doping)에 의한 p-type GaAs 단결정 성장방법에 관한 것이다.In the present invention, in the preparation of GaAs single crystal by the HB method, Zn, which is a p-type dopant when growing p-type GaAs single crystal by double-doping Zn and Si, In addition, the present invention relates to a p-type GaAs single crystal growth method by double-doping to improve the single crystal yield by reducing the crystal growth conditions by adding a small amount of Si.

일반적으로, HB(horizontal Bridgman)법, GF(gradient freeze)법, ZM(zone melting)법, LED(liquid encapsulanted Czochralski)법 등의 멜트 그로우스(melt growth)로 p-type GaAs 단결정을 성장하기 위해서는 p-type 도우판트(dopant)(accept impurity)로 Zn나 Zn 화합물을 용해도 한계(solubi-lity limit)인 1×1020-3이내로 첨가한다.In general, in order to grow p-type GaAs single crystals by melt growth, such as HB (horizontal Bridgman), GF (gradient freeze), ZM (zone melting), or liquid encapsulanted Czochralski (LED) As a p-type dopant (accept impurity), Zn or Zn compounds are added within 1 × 10 20 cm −3 , the solubility limit.

그러나 Zn만을 첨가하여 단결정을 성장할 경우에는 GaAs의 CRSS(critical resolved shear stress)가 작아 성장조건이 까다롭기 때문에 결정성을 유지하기가 매우 어려워 쌍정(twin)이 발생하거나 다결정화 하기 쉬우며, 전위로 인하여 고품위 웨이퍼(wafer)를 얻기가 어렵다.However, when the single crystal is grown by adding only Zn, it is difficult to maintain crystallinity because GaSS is small and CRSS (critical resolved shear stress) is difficult to grow, so it is easy to generate twin or polycrystallization, It is difficult to obtain high quality wafers.

GaAs의 ESF(stacking faults energy)는 언도우드(undoped)인 경우 55mJ/㎡로 매우 낮으며, ESF가 낮을수록 쌍정(twin)이나 전위(dilocation)가 형성되기 쉬우며, 대부분의 III-V족 화합물이 그러하듯 GaAs의 CRSS는 언도우프드(undoped)인 경우 융점에서 7g·㎜-2로 매우 낮으며, 결정 성장중 열적(thermal)이나 미캐니클 스트레스(mechanical stress)가 CRSS보다 크게 되면 슬립 프로세스(slip process)에 의해 전위(dislocation)가 생성 및 증식되어 저전위의 단결정을 얻기가 어려워진다.The stacking fault energy (E SF ) of GaAs is very low (55mJ / m2) in the case of undoped, and the lower E SF is more likely to form twins or dislocations, and most III-V As with the family compounds, GaAs CRSS is very low at 7g · mm -2 at the melting point when undoped, and when thermal or mechanical stress becomes larger than CRSS during crystal growth Dislocations are generated and multiplied by the slip process, making it difficult to obtain low-potency single crystals.

따라서 저전위의 단결정을 성장하기 위해서는 ESF와 CRSS를 크게 하고, 성장중에 주로 야기되는 열적스트레스(the rmal stress)를 작게 하면 되는 것이나 ESF는 결정방향(crystallographic orientation), 도우판트(dopant)의 종류와 도우핑 농도(doping conce ntration)에 따라 달라지게 된다.Therefore, in order to grow low-crystal single crystals, E SF and CRSS should be increased and the thermal stress caused mainly during the growth may be reduced. However, E SF may be used in the crystallographic orientation and the dopant. It depends on the type and doping concentration.

이와 같은 임퓨어리티 하드닝 효과(impurity hardening effect)는 III-V족 화합물의 일종인 Inp에서는 Zn>S>Te의 순으로, 그리고 도우핑 레벨(doping level)이 증가함에 따라 하드닝 이펙트(hardening effect)가 현저하지만, GaAs에서는 s>Te>Zn의 순이며, 또한 Zn의 경우는 1019-3정도로 고농도로 도우핑(heavily doping)하여도 효과(effect)가 거의 나타나지 않는다. <Y.seki 등, J.Appl Phys. 49, 822(1978), T.Kamejima 등, J.Appl.Phys.50, 3312(1979), M.G.Mil'vidsky 등, J.Crtstal Growth 52, 396(1981) 참조>The impurity hardening effect is Zn>S> Te in Inp, a kind of group III-V compound, and hardening effect as the doping level increases. Although the effect) is remarkable, in GaAs, in order of s>Te> Zn, and in the case of Zn, the effect is hardly exhibited even when heavily doped at about 10 19 cm -3 . Y. seki et al., J. Appl Phys. 49, 822 (1978), T. Kamejima et al., J. Appl. Phys. 50, 3312 (1979), MGMil'vidsky et al., J. Crystal Growth 52, 396 (1981)>

그러므로 p-type GaAs를 성장시 Zn만을 도우핑(doping)하여 단결정을 얻기가 매우 어려웠다.Therefore, it was very difficult to obtain single crystal by doping only Zn when growing p-type GaAs.

따라서 본 발명에서는, p-type GaAs 단결정을 성장하는데 있어서 Zn을 일부 첨가하고, 전기적 성질의 영향을 주지 않으면서 임퓨어리티 하드닝 효과(impurity hardening effect)를 줄수 있는 도우판트(dopant)로서 Si등을 Zn보다 약간 적게 첨가하여 결정성 유지를 용이하도록 한 것인바, 이를 좀더 구체적으로 설명하면 다음과 같다.Therefore, in the present invention, Si is added as a dopant that can add impurity hardening effect without adding some Zn in growing p-type GaAs single crystal and without affecting electrical properties. It is added to slightly less than Zn to facilitate the maintenance of crystallinity, which will be described in more detail as follows.

HB법으로 p-type GaAs 단결정을 성장하기 위하여 Zn을 1-10×1019-3첨가하고, GaAs내에서 임퓨어리티 하드닝 효과(impurity hardening effect)가 매우 큰 도우판트(dopant)인 Si를 1-10×1018-3W정도 첨가하여, 네트 캐리어 농도(net carrier concentration)(Nnet=NA-ND)이 NA>ND가 되게 하므로써 전기적으로 p-type이 되도록 하였다.In order to grow p-type GaAs single crystal by HB method, Zn is added 1-10 × 10 19 cm -3 , and Si, a dopant having a very large impurity hardening effect in GaAs Was added about 1-10 × 10 18 cm -3 W, so that the net carrier concentration (Nnet = N A -N D ) was N A > N D to be electrically p-type.

여기서 Si은 GaAs내에서 양쪽성 불순물(amphoteric impurity)로 작용하지만, HB법과 같은 melt-growth법에서는 주로 n-type 불순물인 donor로 작용한다.Here, Si acts as amphoteric impurity in GaAs, but in melt-growth method such as HB method, it acts mainly as donor which is n-type impurity.

한편, 단결정 성장시 원재료로서 Ga와 As를 사용하는 방식과 다결정 GaAs를 사용하는 방식이 있는바, 스토우이치오메트리 콘트롤(stoichiometry control)에 유리하도록 다결정 GaAs를 사용하는 것이 바람직한 것으로, 상기 다결정 GaAs에 도우판트(dopant)인 Zn 화합물이나 Zn을 직접 첨가한다.On the other hand, there is a method of using Ga and As as a raw material and a method of using polycrystalline GaAs for single crystal growth, and it is preferable to use polycrystalline GaAs to favor stoichiometry control. Dopant Zn compound or Zn is added directly.

이때 유의해야될 사항으로, 미량 첨가 원소인 Si를 다결정 GaAs에 직접 첨가하게 되면, GaAs(밀도가 5.32g/㎤, 융점이 1238℃)에 비해 Si(밀도가 2.328g/㎤, 융점이 1412℃)이 밀도가 작고 융점이 높기 때문에 HB법등과 같이 석영 보우트(quartz boat)를 사용하는 방법에서는 GaAs가 녹을때 Si가 위로 떠서 석영 보우트(quartz boat)와 반응을 하게 되어 보우트(boat)와의 웨팅(wetting)을 유발하고 이로 인하여 결정성을 악화시키거나 쌍정(twin) 또는 다결정화하게 되므로, 이를 방지키 위해 다결정 합성시 원하는 정도의 Si를 미리 도우핑(doping)하거나 GaAs와 Si의 합금(alloy)을 사용하여야 된다.In this case, it should be noted that when a small amount of additive element Si is added directly to the polycrystalline GaAs, Si (density is 2.328 g / cm 3 and melting point is 1412 ° C) compared to GaAs (density of 5.32 g / cm 3 and melting point of 1238 ° C) ) Because of its low density and high melting point, in the method of using a quartz boat, such as the HB method, Si floats upward when GaAs melts and reacts with the quartz boat, so that wetting with the boat Wetting may cause deterioration of crystallinity, twin or polycrystallization, and in order to prevent this, doping the desired amount of Si in advance in polycrystal synthesis or alloying of GaAs and Si Should be used.

이하 본 발명을 실시예에 따라 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to Examples.

[실시예 I]Example I

다결정 GaAs : 84.15g, Si 초기농도 : 1×1018+3, Zn 초기농도 : 3×1028-3, 인터페이스(interface)에서 온도 구배(temperature gradinet) : 3-7℃/㎝, 결정 성장 속도(growth rate) : 0.3-1.0㎝/hr, As-zone 온도(temperatur) : 615℃-630℃±0.1℃로 하여 <111>B 종결정(seed)을 사용하여 직경(diameter)linch, 길이 14㎝인 p-type GaAs 단결정을 성장하였다. (이때 홀 농도(hole concentration)는 p>1×1028-3이다)Polycrystalline GaAs: 84.15 g, Si initial concentration: 1 × 10 18 cm +3 , Zn initial concentration: 3 × 10 28 cm -3 , temperature gradient at interface: 3-7 ° C./cm, crystal Growth rate: 0.3-1.0 cm / hr, As-zone temperature (temperatur): 615 ° C.-630 ° C. ± 0.1 ° C. using a <111> B seed crystal, using a diameter linch, P-type GaAs single crystals having a length of 14 cm were grown. (The hole concentration is p> 1 × 10 28 cm -3 )

[실시예 II]Example II

다결정 GaAs : 808.6g, Si 초기농도 : 1×1018-3, Zn 초기농도 : 3×1018-3, 인터페이스(interface)의 온도 구배(temperature gradicnt) : 3-7℃/㎝, 결정 성장 속도(growth rate) : 0.3-1.0㎝/hr, As-zone 온도(temperature) : 615℃-630℃±0.1℃로 하여 <111>B 종결정(seed)을 사용하여 직경 2inch 길이 20㎝인 p-type GaAs 단결정을 성장하였다.Polycrystalline GaAs: 808.6g, Si initial concentration: 1 × 10 18 cm -3 , Zn initial concentration: 3 × 10 18 cm -3 , temperature gradient of interface: 3-7 ° C./cm, crystal Growth rate: 0.3-1.0 cm / hr, As-zone temperature: 615 ° C.-630 ° C. ± 0.1 ° C., using a <111> B seed crystal and having a diameter of 2 inches and a length of 20 cm. p-type GaAs single crystals were grown.

이상의 실시예 I 및 실시예 II의 결과, 상기 실시예 I 에서는 직경이 1inch이고 길이가 14㎝인 p-type GaAs 단결정이 제조되었으며, 실시예 II에서는 직경이 2inch이고 길이가 20㎝인 p-type GaAs 단결정이 제조되었다.As a result of Examples I and II, p-type GaAs single crystals having a diameter of 1 inch and a length of 14 cm were prepared in Example I. In Example II, a p-type having a diameter of 2 inches and a length of 20 cm was prepared. GaAs single crystal was produced.

이상에서 상술한 바와 같이 본 발명에 의하면, Zn과 Si을 더블-도우핑(double-doping)하므로서 단결정수율이 대폭 향상된 GaAs 단결정 성장을 기할 수 있는 것이다.As described above, according to the present invention, GaAs single crystal growth can be greatly improved by double-doping Zn and Si with a single crystal yield.

Claims (2)

GaAs 합금에 Zn을 도우핑하여 P-type형 GaAs 단결정을 성장시키는 방법에 있어서, 전기적으로 양쪽성 원소인 Si을 상기 Zn과 함께 도우핑하는 것을 특징으로 하는 더블-도우핑(double-doping)에 의한 p-type GaAs 단결정 성장방법.A method of growing a P-type GaAs single crystal by doping Zn in a GaAs alloy, wherein the electrically amphoteric element Si is doped together with the Zn to double-doping. P-type GaAs single crystal growth method. 제 1 항에 있어서, Si를 주입할때 모합금을 사용하여 단결정 성장토록 하는 더블-도우핑(double-doping)에 의한 p-type GaAs 단결정 성장방법.The method of growing a single crystal of p-type GaAs according to claim 1, wherein the Si-implanted single-crystal growth is performed by using a master alloy.
KR1019910000211A 1991-01-09 1991-01-09 Method of growing p-type gaas single crystal by double doping KR950003430B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910000211A KR950003430B1 (en) 1991-01-09 1991-01-09 Method of growing p-type gaas single crystal by double doping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910000211A KR950003430B1 (en) 1991-01-09 1991-01-09 Method of growing p-type gaas single crystal by double doping

Publications (2)

Publication Number Publication Date
KR920015454A KR920015454A (en) 1992-08-26
KR950003430B1 true KR950003430B1 (en) 1995-04-12

Family

ID=19309565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910000211A KR950003430B1 (en) 1991-01-09 1991-01-09 Method of growing p-type gaas single crystal by double doping

Country Status (1)

Country Link
KR (1) KR950003430B1 (en)

Also Published As

Publication number Publication date
KR920015454A (en) 1992-08-26

Similar Documents

Publication Publication Date Title
US4303464A (en) Method of manufacturing gallium phosphide single crystals with low defect density
CA2519885A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
US3520810A (en) Manufacture of single crystal semiconductors
Henry et al. InP growth and properties
KR950003430B1 (en) Method of growing p-type gaas single crystal by double doping
Clemans et al. Bulk III‐V Compound Semi‐Conductor Crystal Growth
JPH10259100A (en) Production of garium-arsenic single crystal
JP2000086398A (en) P type gaas single crystal and its production
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
KR940009282B1 (en) P-type gaas single crystal growing method by zn doping
JPS58156598A (en) Method for crystal growth
JPH0543679B2 (en)
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
Isshiki et al. 9 Bulk Crystal Growth of Wide-Bandgap ll-Vl Materials
KR940014924A (en) GaAs single crystal growth method by horizontal zone melting method
JP3633212B2 (en) Single crystal growth method
Asahi et al. Growth of III‐V and II‐VI Single Crystals by the Vertical‐gradient‐Freeze Method
JP2736343B2 (en) Method for producing semi-insulating InP single crystal
JPH0684278B2 (en) Method for manufacturing compound semiconductor
JP3806793B2 (en) Method for producing compound semiconductor single crystal
KR950013003B1 (en) Growth method of polycrystalline for gaas single-crystal growth
JPH10212200A (en) Production of semi-insulating gallium arsenide single crystal
KR100359229B1 (en) Method for Growing n-Type GaAs Monocrystal by Means of VFG
JPH08758B2 (en) Method for producing chromium-doped semi-insulating gallium arsenide single crystal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070329

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee