JPH029796A - Production of gallium arsenide single crystal - Google Patents

Production of gallium arsenide single crystal

Info

Publication number
JPH029796A
JPH029796A JP15919988A JP15919988A JPH029796A JP H029796 A JPH029796 A JP H029796A JP 15919988 A JP15919988 A JP 15919988A JP 15919988 A JP15919988 A JP 15919988A JP H029796 A JPH029796 A JP H029796A
Authority
JP
Japan
Prior art keywords
single crystal
dislocations
gallium arsenide
gaas
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15919988A
Other languages
Japanese (ja)
Inventor
Toru Kurihara
徹 栗原
Seiji Mizuniwa
清治 水庭
Akio Hattori
昭夫 服部
Masayoshi Aoyama
正義 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15919988A priority Critical patent/JPH029796A/en
Publication of JPH029796A publication Critical patent/JPH029796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To reduce dislocation by the effect of hardening with impurities by simultaneously adding Al and In when a GaAs single crystal is produced by a horizontal boat method or the vertical Bridgman method. CONSTITUTION:When a GaAs single crystal is produced by a horizontal boat method or the vertical Bridgman method, Al and In as neutral impurities are added each at 1X10<17>-1X10<18>/cm<3> concn. and a single crystal is grown. The electrical conductivity of the GaAs single crystal may be any of n-type and p-type. In the case where epitaxial growth is carried out on the resulting substrate, lattice unconformability is not caused at all.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、砒化ガリウム単結晶、特にアルミニウムとイ
ンジウムとを同時に添加した結晶欠陥が少ない砒化ガリ
ウム単結晶の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a gallium arsenide single crystal, particularly a gallium arsenide single crystal having few crystal defects and having aluminum and indium added simultaneously.

[従来の技術] 砒化ガリウム(GaAs)単結晶は、半導体レーザに代
表される発光素子や集積回路用基板として近年その用途
が拡大してきている。しかし、このGaAs単結晶では
、従来より用いられてきたシリコン(Sl)のような大
型無転位結晶を得るのは難しい、半導体レーザ用のGa
As単結晶においては、転位がレーザの寿命を劣化させ
、また、集積回路用では、転位が1枚の基板内に作製し
た多数の電界効果トランジスタのしきい値電圧の均一性
を悪化させることが判ってきた。
[Prior Art] Gallium arsenide (GaAs) single crystals have recently been used increasingly as substrates for light emitting devices and integrated circuits, such as semiconductor lasers. However, with this GaAs single crystal, it is difficult to obtain a large dislocation-free crystal like silicon (Sl), which has been used conventionally.
In As single crystals, dislocations degrade the lifetime of lasers, and in integrated circuits, dislocations can degrade the uniformity of threshold voltages of many field effect transistors fabricated within a single substrate. I've come to understand.

上述の通り、半導体単結晶においてその転位は、種々の
半導体素子に悪影響を及ぼす、このため、GaAs単結
晶においても、より転位の少ないた単結晶が要求されて
いる。単結晶の転位を減らす方法としては、(1)単結
晶育成中の熱応力を低減する、(2)不純物を添加し、
不純物の硬化により、臨界応力を高めるという2つに大
別される。
As mentioned above, dislocations in semiconductor single crystals have an adverse effect on various semiconductor devices, and therefore, GaAs single crystals are also required to have fewer dislocations. Methods to reduce dislocations in single crystals include (1) reducing thermal stress during single crystal growth, (2) adding impurities,
It can be roughly divided into two types: Hardening of impurities increases critical stress.

上記(1)の方法については、例えば液体封止引上げ(
LECJ法ではホットゾーンを改良したり、単結晶育成
中に原料融液に磁場を印加することなどして温度勾配を
低減し、低転位化を図っている。
Regarding the method (1) above, for example, liquid sealed pulling (
In the LECJ method, the hot zone is improved and a magnetic field is applied to the raw material melt during single crystal growth to reduce the temperature gradient and lower dislocations.

上記(2)の方法については、添加物として種々の不純
物が検討されているが、その結果、インジラム(In)
が不純物硬化の効果も大きく、かつ、電気特性への影響
も少ないことから一般に多用されている。
Regarding the method (2) above, various impurities have been investigated as additives, but as a result, indilum (In)
is generally widely used because it has a large impurity curing effect and has little effect on electrical properties.

これらの方法を採用することにより導電性GaAs結晶
では、直径50111の基板で無転位、あるいはそれに
近い結晶が、また半絶縁性GaAs結晶でも転位密度が
1000〜2000c+g−”か、それ以下の結晶が市
販されている。
By employing these methods, conductive GaAs crystals can be made with no dislocations or close to it on a substrate with a diameter of 50111, and semi-insulating GaAs crystals can be made with dislocation densities of 1000 to 2000c+g-'' or less. It is commercially available.

[発明が解決しようとする課題〕 上記(1)の温度勾配を低減することによる低転位化は
、ホットゾーンの改良、磁場印加装置の設置等、結晶g
A造装置を改造しなければならず、技術的、経済的に問
題がある。(2)の方法は、例えばInを添加する場合
、結晶中のIn濃度が、10’°C11−’以上と高濃
度であることが必要であり、Inの実効回折係数が極め
て小さい(2x70−2)ため結晶長手方向での濃度差
が大きく、1本の単結晶から採取される基板の我輩が著
しく低下する。
[Problems to be Solved by the Invention] The reduction of dislocations by reducing the temperature gradient in (1) above can be achieved by improving the hot zone, installing a magnetic field application device, etc.
The A-building equipment would have to be modified, which would pose technical and economical problems. In method (2), for example, when adding In, the In concentration in the crystal needs to be as high as 10'°C11-' or more, and the effective diffraction coefficient of In is extremely small (2x70-' 2) Therefore, the concentration difference in the longitudinal direction of the crystal is large, and the density of the substrate collected from one single crystal is significantly reduced.

また、基板上にGaAsをエピタキシャル成長させた場
合、格子不整合が起きてしまうという問題らある。
Furthermore, when GaAs is epitaxially grown on a substrate, there is a problem that lattice mismatch occurs.

本発明の目的は、不純物硬化の効果によって低転位化を
図ると共にエピタキシャル成長した場合に格子不整合が
発生しない低転位密度のGaAs華結晶の製造方法を提
供することにある。
An object of the present invention is to provide a method for manufacturing a GaAs flower crystal with a low dislocation density, which reduces dislocations by the effect of impurity hardening and does not cause lattice mismatch during epitaxial growth.

[課題を解決するための手段] 本発明の方法は、横型ボート法又は垂直ブリッジマン法
により砒化ガリウム(GaAs)In結晶を製造するに
当り、添加物と(7て中性不純物であるアルミニウム(
AJ) )及びインジウム(In)をそれぞれlX10
17〜1 :< 1×1017ci−’の4度で添加す
るものである。
[Means for Solving the Problems] The method of the present invention involves the production of gallium arsenide (GaAs)In crystals by the horizontal boat method or the vertical Bridgman method by adding additives (7) and aluminum (7), which is a neutral impurity.
AJ) ) and indium (In) at 1×10
17-1: <1×10 17 ci-', which is added at 4 degrees.

[作用] 上記濃度でA1及びInを添加することによってGaA
s単結晶の転位密度が大幅に低減される。
[Effect] By adding A1 and In at the above concentration, GaA
The dislocation density of the s single crystal is significantly reduced.

シャツフル・セットの転位とよばれるものには、螺旋転
位と60°転位とがある。また、60°転位は刃状成分
を有し、それが伴う余分の半原子面の端がAs原子であ
るα転位とGa原子であるβ転位とがある。Inを添加
することによりα転位が発生する際の臨界応力が高まり
、同転位の発生は抑制されるが、β転位に対してはその
効果は小さい。
The so-called shirtful set dislocations include screw dislocations and 60° dislocations. Further, the 60° dislocation has an edge-like component, and there are α dislocation in which the edge of the extra half-atomic plane accompanying this is an As atom, and β dislocation in which the edge is a Ga atom. Although the addition of In increases the critical stress when α-dislocations occur and suppresses the generation of α-dislocations, the effect on β-dislocations is small.

しかしβ転位に対しては、Ajlを添加することにより
、その発生を効果的に抑制することができる。
However, the occurrence of β-dislocation can be effectively suppressed by adding Ajl.

このことからInとA1を同時に添加することにより、
InあるいはAJのみを添加する場合に比べ、低濃度で
転位の発生を抑制することができる。
From this, by adding In and A1 at the same time,
The generation of dislocations can be suppressed at a lower concentration than when only In or AJ is added.

AIの濃度が高すぎるとGaAJIAsとなり、Inの
濃度が高ずざるとI nGaAsとなって量子論でいう
禁制帯幅に影響を及ぼすようになる。
If the concentration of AI is too high, it will become GaAJIAs, and if the concentration of In is not high, it will become InGaAs, which will affect the forbidden band width in quantum theory.

LEC法では、1×1017ci−’以上、好しくは、
1×1×1017ci−’以上の中性不純物の添加が必
要になるが、横型ボート法又は垂直ブリッジマン法の場
合は、AJ!及びInが1 x1017〜1 xlo”
cn−’という低濃度の不純物添加でGaAs単結晶の
低転位化を図ることができる。また、かかる基板にエピ
タキシャル成長を行った場合、不純物濃度(特にIn)
が≦1×1017crM−’であれば、ミスフィツト転
位(格子不整合)が全く発生しない。
In the LEC method, 1×1017 ci-' or more, preferably,
It is necessary to add a neutral impurity of 1 x 1 x 1017 ci-' or more, but in the case of the horizontal boat method or the vertical Bridgman method, AJ! and In is 1 x 1017 to 1 x lo”
By adding impurities at a low concentration of cn-', it is possible to reduce dislocations in the GaAs single crystal. In addition, when epitaxial growth is performed on such a substrate, the impurity concentration (especially In)
If is ≦1×10 17 crM-', no misfit dislocations (lattice mismatch) occur.

尚、砒化ガリウム結晶はn形、p形いずれの導電性であ
ってらよ<、Cr添加により比抵抗が107ΩC1以上
の半絶縁性とすることもできる。
Although the gallium arsenide crystal may have either n-type or p-type conductivity, it can also be made semi-insulating with a specific resistance of 10<7 >[Omega]C1 or more by adding Cr.

[実施例] 以下に本発明の実施例を詳述するが、本発明はこの実施
例によって制限されるらのではない。
[Examples] Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.

種結晶とMf4のG a 800g、AI9.7IIg
 、I n55B、さらにn形の導電性結晶を得るため
の添加物として、S i 250n+gを入れたボート
を、石英ガラス製反応管の一端に載置し、他端にA s
 870gを載置した後、この石英ガラス製反応管を真
空11止する。
Seed crystal and Mf4 Ga 800g, AI9.7IIg
, I n55B, and a boat containing Si 250n+g as an additive to obtain an n-type conductive crystal was placed on one end of a quartz glass reaction tube, and A s on the other end.
After placing 870 g, the vacuum 11 of this quartz glass reaction tube was stopped.

上記反応管を二連式電気炉内に設置し、ボートIt!l
(高温炉)を12000℃以上に、AsQl(低温炉)
側を約600℃に保つ、そしてGaAs合成反応終了後
、低温炉の温度を一定に保ったまま、高温炉の温度をさ
らに昇温し、シード付は部分をG a A sの融点1
238°Cに、ボート本体側をより高い温度となるよう
な温度勾配(約1 data/cn)を6つように電気
炉を調整する。このようにして、種結晶の一部を溶かし
た後、上述の温度勾配を保持した:j、ま、1 deg
/hで降温し全体を固化させた後、電気炉内のボート設
置部の温度勾配かセロになるように再び電気炉の設定を
調整し、30deg/hで700℃まで降温する。70
0℃で約150h保持した後、100dco/hで室温
まで冷却し結晶を取り出す。
The above reaction tube was installed in a double electric furnace, and the boat It! l
(high-temperature furnace) to 12,000℃ or higher, AsQl (low-temperature furnace)
After the GaAs synthesis reaction is completed, the temperature of the high-temperature furnace is further raised while keeping the temperature of the low-temperature furnace constant, and the seeded portion is heated to the melting point of GaAs of 1.
The electric furnace is adjusted to 238°C so that there are six temperature gradients (approximately 1 data/cn) so that the temperature on the boat body side is higher. In this way, after melting part of the seed crystal, the temperature gradient mentioned above was maintained: j, ma, 1 deg
After the temperature was lowered at a rate of 30 deg/h to solidify the whole, the settings of the electric furnace were adjusted again so that the temperature gradient of the boat installation part in the electric furnace was zero, and the temperature was lowered to 700°C at a rate of 30 deg/h. 70
After being maintained at 0° C. for about 150 hours, it was cooled to room temperature at 100 dco/h and the crystals were taken out.

上記の方法により垂厘約16000のGaAs単結晶が
得られた。
A GaAs single crystal of about 16,000 crystals was obtained by the above method.

次に、この単結晶をミラー指数(100)で約111の
厚さに切断し片面を鏡面加工した後、溶融した水酸化カ
リウム(K OH)でエツチングして、エッヂピッ1へ
密度(EPD)を測定したところ、第1図に示す通り、
中央部で無転位、周辺部でもEPD≦500cn−”の
低転位密度(平均EPD120c「2)の即結晶である
ことが判った。
Next, this single crystal was cut to a thickness of approximately 111 with a Miller index (100), one side was mirror polished, and then etched with molten potassium hydroxide (KOH) to increase the density (EPD) to edge pitch 1. When measured, as shown in Figure 1,
It was found that it was a ready crystal with no dislocations in the center and a low dislocation density (average EPD of 120 c'2) with EPD≦500 cn-'' in the peripheral areas.

また上記41結晶は、キャリア濃度が1xlO”C11
−’〜3x10’″C1−’であり、電気特性上の問題
がないことが判った。具体的には、単結晶の固化率g=
0.1においてIn及びA1の濃度を、グロー放電型資
料分析装置(GDMS)で測定した結果、N 、、、=
 I X 1017C11−’−N Al = I X
 1×1017C11−’であり、基板を用いな液相エ
ピタキシャル(LPE)基板における基板とエピタキシ
ャル層との格子不整合が起こらないことが確認された。
In addition, the above 41 crystal has a carrier concentration of 1xlO”C11
-'~3x10'''C1-', and it was found that there was no problem with electrical characteristics.Specifically, solidification rate g of single crystal =
As a result of measuring the concentration of In and A1 at 0.1 with a glow discharge material analyzer (GDMS), N , , =
IX 1017C11-'-N Al = IX
It was confirmed that lattice mismatch between the substrate and the epitaxial layer does not occur in a liquid phase epitaxial (LPE) substrate using a substrate.

尚、垂直ブリッジマン法における場合でも同様の効果が
得られる。
Note that similar effects can be obtained even in the case of the vertical Bridgman method.

[発明の効果] 以上述べたように、本発明によれば、All及びInを
それぞれ1 xlo” 〜1 xlo”cll−’とい
う低濃度の不純物添加でGaAs単結晶の低転位化を図
ることができる。また、かかる基板にエピタキシャル成
長を行った場合、格子不整合が全く発生しない。
[Effects of the Invention] As described above, according to the present invention, it is possible to reduce dislocations in a GaAs single crystal by adding impurities at low concentrations of 1 xlo" to 1 xlo"cll-' of All and In, respectively. can. Further, when epitaxial growth is performed on such a substrate, no lattice mismatch occurs at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はボート法を用いる本発明の方法により得られた
結晶のウェーハ面内転位密度分布図である。
FIG. 1 is a wafer in-plane dislocation density distribution diagram of a crystal obtained by the method of the present invention using the boat method.

Claims (1)

【特許請求の範囲】[Claims] 1、横型ボート法又は垂直ブリッジマン法により砒化ガ
リウム単結晶を製造するに当り、中性不純物であるアル
ミニウム及びインジウムを共に1×10^1^7〜1×
10^1^8cm^−^3の濃度で添加することを特徴
とする砒化ガリウム単結晶の製造方法。
1. When producing gallium arsenide single crystals by the horizontal boat method or the vertical Bridgman method, both aluminum and indium, which are neutral impurities, are mixed at 1×10^1^7 to 1×
A method for producing a gallium arsenide single crystal, characterized in that gallium arsenide is added at a concentration of 10^1^8 cm^-^3.
JP15919988A 1988-06-29 1988-06-29 Production of gallium arsenide single crystal Pending JPH029796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15919988A JPH029796A (en) 1988-06-29 1988-06-29 Production of gallium arsenide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15919988A JPH029796A (en) 1988-06-29 1988-06-29 Production of gallium arsenide single crystal

Publications (1)

Publication Number Publication Date
JPH029796A true JPH029796A (en) 1990-01-12

Family

ID=15688490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15919988A Pending JPH029796A (en) 1988-06-29 1988-06-29 Production of gallium arsenide single crystal

Country Status (1)

Country Link
JP (1) JPH029796A (en)

Similar Documents

Publication Publication Date Title
Fu et al. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism
Liu et al. Substrates for gallium nitride epitaxy
US4865659A (en) Heteroepitaxial growth of SiC on Si
Asahi et al. Growth of large-diameter ZnTe single crystals by the vertical gradient freezing method
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
JPH029796A (en) Production of gallium arsenide single crystal
JP2004115339A (en) METHOD AND APPARATUS FOR PRODUCING GaAs SINGLE CRYSTAL BY VERTICAL BOAT METHOD
KR102062901B1 (en) A bismuth­doped semi­insulating group ⅲ nitride wafer and its production method
KR100499814B1 (en) Method for fabricating single crystal GaN substrate using GaN nanorods
Ohtsuka et al. High-purity In0. 53Ga0. 47As layer grown by liquid phase epitaxy
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JP2505222B2 (en) Method for manufacturing semi-insulating GaAs substrate
JPS6265407A (en) Epitaxial wafer of compound semiconductor
JPH01201100A (en) Semi-insulating gallium arsenide single crystal having low dislocation density
JPS59131598A (en) Production of gaas single crystal
Young et al. Latest developments in vertical gradient freeze (VGF) technology: GaAs, InP, and GaP
Akai Mass-Producing Technologies for Semi-Insulating GaAs Substrates
JPS60211912A (en) Low-transition semi-insulation substrate
JPS62291909A (en) Gaas epitaxial growth method
JP2023145595A (en) Indium phosphide substrate and semiconductor epitaxial wafer
Hirano et al. Crystal growth of low EPD S-doped< 100> InP by facet formation
JPS5912639B2 (en) crystal growth method
JPS60161399A (en) Manufacture of low dislocation single crystal
KURITA et al. O. ODA¹, T. FUKUI², R. HIRANO², M. UCHIDA¹, K. KOHIRO¹
JPS61247700A (en) Preparation of iii-v compound semiconductor