JPS6380527A - Formation of compound semiconductor layer - Google Patents

Formation of compound semiconductor layer

Info

Publication number
JPS6380527A
JPS6380527A JP22699486A JP22699486A JPS6380527A JP S6380527 A JPS6380527 A JP S6380527A JP 22699486 A JP22699486 A JP 22699486A JP 22699486 A JP22699486 A JP 22699486A JP S6380527 A JPS6380527 A JP S6380527A
Authority
JP
Japan
Prior art keywords
layer
growth
compound semiconductor
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22699486A
Other languages
Japanese (ja)
Other versions
JPH0533810B2 (en
Inventor
Masabumi Shimizu
正文 清水
Toshio Mizuki
敏雄 水木
Tadashi Hisamatsu
久松 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP22699486A priority Critical patent/JPS6380527A/en
Publication of JPS6380527A publication Critical patent/JPS6380527A/en
Publication of JPH0533810B2 publication Critical patent/JPH0533810B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To enable a compound semiconductor single crystal layer having a high quality to be formed efficiently in a relatively short period of time when the compound semiconductor layer is formed on a silicon (Si) substrate, by applying a thermal stress in the middle of the deposition process for improving the crystallinity of the deposited layer. CONSTITUTION:A GaAs layer 32 is first deposited on an Si substrate 31 in two steps until the thickness thereof reaches 2.6 mum without any temperature decreasing cycle. Then, in order to shorten the deposition stopping period, the thermal cycling is designed, for example, such that the initial temperature decreasing rate is about 2 deg.C/second; the lower limit of themperature is 300 deg.C; and the higher limit is 700 deg.C. Ten thermal cycles consisting of such temperature increasing and decreasing cycles are carried out for each 0.1 mum thickness of a deposited layer so that a thermal cycle layer 33 having a thickness of 1.0 mum is formed at a position spaced by 1.3 mum or over in the direction of deposition from the interface between the silicon substrate 31 and the GaAs layer 32. Further, a 1.0 mum thick GaAs layer 34 is deposited at a deposition temperature of 700 deg.C. Thus, by performing the thermal cycle deposition process at a position spaced by 1.3 mum or over in the deposition direction from the interface between the silicon substrate 1 and the GaAs layer 2, the dislocation density can be decreased by ten times or more in comparison with conventional methods.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は化合物半導体層の形成方法に関するものであり
、特にシリコン基板を用いてこの基板上に高品質の化合
物半導体層を形成する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for forming a compound semiconductor layer, and particularly to a method for forming a high quality compound semiconductor layer on a silicon substrate using a silicon substrate. It is.

〈従来の技術〉 GaAs、InP等の化合物半導体はその優れた特徴を
活して高性能、高機能デバイスに利用されつつある。し
かし化合物半導体結晶は一般に高価であり、大面積の高
品質基板結晶を得にくい等の問題点は解決されていない
。このような問題点を克服するための試みとして、安価
で良質、軽量なシリコンを基板としてこのシリコン基板
上に化合物半導体層を積層し、さらに積層された化合物
半導体層に前述のデバイスを構成して半導体装置を製造
することが試みられている。
<Prior Art> Compound semiconductors such as GaAs and InP are being utilized for high-performance and highly functional devices by taking advantage of their excellent characteristics. However, compound semiconductor crystals are generally expensive, and problems such as difficulty in obtaining large-area, high-quality substrate crystals remain unsolved. In an attempt to overcome these problems, we used cheap, high-quality, and lightweight silicon as a substrate, stacked compound semiconductor layers on this silicon substrate, and then constructed the aforementioned devices on the stacked compound semiconductor layers. Attempts have been made to manufacture semiconductor devices.

このようなシリコン基板を用いて化合物半導体装置を製
造する方法は従来からいくつか提案されているが、未だ
結晶品位等の点でバルク結晶に劣るのが現状である。
Although several methods for manufacturing compound semiconductor devices using such silicon substrates have been proposed, they are still inferior to bulk crystals in terms of crystal quality and the like.

例えばシリコン(Si)基板上に単結晶GaAs層を形
成する試みとして、現在次のような方法が試みられてい
る。
For example, the following methods are currently being attempted to form a single crystal GaAs layer on a silicon (Si) substrate.

即ち、シリコン(Si)基板上にGaAs層を形成する
際に、あらかじめ予備堆積層を形成しておき、次に通常
の成長条件下でGaAsをエピタキシャル成長するいわ
ゆる二段階成長法である。予備堆積層としては、通常の
成長条件よシも低温で形成したGaAs層+Ge層、あ
るいはGaAsP (!:GaP及びGaAsを交互に
積層した緩衝層などが用いられている。
That is, when forming a GaAs layer on a silicon (Si) substrate, it is a so-called two-step growth method in which a preliminary deposition layer is formed in advance, and then GaAs is epitaxially grown under normal growth conditions. As the predeposition layer, a GaAs layer+Ge layer formed at a lower temperature than normal growth conditions, or a buffer layer formed by alternately laminating GaP and GaAs, or the like is used.

その−例としてGaAs層を予備堆積層とした二段階成
長法の成長プロセスを以下に述べる。
As an example of this, a growth process using a two-step growth method using a GaAs layer as a preliminary deposition layer will be described below.

まずシリコン(Si)基板上にMOCVD法あるいはM
BE法を用いて450℃以下の温度で約10OAのGa
As層を形成しその後、通常のGaAsのエピタキシャ
ル成長温度(600℃〜750℃)まで基板を昇温した
後、GaAs層を成長する。
First, MOCVD or M
Approximately 10OA of Ga at a temperature below 450℃ using the BE method
After forming an As layer, the temperature of the substrate is raised to a normal GaAs epitaxial growth temperature (600° C. to 750° C.), and then a GaAs layer is grown.

第3図は二段階成長法で得られたシリコン(Si)基板
l上のGaAs層2の構造を示す模式図であり、3は予
備堆積層である。
FIG. 3 is a schematic diagram showing the structure of a GaAs layer 2 on a silicon (Si) substrate 1 obtained by a two-step growth method, and 3 is a preliminary deposited layer.

予備堆積層3として上記したいずれのものを用いた場合
も、SlとGaAsの界面領域では、SiとGaAsの
格子定数の差(〜4%)により高密度の不整合転位が発
生し、その一部は成長中に成長方向に伝搬し、成長層を
貫通する。特に成長終了後成長温度から室温への降温中
シリコン(Si)基板1とGaAs層2間の膨張係数の
大きな相違による応力は成長方向への転位の伝搬を大き
く促進するため、転位は表面近傍の活性層形成領域まで
到達しGaAs層2にデバイスを作製する場合に最もデ
バイス性能を左右する。
When any of the above-mentioned materials is used as the preliminary deposit layer 3, a high density of mismatched dislocations occurs in the interface region between Sl and GaAs due to the difference in lattice constants between Si and GaAs (~4%), and one of them The part propagates in the growth direction during growth and penetrates the growth layer. In particular, the stress caused by the large difference in expansion coefficient between the silicon (Si) substrate 1 and the GaAs layer 2 during cooling from the growth temperature to room temperature after the completion of growth greatly promotes the propagation of dislocations in the growth direction, so dislocations are generated near the surface. When reaching the active layer formation region and manufacturing a device on the GaAs layer 2, the device performance is most affected.

SiとGaAsの界面領域で発生した不整合転位の密度
は約10  cm  であり、GaAsを3Am積層し
た後のGaAs表面まで到達した転位の密度は約10 
 cm  であることが透過電子顕微鏡(TEM)によ
る観察と溶融KOHを用いたエッチピッチ密度(EPD
)の測定結果から判明している。転位は少数キャリアの
再結合中心として作用するため、高密度転位を有する結
晶中では、少数キャリア寿命の大幅な減少を引き起こす
。従って、少数キャリアを用いる化合物半導体装置では
、その性能を著しく低下させることになる。
The density of mismatched dislocations generated in the interface region between Si and GaAs is about 10 cm, and the density of dislocations that have reached the GaAs surface after stacking 3 Am of GaAs is about 10 cm.
cm was determined by transmission electron microscopy (TEM) observation and etch pitch density (EPD) using molten KOH.
) is known from the measurement results. Dislocations act as recombination centers for minority carriers, causing a significant decrease in minority carrier lifetime in crystals with high density dislocations. Therefore, the performance of a compound semiconductor device using minority carriers is significantly degraded.

この高密度転位を低減させる方法として、ツァウル(T
saur )らは成長中断及び熱サイクルの併用法(熱
サイクル成長法)を提案している(16th、IEEE
 PVSC,1982)。
As a method to reduce this high-density dislocation, Zaul (T
proposed a combined method of growth interruption and thermal cycling (thermal cycle growth method) (16th, IEEE
PVSC, 1982).

第4図はこの熱サイクル成長法に基づく温度プログラム
の一例を示す図である。また第5図(A)〜(Qはこの
熱サイクル成長法の1サイクルの工程を説明するための
図であシ、シリコン(Si)基板1上に予備堆積層3と
してGeを用いたものを示しており、第5図(4)では
予備堆積層3に存在する転位の一部がGaAs層21に
到達していることを示しており、以後の同図CB)に示
す成長中断時に基板温度700℃から室温まで降下させ
、転位間の相互作用により転位ループを形成し、以後の
第2成長層22(第5図(0)では転位が低減すると彼
らはしている。さらに彼らは上記第5図(A)〜(C)
に示したプロセスの10回以上の繰り返しではじめて転
位低減効果を確認している。
FIG. 4 is a diagram showing an example of a temperature program based on this thermal cycle growth method. In addition, FIGS. 5(A) to (Q) are diagrams for explaining one cycle of this thermal cycle growth method. 5(4) shows that some of the dislocations existing in the predeposited layer 3 have reached the GaAs layer 21, and the substrate temperature increases during the subsequent interruption of growth shown in CB) of the same figure. They claim that the temperature is lowered from 700°C to room temperature, and dislocation loops are formed due to interactions between dislocations, and dislocations are reduced in the subsequent second growth layer 22 (FIG. 5 (0)). Figure 5 (A) to (C)
The dislocation reduction effect was confirmed only after repeating the process shown in 10 times or more.

〈発明が解決しようとする問題点〉 しかし実際に上記した従来よシ提案されるプロセスを製
造に適用する場合、熱サイクルを繰返すことによって形
成される成長層(以下熱サイクル層と称す)をシリコン
(Si)基板上の化合物半導体成長層のどの位置で形成
すれば、効率良く高品質活性層を得ることが可能となる
かについて、現在まで明らかにされておらず、従来はシ
リコン(Si )基板と化合物半導体層の界面から、た
だちに熱サイクル層が形成されておシ、この場合には期
待された転位密度の低減が計られなかったり、また充分
な転位密度の低減を行なうためには熱サイクル回数を2
0回以上に設定したりしていたが、この場合、熱サイク
ル成長に必要な時間が大幅に増加するという製造上の問
題点があった。即ち、例えば昇温・降温時間が比較的短
いとされる高周波加熱・水冷反応管方式の有機金属気相
成長(MOCVD)法を用いた場合(でおいて、熱サイ
クル無しの通常の方法で厚さ約3μmのGaAs成長層
を形成するのに必要な時間は約1時間であるのに比べて
、20回の熱サイクルの実施の所要時間は12時間以上
にも及び、時間に対する能率面で大きな製造上の問題が
ある。
<Problems to be Solved by the Invention> However, when the above conventionally proposed process is actually applied to manufacturing, the growth layer formed by repeated thermal cycles (hereinafter referred to as the thermal cycle layer) is Until now, it has not been clarified where to form a compound semiconductor growth layer on a silicon (Si) substrate to efficiently obtain a high-quality active layer. A thermal cycle layer is immediately formed from the interface between the compound semiconductor layer and the compound semiconductor layer. 2 times
However, in this case, there was a manufacturing problem in that the time required for thermal cycle growth was significantly increased. That is, for example, when using a metal organic chemical vapor deposition (MOCVD) method using a high-frequency heating/water-cooling reaction tube method, which is said to have relatively short heating and cooling times, The time required to form a GaAs growth layer of about 3 μm is about 1 hour, but the time required to perform 20 thermal cycles is more than 12 hours, which is a great improvement in terms of time efficiency. There is a manufacturing issue.

本発明は上記の点に鑑みて創案されたもので、シリコン
基板上へ化合物半導体層を成長させる際の成長層の高品
質化を図るための熱サイクル成長法の問題点を解決した
改善された新規な化合物半導体層の形成方法を提供する
ことを目的としている。
The present invention was created in view of the above points, and is an improved method that solves the problems of the thermal cycle growth method for increasing the quality of the grown layer when growing a compound semiconductor layer on a silicon substrate. The purpose of this invention is to provide a novel method for forming a compound semiconductor layer.

く問題点を解決するための手段及び作用〉上記の目的を
達成するため、本発明の化合物半導体層の形成方法は、
化合物半導体層を降温サイクルを伴わないで連続成長さ
せる第1の成長工程と、この第1の成長工程に続いて化
合物半導体層の成長途中での成長を中断する工程と、成
長ウェハの温度を成長温度以下に降温させる降温工程と
よりなる第2の成長工程とを含み、上記の第2の成長工
程をシリコン基板と化合物半導体層の界面から成長方向
に距離1.3μmを越えた離れた位置で少なくとも行な
うように成している。
Means and operation for solving the above problems> In order to achieve the above object, the method for forming a compound semiconductor layer of the present invention includes the following steps:
A first growth step in which the compound semiconductor layer is continuously grown without a temperature cooling cycle, a step in which the growth of the compound semiconductor layer is interrupted during the growth of the compound semiconductor layer following this first growth step, and a step in which the temperature of the growth wafer is adjusted. and a second growth step consisting of a cooling step of lowering the temperature to a temperature lower than that temperature, and the second growth step is performed at a distance of more than 1.3 μm in the growth direction from the interface between the silicon substrate and the compound semiconductor layer. At least try to do it.

即ち、本発明はシリコン(Si)基板上に化合物半導体
層を形成する方法において、基板と化合物半導体層間に
存在する不整合転位と熱応力による転位の伝搬を、従来
の方法に比べて短時間で効率よく界面近傍に閉じ込め、
上層の化合物半導体装置活性層形成領域中の転位の低減
化をはかることによシ、高品質、低価格かつ軽量化を可
能とする化合物半導体装置を提供し得るようにしたもの
であり、本発明において用いられる成長途中で熱応力を
加えることによって成長層の結晶性改善をはかるための
方法は、次のように理解することができる。
That is, the present invention is a method for forming a compound semiconductor layer on a silicon (Si) substrate, and can reduce the propagation of mismatched dislocations existing between the substrate and the compound semiconductor layer and dislocations caused by thermal stress in a shorter time than in conventional methods. Efficiently confined near the interface,
By reducing the number of dislocations in the active layer formation region of the upper compound semiconductor device, it is possible to provide a compound semiconductor device that can be of high quality, low cost, and lightweight, and the present invention The method of improving the crystallinity of a grown layer by applying thermal stress during growth, which is used in the following, can be understood as follows.

即ち、転位の発生、伝搬は局所的な応力集中により促進
されるので成長中断後の降温中に、シリコン(Si)基
板とGaAs層中の熱膨張係数の差に基づく熱応力が成
長層に加わると予備堆積層近傍の転位が結晶層表面まで
伝搬されるとともに結晶中の熱応力の一部を解放する。
That is, since the generation and propagation of dislocations are promoted by local stress concentration, thermal stress based on the difference in thermal expansion coefficient between the silicon (Si) substrate and the GaAs layer is applied to the grown layer during cooling after the growth is interrupted. The dislocations near the pre-deposited layer are propagated to the surface of the crystal layer and release part of the thermal stress in the crystal.

再度昇温後、第2GaAs層を成長させて降温した場合
、第1成長層内の転位は相互にループを形成するか、あ
るいは成長層中に存在する不純物等による点欠陥が転位
上に固着することにより、転位の伝搬は妨げられる(こ
れを転位が不動化するという)。このようにして第2成
長層まで伝搬する転位密度は第1層中のそれに比べて低
減させることが可能である。
When the temperature is raised again, the second GaAs layer is grown, and then the temperature is lowered, the dislocations in the first grown layer mutually form a loop, or point defects due to impurities present in the grown layer are fixed on the dislocations. This prevents the propagation of dislocations (this is called immobilization of dislocations). In this way, the dislocation density propagating to the second grown layer can be reduced compared to that in the first layer.

従って降温時の成長層への熱応力の印加による強制的な
転位ループ形成と、昇温時の熱応力の軽減による転位の
不動化を繰り返すことにより成長表面近傍の活性層領域
に到達する転位の低減をはかることが可能となる。
Therefore, by repeating the forced formation of dislocation loops by applying thermal stress to the growing layer when the temperature is lowered, and the immobilization of dislocations by reducing the thermal stress when the temperature is rising, the number of dislocations that reach the active layer region near the growing surface is reduced. It becomes possible to reduce the

本発明は上記の理解に基づき、強制的な転位の導入によ
る転位ループ形成及び転位の不動化に最も有効な熱サイ
クル層の形成位置を選ぶことにより、比較的短い成長時
間で効率良く、シリコン基板上の化合物半導体成長層の
高品質化を図り、高性能化合物半導体デバイスの作製が
可能な基板としての採用を可能とするものであシ、シリ
コン基板と化合物半導体層の界面から1.3μmを越え
た離れた位置で少なくとも熱サイクル成長法を行ない、
シリコン基板と化合物半導体層の界面から熱サイクル層
上端までの距離を1.3μmを越えるように設定して適
正化したことを特徴としている。
Based on the above understanding, the present invention has been developed by selecting the formation position of the thermal cycle layer that is most effective for forming dislocation loops and immobilizing dislocations by forcibly introducing dislocations, thereby efficiently growing silicon substrates in a relatively short period of time. This is intended to improve the quality of the compound semiconductor growth layer on the silicon substrate and enable it to be used as a substrate on which high-performance compound semiconductor devices can be manufactured. performing at least a thermal cycle growth method at a remote location;
It is characterized in that the distance from the interface between the silicon substrate and the compound semiconductor layer to the upper end of the thermal cycle layer is optimized by setting it to exceed 1.3 μm.

即ち本発明は、シリコン基板と化合物半導体層の界面か
ら約1.3μmまでの熱サイクル成長は結晶品質の向上
にほとんど寄与していないことを見出し、界面近傍には
熱サイクル層を形成せず、界面から少なくとも1.3μ
mを越えた離れた位置に熱サイクル層の上端が来るよう
に成すことにより、短時間で効率良く、シリコン基板上
の化合物半導体層の高品質化が図られることになる。
That is, the present invention has found that thermal cycle growth up to about 1.3 μm from the interface between the silicon substrate and the compound semiconductor layer hardly contributes to improvement of crystal quality. At least 1.3μ from the interface
By placing the upper end of the thermal cycle layer at a distance exceeding m, the quality of the compound semiconductor layer on the silicon substrate can be improved in a short time and efficiently.

〈実施例〉 以下、実施例に基づき本発明を詳述する。なお、以下の
実施例はGaAs半導体層の形成について説明している
が、本発明はこれに限定されるものではなく、例えばG
aP、InPあるいはGaI nAs等の混晶等の他の
■・■族化合物半導体層の形成に際しても同様に適用す
ることができる。また、成長手段、成長温度についても
MOCVD法、温度700℃に適用範囲が限定されるも
のではなく、MBE法、ハロゲン輸送法等の化合物半導
体の成長が可能な手段、温度であれば同様に適用するこ
とが出来るものであることは言うまでもない。
<Examples> The present invention will be described in detail below based on Examples. Note that although the following examples describe the formation of a GaAs semiconductor layer, the present invention is not limited thereto;
The present invention can be similarly applied to the formation of other group (1) and (2) group compound semiconductor layers such as aP, InP, or mixed crystals such as GaInAs. Furthermore, the scope of application is not limited to the MOCVD method and the temperature of 700°C regarding the growth method and growth temperature; any method and temperature that allows compound semiconductor growth, such as the MBE method and halogen transport method, can be similarly applied. Needless to say, it is possible to do so.

実施例1 高周波加熱・水冷反応管を用いてMOCVD法による二
段階成長を行ない、5i(100)基板上に、まず、4
50℃以下の温度で約10OAのGaAs層を形成し、
その後通常のGaAsのエピタキシャル成長温度(60
0℃〜750℃)まで基板の温度を昇温した後、途中に
熱サイクル層を含んだGaAs層を成長させ、成長層表
面近傍の転位密度を平面TEMまたは溶融KOHによる
EPD測定法を用いて評価した。
Example 1 Two-step growth was performed by MOCVD using a high-frequency heating/water-cooled reaction tube.
Forming a GaAs layer of about 10 OA at a temperature of 50° C. or less,
After that, the usual GaAs epitaxial growth temperature (60
After raising the temperature of the substrate to 0°C to 750°C, a GaAs layer including a thermal cycle layer is grown, and the dislocation density near the surface of the grown layer is measured using planar TEM or EPD measurement method using molten KOH. evaluated.

本発明の熱サイクル条件適用例として、第1図に示すよ
うにシリコン(Sl)基板31上にまず二段階成長によ
りG aA s層32を降温サイクルを伴わないで2.
6μmの膜厚に成長させ、次に成長停止時間の短縮のた
め、熱サイクルの降温下限温度を300℃、初期降温速
度を約り℃/秒、昇温上限温度を700℃とし、成長層
厚0.1μm毎の10サイクルの降温・昇温熱サイクル
を実施して1.0μmの厚さの熱サイクル層33をシリ
コン基板31とGaAs層32の界面から成長方向に1
.3μmを越えた離れた位置に形成し、更に1.0μm
のGaA s層34を700℃の成長温度で積層し、成
長層表面近傍の転位密度を測定した。
As an example of applying the thermal cycle conditions of the present invention, as shown in FIG. 1, a GaAs layer 32 is first grown in two steps on a silicon (Sl) substrate 31 without a temperature cooling cycle.
The film was grown to a thickness of 6 μm, and then, in order to shorten the growth stop time, the lower limit temperature of the thermal cycle was set to 300°C, the initial cooling rate was approximately °C/sec, and the upper limit temperature was set to 700°C, and the growth layer thickness was A thermal cycle layer 33 with a thickness of 1.0 μm is formed from the interface between the silicon substrate 31 and the GaAs layer 32 by 1 step in the growth direction by performing 10 temperature-lowering/heating thermal cycles at intervals of 0.1 μm.
.. Formed at a distance of more than 3 μm, and an additional 1.0 μm
A GaAs layer 34 of 100 mL was laminated at a growth temperature of 700° C., and the dislocation density near the surface of the grown layer was measured.

また、比較のため、従来の熱サイクル条件により、第6
図に示すようシリコン(Si)基板41上にまず二段階
成長によりGaAs層42を0.1 μmの膜厚に成長
させ、次に熱サイクルの降温下限温度を90℃、昇温上
限温度を700℃とし、成長層厚0.1μm毎のlOプ
サイルの降温・昇温熱サイクルを実施して1.0μmの
厚さの熱サイクル層43を形成して、シリコン基板41
とGaAs層42の界面から熱サイクル層43の上端ま
での距離が1.3μm以下となるようにし、更に1.0
μmのGaAs層44を700℃の成長温度で積層し、
成長層表面近傍の転位密度を測定した。第1表は上記第
1図及び第6図に示した構造の基板のG a A s成
長層表面近傍の転位密度を測定して比較したものである
Also, for comparison, the 6th
As shown in the figure, a GaAs layer 42 is first grown to a thickness of 0.1 μm on a silicon (Si) substrate 41 by two-step growth, and then the lower limit temperature of the thermal cycle is set to 90°C and the upper limit temperature is set to 700°C. ℃, and performed a thermal cycle of decreasing and increasing the temperature by lO psi for every 0.1 μm of growth layer thickness to form a thermal cycle layer 43 with a thickness of 1.0 μm, and then the silicon substrate 41
The distance from the interface between the GaAs layer 42 and the upper end of the thermal cycle layer 43 is 1.3 μm or less, and further 1.0 μm or less.
A μm thick GaAs layer 44 is laminated at a growth temperature of 700°C,
The dislocation density near the surface of the grown layer was measured. Table 1 is a comparison of the measured dislocation densities near the surface of the GaAs growth layer of the substrates having the structures shown in FIGS. 1 and 6 above.

第1表 この第1表より明らかなように、最適位置を選ばずに熱
サイクルを実施した試料(a)については転位密度が7
.9X10crn であるのに比べ、本発明の方法に従
がって熱サイクル成長方法をシリコン基板1のGaAs
層2の界面より成長方向に距離1.3μmを越えた位置
で実施して、熱サイクル層3の上端までの距離を3.6
μmとした試料(b)については転位密度が8.2X1
0cn1 となり、従来の方法に比して約1桁の転位密
度の低減を計ることが出来た。
Table 1 As is clear from Table 1, the dislocation density of sample (a), which was subjected to thermal cycles without selecting the optimum position, was 7.
.. 9X10 crn, the thermal cycle growth method according to the method of the present invention is applied to GaAs on silicon substrate 1.
It was carried out at a position beyond 1.3 μm in the growth direction from the interface of layer 2, and the distance to the top of thermal cycle layer 3 was 3.6 μm.
For sample (b) with μm, the dislocation density is 8.2X1
0cn1, and it was possible to reduce the dislocation density by about one order of magnitude compared to the conventional method.

実施例2 上記した実施例1では、熱サイクル層の上端までの距離
を変えることにより、本発明の方法による転位密度低減
効果を示したが、実際のデバイス作製への応用例として
、全成長層厚を3μmと固定し、第2図に示すように、
まずn−シリコン(Si)基板51上に二段階成長によ
りn−GaAs層52を0.9μmの膜厚に降温サイク
ルを伴わないで成長させ、次に実施例1と同一の熱サイ
クル条件にて成長層厚0.1μm毎、10サイクル計1
.0μmの膜厚の熱サイクル層(n−GaAs層)53
を成長させ、更に0.8μmの膜厚のn−GaAs層5
4及び0.3Amの層厚にp−GaAs層55をこの順
に形成し、両端にN側電極56及びP側電極57を形成
した。このように熱サイクル層53の表面側に活性層と
して形成した深さ0.3々mのシ接合(キャリア濃度p
〜2X101−”、n〜lX10crn )ダイオード
の暗状態の電流−電圧特性を測定した。
Example 2 In Example 1 described above, the effect of reducing the dislocation density by the method of the present invention was demonstrated by changing the distance to the top of the thermal cycle layer. The thickness was fixed at 3 μm, and as shown in Figure 2,
First, an n-GaAs layer 52 was grown on an n-silicon (Si) substrate 51 in two steps to a thickness of 0.9 μm without a cooling cycle, and then under the same thermal cycle conditions as in Example 1. Every 0.1 μm growth layer thickness, 10 cycles total 1
.. Thermal cycle layer (n-GaAs layer) 53 with a film thickness of 0 μm
is grown, and further an n-GaAs layer 5 with a thickness of 0.8 μm is grown.
A p-GaAs layer 55 with a thickness of 4 and 0.3 Am was formed in this order, and an N-side electrode 56 and a P-side electrode 57 were formed on both ends. In this way, a junction with a depth of about 0.3 m (carrier concentration p
~2X101-'', n~lX10crn) The dark state current-voltage characteristics of the diode were measured.

また、比較のため、第7図に示すようにシリコン(n−
3i)基板61上に二段階成長によシ0.3μmの層厚
のn−GaAs層62を成長させ、次に1.0μmの層
厚のn−GaAs層(熱サイクル層)63全成長させ、
更に1.4μmの層厚にn−GaAs 層64及び0.
3μmの層厚にp−GaAs層65をこの順に形成し、
両端にN側電極66及びP側電極67を形成した構造の
試料(b)、第8図に示すようにシリコン(n−8i)
基板71上に二段階成長によシ27μmの層厚にn−G
aAs層74を形成し、その上に0.3μmの層厚にp
 −Ga A s層を形成し、両端にN側電極76及び
P側電極77を形成した構造の試料(c)及び、熱サイ
クル層を基板との界面から19回の熱サイクルを実施し
他の構造は第2図に示したものと同様に形成した試料(
d)のそれぞれについて作製して深さ0.3μmのシ接
合(キャリア濃度p〜2×10 口 、n〜1×10 
crn )ダイオードの暗状態の電流−電圧特性を測定
した。
For comparison, silicon (n-
3i) An n-GaAs layer 62 with a layer thickness of 0.3 μm is grown on the substrate 61 by two-step growth, and then an n-GaAs layer (thermal cycle layer) 63 with a layer thickness of 1.0 μm is completely grown. ,
Further, an n-GaAs layer 64 and a 0.00.
A p-GaAs layer 65 with a layer thickness of 3 μm is formed in this order,
Sample (b) with a structure in which an N-side electrode 66 and a P-side electrode 67 are formed at both ends, silicon (n-8i) as shown in FIG.
On the substrate 71, a layer of n-G was grown to a layer thickness of 27 μm in two steps.
An aAs layer 74 is formed, and p is deposited on it to a thickness of 0.3 μm
- Sample (c) with a structure in which a GaAs layer was formed and an N-side electrode 76 and a P-side electrode 77 were formed on both ends, and a sample (c) with a structure in which a GaAs layer was formed and an N-side electrode 76 and a P-side electrode 77 were formed, and a thermal cycle layer was subjected to 19 thermal cycles from the interface with the substrate, and The structure was a sample formed similarly to that shown in Figure 2 (
d) for each of
crn) The dark state current-voltage characteristics of the diode were measured.

第2表は上記した各試料の飽和電流の測定値を比較した
ものである。
Table 2 compares the measured values of saturation current of each of the samples described above.

第2表 この第2表から明らかなように、各試料の飽和電流値を
比較すると、試料(b)の5i−GaAs界面がら熱サ
イクル層上端までの距離が1.3μmのダイオードでは
飽和電流(Io)=1x1o  A−何  となり、熱
サイクルを行なわないダイオード(試料(C))とほぼ
同等であるが、熱サイクル層上端までの距離が1.9μ
mの本発明にしたがって作成した試料(a)のダイオー
ドでは工0−1xlo−9A−i2と約1桁減少してお
シ、この結果よp本発明にしたがって成長させた成長層
を用いた場合、その上に形成される活性層の結晶性が向
上していることは明らかである。また試料(d)のよう
に、熱サイクル層上端までの距離を試料(a)と同じ<
1.9μmとし、界面から19回の熱サイクル成長を実
施したダイオードについても、ダイオード(a)と等し
いIOの値が得られた。これらの結果から、界面から約
1.3μmまでの熱サイクルは結晶品質の向上にほとん
ど寄与していないことは明らかであり、熱サイクル成長
を基板界面から成長方向に距離1,3μmを越えた位置
で少なくとも行なうように成せば良いことが明らかとな
った。
Table 2 As is clear from Table 2, when comparing the saturation current values of each sample, the saturation current ( Io) = 1x1o A-what, which is almost the same as a diode that does not undergo thermal cycling (sample (C)), but the distance to the top of the thermal cycling layer is 1.9μ.
In the diode of sample (a) made according to the present invention, the diode of 0-1×lo-9A-i2 was reduced by about one order of magnitude, and this result shows that when using the growth layer grown according to the present invention, It is clear that the crystallinity of the active layer formed thereon is improved. Also, as in sample (d), the distance to the top of the thermal cycle layer is the same as in sample (a).
A diode with a thickness of 1.9 μm and subjected to 19 thermal cycle growth from the interface also had an IO value equal to that of diode (a). From these results, it is clear that thermal cycling up to approximately 1.3 μm from the interface hardly contributes to improvement of crystal quality, and thermal cycle growth is performed at a position beyond 1.3 μm in the growth direction from the substrate interface. It became clear that at least we could do it the way we did.

このように、5i−GaAs界面近傍に熱サイクル層を
形成せず、界面から少なくとも1.3μmを越えて離れ
た位置に熱サイクル層の上端が来るように熱サイクル層
の位置を選ぶことにより、短時間で効率良く、シリコン
基板上のGaAs層の高品質化を図ることが可能となっ
た。
In this way, the thermal cycling layer is not formed near the 5i-GaAs interface, and the position of the thermal cycling layer is selected so that the upper end of the thermal cycling layer is at least 1.3 μm away from the interface. It has become possible to improve the quality of a GaAs layer on a silicon substrate efficiently in a short time.

シリコン(Si )基板上に形成された化合物半導体の
本発明の方法による転位密度低減による高品質化により
各種電子デバイス、光デバイスの半導体基板として利用
することができ、特に上記化合物半導体にPN接合を形
成して太陽電池を構成することによりすぐれた効果を示
す。即ち受光面側は光電変換効率の高いGaAs層また
はInP層を用いて形成し、この化合物半導体層を支持
する基板を比較的軽く、強度に優れたSi基板を用いて
構成することができ、効率5重量の点で非常に有利な太
陽電池を得ることができる。
Compound semiconductors formed on silicon (Si) substrates can be used as semiconductor substrates for various electronic devices and optical devices by improving their quality by reducing dislocation density using the method of the present invention. It shows excellent effects when formed to constitute a solar cell. That is, the light-receiving surface side can be formed using a GaAs layer or an InP layer with high photoelectric conversion efficiency, and the substrate supporting this compound semiconductor layer can be constructed using a relatively light and strong Si substrate, which increases efficiency. 5 A very advantageous solar cell in terms of weight can be obtained.

〈発明の効果〉 以上のように本発明によれば、シリコン(Si)基板上
に従来の方法に比べて、高品質の化合物半導体単結晶層
を比較的短時間に能率良く形成することが出来るように
なシ、その結果化合物半導体装置の低価格化、軽量化に
大きく貢献することが出来る。
<Effects of the Invention> As described above, according to the present invention, a high quality compound semiconductor single crystal layer can be efficiently formed on a silicon (Si) substrate in a relatively short time compared to conventional methods. As a result, it can greatly contribute to lowering the cost and weight of compound semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するだめの基板構造模
式図、第2図は本発明の他の実施例を説明する念めの基
板構造模式図、第3図は71ノコン基板上への化合物半
導体層形成法を説明するための基板構造模式図、第4図
は熱サイクル成長法に基づく温度プログラムの一例を示
す図、第5図囚乃至(C)は成長中断と熱サイクルによ
る転位密度低減を説明するための模式図、第6図乃至第
8図はそれぞれ本発明の方法と比較するための試料構造
を示す模式図である。 31−・シリコン(Si)基板、  32 ・=GaA
s層、33・・・GaAs熱サイクル層、  34・・
・GaAs層。 代理人 弁理士 杉 山 毅 至(他1名)第1図 第2図 彊3 図 吟関 i1′、4  図 第5図
Fig. 1 is a schematic diagram of the substrate structure for explaining one embodiment of the present invention, Fig. 2 is a schematic diagram of the substrate structure for explaining another embodiment of the invention, and Fig. 3 is a schematic diagram of the substrate structure for explaining another embodiment of the present invention. A schematic diagram of the substrate structure to explain the method for forming a compound semiconductor layer on the substrate. Figure 4 is a diagram showing an example of a temperature program based on the thermal cycle growth method. A schematic diagram for explaining the reduction in dislocation density, and FIGS. 6 to 8 are schematic diagrams showing sample structures for comparison with the method of the present invention, respectively. 31-・Silicon (Si) substrate, 32・=GaA
s layer, 33...GaAs thermal cycle layer, 34...
・GaAs layer. Agent: Patent Attorney Takeshi Sugiyama (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 3 Figure 1', 4 Figure 5

Claims (1)

【特許請求の範囲】 1、シリコン基板上に化合物半導体層を成長させるに際
し、 化合物半導体層を降温サイクルを伴わないで連続成長さ
せる第1の成長工程と、 上記第1の成長工程に続いて化合物半導体層の成長途中
での成長を中断する工程と、成長ウェハの温度を成長温
度以下に降温させる降温工程とより成る第2の成長工程
と を含み、 上記第2の成長工程をシリコン基板と化合物半導体層の
界面から成長方向に距離1.3μmを越えた離れた位置
で少なくとも行なうように成したことを特徴とする化合
物半導体層の形成方法。
[Claims] 1. When growing a compound semiconductor layer on a silicon substrate, a first growth step in which the compound semiconductor layer is continuously grown without a temperature cooling cycle; The second growth step includes a step of interrupting the growth of the semiconductor layer in the middle of growth, and a temperature-lowering step of lowering the temperature of the growth wafer to below the growth temperature. A method for forming a compound semiconductor layer, characterized in that the step is performed at least at a distance of more than 1.3 μm in the growth direction from an interface of the semiconductor layer.
JP22699486A 1986-09-24 1986-09-24 Formation of compound semiconductor layer Granted JPS6380527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22699486A JPS6380527A (en) 1986-09-24 1986-09-24 Formation of compound semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22699486A JPS6380527A (en) 1986-09-24 1986-09-24 Formation of compound semiconductor layer

Publications (2)

Publication Number Publication Date
JPS6380527A true JPS6380527A (en) 1988-04-11
JPH0533810B2 JPH0533810B2 (en) 1993-05-20

Family

ID=16853846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22699486A Granted JPS6380527A (en) 1986-09-24 1986-09-24 Formation of compound semiconductor layer

Country Status (1)

Country Link
JP (1) JPS6380527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331467A2 (en) * 1988-03-04 1989-09-06 Fujitsu Limited Method of forming semiconductor thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331467A2 (en) * 1988-03-04 1989-09-06 Fujitsu Limited Method of forming semiconductor thin film

Also Published As

Publication number Publication date
JPH0533810B2 (en) 1993-05-20

Similar Documents

Publication Publication Date Title
US9799737B2 (en) Method for forming group III/V conformal layers on silicon substrates
EP0331467B1 (en) Method of forming semiconductor thin film
US11232950B2 (en) Structure of epitaxy on heterogeneous substrate and method for fabricating the same
EP0430562B1 (en) Semiconductor heterostructure and method of producing the same
JPS6126216A (en) Method for growing compound semiconductor
JPH03235371A (en) Manufacture of tandem type solar battery
JPS6380527A (en) Formation of compound semiconductor layer
TWI360186B (en)
JP2000012467A (en) Method for forming gaas layer
US20100187539A1 (en) Compound semiconductor epitaxial wafer and fabrication method thereof
JP2565908B2 (en) Compound semiconductor device
JPS62291914A (en) Formation of compound semiconductor layer
JP2001126985A (en) Compound semiconductor substrate
JPS63186416A (en) Compound semiconductor substrate
US5183778A (en) Method of producing a semiconductor device
JP3993830B2 (en) Manufacturing method of nitride-based III-V compound semiconductor and semiconductor device including the same
JPH0645249A (en) Growth method of gaas layer
JPH03235376A (en) Manufacture of tandem-type solar battery
JP2546531B2 (en) Semiconductor laminated structure, semiconductor device and manufacturing method thereof
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JPH0620049B2 (en) Method for forming compound semiconductor layer
CN114300556A (en) Epitaxial structure, epitaxial growth method and photoelectric device
CN116190482A (en) Flexible four-junction solar cell and preparation method and application thereof
CN116598190A (en) Method for preparing gallium oxide material of power device based on phase inversion and application thereof
JPH01115116A (en) Compound semiconductor substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term