JPH03235376A - Manufacture of tandem-type solar battery - Google Patents

Manufacture of tandem-type solar battery

Info

Publication number
JPH03235376A
JPH03235376A JP2031205A JP3120590A JPH03235376A JP H03235376 A JPH03235376 A JP H03235376A JP 2031205 A JP2031205 A JP 2031205A JP 3120590 A JP3120590 A JP 3120590A JP H03235376 A JPH03235376 A JP H03235376A
Authority
JP
Japan
Prior art keywords
layer
solar cell
compound semiconductor
silicon
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2031205A
Other languages
Japanese (ja)
Inventor
Mitsuru Shimazu
充 嶋津
Shigeo Murai
重夫 村井
Koji Tada
多田 紘二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2031205A priority Critical patent/JPH03235376A/en
Publication of JPH03235376A publication Critical patent/JPH03235376A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To manufacture the title solar batteries of high efficiency by a method wherein the silicon solar batteries are heteroepitaxially deposited on III-V group compound semiconductor solar batteries. CONSTITUTION:An Al As layer 11, an n<+>GaAs layer 10, an n<+>A GaAs layer 9, an n-AlGaAs layer 8, p-A GaAs layer 7, an n<+>AlGaAs layer 6, an n-AlGaAs layer 5, an n-GaAs layer 4, a p<+>-GaAs layer 3 are deposited on a semiinsulating GaAs substrate 12 and after forming polysilicon to form a reticulated electrode on the formed epitaxial substrate 12, an n-silicon layer 2 and a p-silicon layer 1 are formed. Next, the Al As layer 11 is selectively etched away releasing the epitaxial layers from the substrate 12 to form electrodes 14-16 and a rear surface electrode 13. Through these procedures, silicon is deposited on the III-V group compound semiconductor substrate 12 so that the crystalline defects in crystals of compound semiconductor solar batteries may be diminished thereby enabling the solar batteries of high efficiency to be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はシリコン太陽電池と化合物半導体太陽電池を
複合化したタンデム型太陽電池の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a tandem solar cell that is a composite of a silicon solar cell and a compound semiconductor solar cell.

[従来の技術] 太陽電池はエネルギ源を太陽光に求めるため、従来の火
力発電を原因とする二酸化炭素による温暖化問題や、原
子力発電における安全性の問題等の生じないクリーンな
エネルギとして、開発が進められている。太陽電池はそ
の材料より化合物半導体系、単結晶または多結晶シリコ
ン系、アモルファスシリコン系等がある。光電変換効率
では化合物半導体系が優れた特性を示すが、コスト的に
はアモルファスシリコン系が優れており、材料によって
それぞれ長所および欠点がある。また、従来の1組のp
n接合を有する太陽電池では、太陽光エネルギの一部し
か電気エネルギに変換できないため、エネルギギャップ
の異なる材料で作製した複数の太陽電池を積層したタン
デム型太陽電池による変換効率の向上が試みられている
[Conventional technology] Solar cells rely on sunlight as their energy source, so they were developed as a clean energy source that does not cause the global warming problems caused by carbon dioxide caused by conventional thermal power generation or the safety problems associated with nuclear power generation. is in progress. Depending on the material, solar cells can be made of compound semiconductors, single crystal or polycrystalline silicon, or amorphous silicon. Compound semiconductors exhibit superior properties in terms of photoelectric conversion efficiency, but amorphous silicon systems are superior in terms of cost, and each material has its advantages and disadvantages. In addition, a conventional set of p
Solar cells with an n-junction can convert only a portion of the solar energy into electrical energy, so attempts have been made to improve conversion efficiency using tandem solar cells, which are stacked with multiple solar cells made of materials with different energy gaps. There is.

[発明が解決しようとする課題] また、化合物半導体系太陽電池は高価でかつ小面積のも
のしか作製できないことから、廉価で軽量化および大面
積化の可能なシリコン基板を用いることが検討されてい
る。しかしながら、シリコンと化合物半導体との間には
格子定数の違いや結晶の極性の違いが存在することから
、”化合物半導体結晶中に多数の結晶欠陥が発生し、化
合物半導体基板上に形成された太陽電池はど高効率のも
のは実現されていないのが現状である。たとえば、シリ
コン基板上にヘテロエピタキシャル成長したm−v族化
合物半導体、たとえば、GaAsは格子定数が違うこと
およびシリコンが無極性であり、GaAsが有極性であ
ることから多くの結晶欠陥(転位)を含んでいる。この
ため、GaAs太陽電池の変換効率はGaAs基板上に
ホモエピタキシャル成長したものに比べると著しく劣っ
ている。
[Problems to be Solved by the Invention] Furthermore, since compound semiconductor solar cells are expensive and can only be manufactured with a small area, the use of silicon substrates that are inexpensive, lightweight, and have a large area have been considered. There is. However, because there are differences in lattice constant and crystal polarity between silicon and compound semiconductors, "many crystal defects occur in compound semiconductor crystals and Currently, highly efficient batteries have not been realized.For example, m-v group compound semiconductors grown heteroepitaxially on silicon substrates, such as GaAs, have different lattice constants and silicon is nonpolar. Since GaAs is polar, it contains many crystal defects (dislocations).For this reason, the conversion efficiency of GaAs solar cells is significantly inferior to those grown homoepitaxially on a GaAs substrate.

このようなヘテロエピタキシャル成長の転位低減のため
に、グレーティングバッファ層、超格子バッファ層、2
温度成長法、熱サイクルアニール法等の方法が行われて
いるが、いまのところ1×106cm−2以下の転位密
度のものは得られていない。
In order to reduce dislocations in such heteroepitaxial growth, grating buffer layers, superlattice buffer layers,
Although methods such as a temperature growth method and a thermal cycle annealing method have been used, so far no material with a dislocation density of 1×10 6 cm −2 or less has been obtained.

この発明の目的は、化合物半導体太陽電池の結晶中の結
晶欠陥を低減することにより高効率の太陽電池を製造す
る方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a highly efficient solar cell by reducing crystal defects in the crystal of a compound semiconductor solar cell.

[課題を解決するための手段] この発明のタンデム型太陽電池の製造方法は、m−v族
化合物半導体基板の上方に少なくとも1つのm−v族化
合物半導体太陽電池を形成し、■−V族化合物半導体太
陽電池の上にシリコン太陽電池を形成し、シリコン太陽
電池形成後に■−v族化合物半導体基板を除去する各工
程を備えている。
[Means for Solving the Problems] A method for manufacturing a tandem solar cell of the present invention includes forming at least one m-v group compound semiconductor solar cell above an m-v group compound semiconductor substrate, The method includes steps of forming a silicon solar cell on a compound semiconductor solar cell, and removing the ①-V group compound semiconductor substrate after forming the silicon solar cell.

この発明の好ましい1つの実施態様によれば、m−v族
化合物半導体基板の上にエツチング除去層を形成し、エ
ツチング除去層の上に少なくとも1つのm−v族化合物
半導体太陽電池を形成し、m−v族化合物半導体太陽電
池の上にシリコン太陽電池を形成し、シリコン太陽電池
形成後にエツチング除去層をエツチングして除去するこ
とによりm−v族化合物半導体基板を剥離する各工程を
備えている。
According to a preferred embodiment of the invention, an etch removal layer is formed on the m-v compound semiconductor substrate, and at least one m-v compound semiconductor solar cell is formed on the etch removal layer; The method includes steps of forming a silicon solar cell on an m-v group compound semiconductor solar cell, and peeling off the m-v group compound semiconductor substrate by etching and removing an etching removal layer after forming the silicon solar cell. .

この好ましい実施態様において、エツチング除去層とし
ては、たとえばアルミニウム砒素層を用い、これをフッ
酸中に浸漬することによってエツチングし除去すること
ができる。
In this preferred embodiment, the etching removal layer is, for example, an aluminum arsenic layer, which can be etched and removed by immersing it in hydrofluoric acid.

この発明においてm−v族化合物半導体太陽電池として
用いることができるものとしては、たとえばGaAs、
GaP、およびInPなどの2元系化合物半導体や、A
lGaAs、InGaP。
In this invention, materials that can be used as the m-v group compound semiconductor solar cell include, for example, GaAs,
Binary compound semiconductors such as GaP and InP, and A
lGaAs, InGaP.

AII nAs、AII nP、AlGaPおよびGa
AsPなどの3元系化合物半導体を挙げることができる
AII nAs, AII nP, AlGaP and Ga
Examples include ternary compound semiconductors such as AsP.

また、この発明においてm−v族化合物半導体基板の上
方に形成されるm−v族化合物半導体太陽電池は、2組
以上の太陽電池をタンデム構造に積み重ねたものであっ
てもよい。
Further, in the present invention, the m-v group compound semiconductor solar cell formed above the m-v group compound semiconductor substrate may be one in which two or more sets of solar cells are stacked in a tandem structure.

この発明においてシリコン太陽電池形成後に■−V族化
合物半導体基板を除去する方法としては、たとえば、基
板全体を機械的にまたはエツチングによって除去しても
よいし、また入射窓の部分を選択的にエツチングで除去
してもよい。
In the present invention, the method for removing the ■-V group compound semiconductor substrate after forming the silicon solar cell includes, for example, removing the entire substrate mechanically or by etching, or selectively etching the entrance window portion. You can remove it with

また上述の好ましい実施態様のように、基板と太陽電池
との間にエツチング除去層を形成して、このエツチング
除去層をエツチングして除去することにより基板を剥離
してもよい。このような好ましい実施態様によれば、剥
離した基板を回収し再研磨して使用することができるの
で、経済的である。
Further, as in the preferred embodiment described above, an etching removal layer may be formed between the substrate and the solar cell, and the substrate may be peeled off by etching and removing the etching removal layer. According to such a preferred embodiment, the peeled substrate can be recovered and re-polished for use, which is economical.

[発明の作用効果コ 上述のように、シリコン基板上に■−v族化合物半導体
の太陽電池を積み重ねる場合には格子定数が違うことお
よびシリコンが無極性であり化合物半導体が有極性であ
ることからアンチフェーズドメインにより多くの結晶欠
陥や転位が発生する。
[Operations and Effects of the Invention] As mentioned above, when stacking ■-V group compound semiconductor solar cells on a silicon substrate, the lattice constants are different and silicon is nonpolar while compound semiconductors are polar. Many crystal defects and dislocations occur due to antiphase domains.

この発明に従えば、m−v族化合物半導体基板の上にシ
リコンを成長させているため上述のようなアンチフェー
ズドメインなどの問題を生じることはない。また、シリ
コンに転位が存在しても変換効率にはそれほど大きな影
響を与えないと考えられる。このことは、多結晶シリコ
ンやアモルファスシリコンで高効率の太陽電池が作製さ
れていることからも明らかである。したがって、この発
明のように■−■族化合物半導体太陽電池の上にシリコ
ン太陽電池をヘテロエピタキシャル成長させることによ
り、従来よりも高効率の太陽電池を得ることかできる。
According to the present invention, since silicon is grown on the m-v group compound semiconductor substrate, problems such as the above-mentioned antiphase domain do not occur. Furthermore, even if dislocations exist in silicon, it is thought that they do not have a significant effect on the conversion efficiency. This is clear from the fact that highly efficient solar cells are made of polycrystalline silicon or amorphous silicon. Therefore, by heteroepitaxially growing a silicon solar cell on a ■-■ group compound semiconductor solar cell as in the present invention, it is possible to obtain a solar cell with higher efficiency than before.

[実施例コ 第1図は、この発明の一実施例を説明するための断面図
である。第1図は、この発明に従い順次太陽電池を成長
させた後に、基板を除去して電極を形成した後の状態を
示しており、作製後に上下を逆にして使用するときの状
態を示している。第1図を参照して、半絶縁性GaAs
基板12上に、ノンドープAlAs層11を100OA
SSiドープn”−GaAs層10を1000人、Si
ドープn”  A109Gao、、As層9を1000
A、Siドープn−Alo、s Gao2As層8を4
μm、Znドープp  Al!o、s Gao2As層
7を5μm、Siドープn”−AI!。、Ga。
[Example 1] FIG. 1 is a sectional view for explaining an example of the present invention. Figure 1 shows the state after the substrate has been removed and electrodes have been formed after solar cells have been grown in accordance with the present invention, and shows the state when used upside down after fabrication. . Referring to FIG. 1, semi-insulating GaAs
On the substrate 12, a non-doped AlAs layer 11 with a thickness of 100 OA
SSi-doped n''-GaAs layer 10, Si
Doped n” A109Gao, 1000 As layer 9
A, Si-doped n-Alo,s Gao2As layer 8 4
μm, Zn-doped pAl! o, s Gao2As layer 7 of 5 μm, Si-doped n”-AI!., Ga.

As層6を1000ASSiドープn−A I 0.3
5G a o6.A s層5を1μm、Siドープn−
GaAs層4を1μm5Znドープp” −GaAs層
3を3μm成長させた。原料としては、トリメチルガリ
ウム(TMGa) 、)リメチルアルミニウム(TMA
l)、アルシン(AsH3:10%水素希釈)、シラン
(S I H4) 、ジメジル亜鉛(TMZn)を用い
た。成長温度は730℃であり、AsH3/TMGa比
は75とした。
As layer 6 is doped with 1000 ASSi n-A I 0.3
5G ao6. The As layer 5 is 1 μm thick and Si-doped n-
The GaAs layer 4 was grown to a thickness of 1 μm, and the Zn-doped p''-GaAs layer 3 was grown to a thickness of 3 μm.
1), arsine (AsH3: diluted with 10% hydrogen), silane (S I H4), and dimedylzinc (TMZn). The growth temperature was 730°C, and the AsH3/TMGa ratio was 75.

このようにして得られたエピタキシャル基板の上に、C
VD法により多結晶シリコンを形成し、2mm間隔の網
状電極を形成した後、CVD法によりSiのpn接合を
形成して、n−シリコン層2およびp−シリコン層1を
形成した。次にシリコンのエピタキシャル層表面をワッ
クスで被覆した後、フッ酸中に浸漬し、AA’AsAl
As層択的にエツチングすることによってエピタキシャ
ル成長層をGaAs基板12から剥離した。
On the epitaxial substrate obtained in this way, C
Polycrystalline silicon was formed by the VD method to form mesh electrodes at intervals of 2 mm, and then a pn junction of Si was formed by the CVD method to form an n-silicon layer 2 and a p-silicon layer 1. Next, the surface of the silicon epitaxial layer was coated with wax, and then immersed in hydrofluoric acid to form AA'AsAl.
The epitaxially grown layer was stripped from the GaAs substrate 12 by selectively etching the As layer.

次にRIE法で、選択的にエツチングし、AuGe電極
を蒸着した。第1図に示すように、n−シリコン層2の
上に電極14、n” −A I 0.35Ga 0.6
.A 8層5の上に電極15、n” −GaAs層10
の上に電極16、p−シリコン層1の裏面に裏面電極1
3を形成した。
Next, selective etching was performed using the RIE method, and an AuGe electrode was deposited. As shown in FIG. 1, an electrode 14, n"-A I 0.35Ga 0.6
.. A 8 Electrode 15 on layer 5, n''-GaAs layer 10
An electrode 16 is placed on top of the p-silicon layer 1, and a back electrode 1 is placed on the back side of the p-silicon layer 1.
3 was formed.

以上のようにして得られたタンデム型太陽電池に、AM
l、5の標準太陽光を照射したところ、3個のpn接合
の間に、それぞれ1.5.1.1.0.7vの解放電圧
が発生した。
AM
When irradiated with standard sunlight of 1.5 V, an open voltage of 1.5, 1.1, and 0.7 V was generated between the three pn junctions, respectively.

また、光電変換効率を測定したところ、33%であり、
従来のタンデム型太陽電池の約20%に比べ非常に高い
光電変換効率を示した。
In addition, when the photoelectric conversion efficiency was measured, it was 33%,
The photoelectric conversion efficiency was significantly higher than that of conventional tandem solar cells, which is approximately 20%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す断面図である。 図において、1はp−シリコン層、2はn−シリコン層
、3はp” −G a A s層、4はn−GaAs層
、5はn  A I 0.35G a o、 6.A 
S層、6はn”  A1.)、g Gao、As層、7
はpAA’。 BGao、2As層、8はn  A109Gao2AS
層、9はn”  AIo9Gao、I As層、10は
n”−GaAs層、11はAlAs層、12はGaAs
基板、13,14.15.16は電極を示す。
FIG. 1 is a sectional view showing an embodiment of the present invention. In the figure, 1 is a p-silicon layer, 2 is an n-silicon layer, 3 is a p''-GaAs layer, 4 is an n-GaAs layer, 5 is n AI 0.35G ao, 6.A
S layer, 6 is n” A1.), g Gao, As layer, 7
is pAA'. BGao, 2As layer, 8 is n A109Gao2AS
layer, 9 is n" AIo9Gao, IAs layer, 10 is n"-GaAs layer, 11 is AlAs layer, 12 is GaAs layer.
On the substrate, 13, 14, 15, and 16 indicate electrodes.

Claims (5)

【特許請求の範囲】[Claims] (1)III−V族化合物半導体基板の上方に少なくとも
1つのIII−V族化合物半導体太陽電池を形成し、 前記III−V族化合物半導体太陽電池の上にシリコン太
陽電池を形成し、 前記シリコン太陽電池形成後に、前記III−V族化合物
半導体基板を除去する各工程を備える、タンデム型太陽
電池の製造方法。
(1) forming at least one III-V compound semiconductor solar cell above the III-V compound semiconductor substrate; forming a silicon solar cell on the III-V compound semiconductor solar cell; A method for manufacturing a tandem solar cell, comprising the steps of removing the III-V group compound semiconductor substrate after forming the cell.
(2)III−V族化合物半導体基板の上にエッチング除
去層を形成し、 前記エッチング除去層の上に少なくとも1つのIII−V
族化合物半導体太陽電池を形成し、 前記III−V化合物半導体太陽電池の上にシリコン太陽
電池を形成し、 前記シリコン太陽電池形成後に、前記エッチング除去層
をエッチングして除去することにより前記III−V族化
合物半導体基板を剥離する各工程を備える、タンデム型
太陽電池の製造方法。
(2) forming an etching removal layer on the III-V group compound semiconductor substrate, and forming at least one III-V etching removal layer on the etching removal layer;
forming a group compound semiconductor solar cell; forming a silicon solar cell on the III-V compound semiconductor solar cell; and etching and removing the etching removal layer after forming the silicon solar cell; A method for manufacturing a tandem solar cell, comprising steps of peeling off a group compound semiconductor substrate.
(3)前記III−V族化合物半導体太陽電池がGaAs
Pである、請求項1または2に記載のタンデム型太陽電
池の製造方法。
(3) The III-V compound semiconductor solar cell is made of GaAs.
The method for manufacturing a tandem solar cell according to claim 1 or 2, wherein P.
(4)前記III−V族化合物半導体太陽電池が、GaA
sである、請求項1または2に記載のタンデム型太陽電
池の製造方法。
(4) The III-V compound semiconductor solar cell is made of GaA
The method for manufacturing a tandem solar cell according to claim 1 or 2, wherein the tandem solar cell is s.
(5)前記III−V族化合物半導体太陽電池が、GaA
sとAlGaAsをタンデム構造に積み重ねた太陽電池
である請求項1または2に記載のタンデム型太陽電池の
製造方法。
(5) The III-V compound semiconductor solar cell comprises GaA
3. The method for manufacturing a tandem solar cell according to claim 1, wherein the solar cell is a solar cell in which S and AlGaAs are stacked in a tandem structure.
JP2031205A 1990-02-10 1990-02-10 Manufacture of tandem-type solar battery Pending JPH03235376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031205A JPH03235376A (en) 1990-02-10 1990-02-10 Manufacture of tandem-type solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031205A JPH03235376A (en) 1990-02-10 1990-02-10 Manufacture of tandem-type solar battery

Publications (1)

Publication Number Publication Date
JPH03235376A true JPH03235376A (en) 1991-10-21

Family

ID=12324917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031205A Pending JPH03235376A (en) 1990-02-10 1990-02-10 Manufacture of tandem-type solar battery

Country Status (1)

Country Link
JP (1) JPH03235376A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488890B2 (en) * 2003-04-21 2009-02-10 Sharp Kabushiki Kaisha Compound solar battery and manufacturing method thereof
JP2011151392A (en) * 2009-12-25 2011-08-04 Sumitomo Chemical Co Ltd Semiconductor substrate, method for manufacturing semiconductor substrate, and method for manufacturing photoelectric conversion device
JP2014099665A (en) * 2009-05-08 2014-05-29 Emcore Solar Power Inc Inverted multi-junction solar cell with group iv/iii-v hybrid alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488890B2 (en) * 2003-04-21 2009-02-10 Sharp Kabushiki Kaisha Compound solar battery and manufacturing method thereof
JP2014099665A (en) * 2009-05-08 2014-05-29 Emcore Solar Power Inc Inverted multi-junction solar cell with group iv/iii-v hybrid alloy
JP2011151392A (en) * 2009-12-25 2011-08-04 Sumitomo Chemical Co Ltd Semiconductor substrate, method for manufacturing semiconductor substrate, and method for manufacturing photoelectric conversion device

Similar Documents

Publication Publication Date Title
US10680126B2 (en) Photovoltaics on silicon
US5549747A (en) Method of producing sheets of crystalline material and devices made therefrom
US4774194A (en) Process for manufacturing a solar cell device
US8933326B2 (en) Multijunction compound semiconductor solar cell
US20060112986A1 (en) Multi-junction solar cells and methods of making same using layer transfer and bonding techniques
JP2013030798A (en) Multi-junction solar cells
JP2017505989A (en) Integration of epitaxial lift-off solar cells with a small parabolic concentrator by printing method
JP2001230431A (en) Photoelectric conversion device
US20150059832A1 (en) Manufacture of multijunction solar cell devices
US20120103419A1 (en) Group-iii nitride solar cells grown on high quality group-iii nitride crystals mounted on foreign material
JP2006216896A (en) Solar cell manufacturing method
JPH03235371A (en) Manufacture of tandem type solar battery
JPH03235376A (en) Manufacture of tandem-type solar battery
US20150027519A1 (en) Manufacture of multijunction solar cell devices
JP5231142B2 (en) Manufacturing method of multi-junction solar cell
JPS61189621A (en) Compound semiconductor device
US8853529B2 (en) Flexible III-V solar cell structure
JPS62291183A (en) Manufacture of multijunction semiconductor photoelectric conversion element
WO2017084492A1 (en) Dual-junction thin film solar cell assembly, and manufacturing method thereof
McClure et al. Gallium Arsenide Solar Cells Grown on Polycrystalline Germanium Substrates by Aluminum-Induced Crystallization
JP2565908B2 (en) Compound semiconductor device
JPS61189619A (en) Compound semiconductor device
JP3167604B2 (en) Solar cell and method of manufacturing the same
JP2546531B2 (en) Semiconductor laminated structure, semiconductor device and manufacturing method thereof
Griggs et al. Design Approaches and materials processes for ultrahigh efficiency lattice mismatched multi-junction solar cells