JPS60158407A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPS60158407A
JPS60158407A JP59013726A JP1372684A JPS60158407A JP S60158407 A JPS60158407 A JP S60158407A JP 59013726 A JP59013726 A JP 59013726A JP 1372684 A JP1372684 A JP 1372684A JP S60158407 A JPS60158407 A JP S60158407A
Authority
JP
Japan
Prior art keywords
molten salt
electrode
substrate
vessel
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59013726A
Other languages
Japanese (ja)
Inventor
Yoshio Shimada
島田 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59013726A priority Critical patent/JPS60158407A/en
Publication of JPS60158407A publication Critical patent/JPS60158407A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1345Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To form a high refractive index part of a prescribed pattern by immersing the other surface of a substrate on which an electrode 14 is formed into the 1st molten salt contg. no exchange ion and scanning the same with the pen- shaped tip filled therein with the 2nd molten salt contg. the exchange ion thereby subjecting the surface to an ion exchange. CONSTITUTION:An outside vessel 11 is constituted of a side wall 12 and a base plate 13. The plate 13 is a glass substrate forming an optical waveguide and an electrode 14 is formed over the entire outside surface thereof. A molten salt 15 contg. no Ag<+> ion is filled in the vessel 11. A pen-shaped inside vessel is constituted of a circumferential wall 17, a tip sealing part 18 and a valve 19. A molten salt 20 contg. Ag<+> ion is filled in the vessel 16. The salt 20 contacts with the inside base of the substrate 13 via the fine hole 21 in the part 18. The surface scanned by the vessel 16 is subjected to an ion exchange by controlling the scanning speed at the tip of the vessel 16, the voltage impressed between the electrode 14 and the molten salt 15 and between the electrode 14 and the molten salt 20 and the time when said voltage is impressed. The high refractive index part of the prescribed pattern advances to the inside and an optical waveguide 26 is formed on the substrate 13.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は光導波路の製造方法、特にガラス等の基板中
に、任意のパターンでしかも3次元の光導波路を製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method for manufacturing an optical waveguide, and particularly to a method for manufacturing a three-dimensional optical waveguide in an arbitrary pattern in a substrate such as glass.

(ロ)従来技術 一般に、光導波路の製造方法の一つに、ガラスイオン交
換法がある。従来のガラスイオン交換法は、第1図に示
すようにガラス基板1の片面の全体に金属電極2を形成
する一方、他面にTiのスパッタによるマスクパターン
6を形成したものを用意し、このガラス基板1を第2図
に示すように槽4中に満たされたAg+イオンを含む溶
融塩5中に、マスクパターン6側を浸漬し主版2 lA
l1を(→。
(b) Prior Art Generally, one of the methods for manufacturing optical waveguides is the glass ion exchange method. In the conventional glass ion exchange method, as shown in FIG. 1, a metal electrode 2 is formed on the entire one side of a glass substrate 1, and a mask pattern 6 is formed on the other side by sputtering Ti. As shown in FIG. 2, the mask pattern 6 side of the glass substrate 1 is immersed in the molten salt 5 containing Ag+ ions filled in the tank 4, and the main plate 2 is heated.
l1 (→.

溶融塩5を(ト)として電源6によシミ圧Eaを印加し
、非マスク部にAp+イオンを侵入させ、その部分に高
屈折率部を形成するものであった。
Using the molten salt 5 as (g), a stain pressure Ea was applied to the power source 6 to cause Ap+ ions to penetrate into the non-masked area, thereby forming a high refractive index area in that area.

しかし、この従来の光導波路の製造方法は1作成すべき
光導波路のパターンAY、 T iマスクパターンによ
シ決定されるので、マスクパターンがないと任意のパタ
ーンのものが作れないし、しかも得られる光導波路は、
基板の表裏と平行な面しか構成できなかった。
However, in this conventional method of manufacturing an optical waveguide, the pattern of the optical waveguide to be created is determined by the mask pattern AY, T i, so it is impossible to create an arbitrary pattern without a mask pattern, and furthermore, it is difficult to obtain an arbitrary pattern. The optical waveguide is
Only surfaces parallel to the front and back of the board could be configured.

(ハ)目的 との発明の目的は、上記従来の製造方法の欠点を解消し
、任意のパターンを、しかも2次元導波路のみならず6
次元導波路をも作成し得る光導波路の製造方法を提供す
ることである。
(c) The purpose of the invention is to eliminate the drawbacks of the conventional manufacturing method described above, and to produce not only two-dimensional waveguides but also six-dimensional waveguides in any pattern.
An object of the present invention is to provide a method for manufacturing an optical waveguide that can also create a dimensional waveguide.

に)構成 」二記目的を達成するために、この発明は溶融塩の槽を
A〆等の交換イオンを含まない外部層と。
2) Structure To achieve the second object, the present invention comprises a bath of molten salt with an outer layer which does not contain exchanged ions, such as A.

交換イオンを含む内部槽に分け、それぞれに個別に電界
を加えるようにするとともに、内部槽を所望のパターン
にガラス基板上を走査するようにしている。すなわちこ
の発明の光導波路の製造方法は。
The system is divided into internal tanks containing exchanged ions, and an electric field is applied individually to each tank, and the internal tanks are scanned over the glass substrate in a desired pattern. That is, the method for manufacturing an optical waveguide of the present invention is as follows.

片面に電極を形成した基板の他面を交換イオンを含まな
い第1の溶融塩中に浸漬し、内部に交換イオンを含む第
2の溶融塩を満たしたペン状の槽の先端を前記基板の他
面に当接して1局部的に基板に第2の溶融塩を接触させ
、前記電極と前記第1の溶融塩及び前記電極と第2の溶
融塩間に電圧を個別に印加できるようにしておき、前記
基板の他面を前記ペン状の槽の先端で走査しつつ、この
走査速度、前記電極と前記第1の溶融塩、前記″市、極
と前記第2の溶融塩間の印加電圧、及び印加時間を制御
して、前記ペン状の槽の先端で走査した面にイオン交換
を行ない、所定パターンの高屈折率部を形成するように
している。
The other side of the substrate with electrodes formed on one side is immersed in a first molten salt that does not contain exchanged ions, and the tip of a pen-shaped tank filled with a second molten salt that contains exchanged ions is inserted into the substrate. A second molten salt is locally brought into contact with the substrate in contact with the other surface, and a voltage can be individually applied between the electrode and the first molten salt and between the electrode and the second molten salt. While scanning the other surface of the substrate with the tip of the pen-shaped tank, the scanning speed is adjusted to the applied voltage between the electrode and the first molten salt, the electrode and the second molten salt. , and the application time are controlled to perform ion exchange on the surface scanned by the tip of the pen-shaped tank to form a high refractive index portion in a predetermined pattern.

(ホ)実施例 以下、実施例によシ、この発明をさらに詳細に説明する
(e) Examples The present invention will be explained in more detail below using examples.

第5図は、この発明の1実施例を示す概略図である。同
図において11は外部槽であり、テフロン材等で形成さ
れる側壁12と、底面板16とで構成されている。この
底面板13は、光導波路を形成すべきガラス基板であシ
、外表面全体に亘り。
FIG. 5 is a schematic diagram showing one embodiment of the present invention. In the figure, reference numeral 11 denotes an external tank, which is composed of a side wall 12 made of Teflon material or the like and a bottom plate 16. This bottom plate 13 is a glass substrate on which an optical waveguide is to be formed, and extends over the entire outer surface.

金属の電極14が形成されている。A metal electrode 14 is formed.

外部槽11の内部にはA〆イオンを含まない。The interior of the external tank 11 does not contain any A ion.

溶融塩15が満たされている。It is filled with molten salt 15.

16は、ペン状の内部槽であシ、セラミックあるいは石
英で形成される周壁17と、サファイアで形成される先
端シール部18及びサファイアで形成されるパルプ19
とから構成されている。この内部槽16内には、A9イ
オンを含む溶融塩20が満たされている。また内部槽1
6の先端部には第4図に示すように、細穴21が設けら
れており。
Reference numeral 16 denotes a pen-shaped inner tank having a peripheral wall 17 made of aluminum, ceramic, or quartz, a tip seal part 18 made of sapphire, and a pulp 19 made of sapphire.
It is composed of. This internal tank 16 is filled with molten salt 20 containing A9 ions. Also, internal tank 1
As shown in FIG. 4, a thin hole 21 is provided at the tip of the tip 6. As shown in FIG.

シーlし部18がガラス基板13の内底面に当接されて
いるので、溶融塩20は細穴21を介して。
Since the sealing portion 18 is in contact with the inner bottom surface of the glass substrate 13, the molten salt 20 passes through the narrow hole 21.

ガラス基板16の内底面に接触している。この溶融塩2
0の接触の度合調整、遮断は、バルブ19によって行な
われる。なお、溶融塩20は、シール部18によって、
溶融塩15と完全にシールされている。
It is in contact with the inner bottom surface of the glass substrate 16. This molten salt 2
A valve 19 adjusts the degree of contact and cuts off the zero contact. Note that the molten salt 20 is sealed by the seal portion 18.
It is completely sealed with the molten salt 15.

また溶融塩15と電極14間には、スイッチ22を介し
て電源26より電圧Eb1が印加され、同様に溶融塩2
0と′t!極1極間4間、スイッチ24を介して電源2
5よシミ圧Eb2が印加されるよう罠なっている。なお
電圧Eb1 、 Eb2は溶融塩15.20側が(+)
で電極14が(→の極性で印加され、スイッチ22.2
4は個別にオン/オフでき。
Further, a voltage Eb1 is applied between the molten salt 15 and the electrode 14 from a power source 26 via a switch 22, and similarly, a voltage Eb1 is applied between the molten salt 15 and the electrode 14.
0 and 't! Between pole 1 and pole 4, power supply 2 is connected via switch 24.
5, the trap is set so that the stain pressure Eb2 is applied. Note that the voltages Eb1 and Eb2 are (+) on the molten salt 15.20 side.
When the electrode 14 is applied with the polarity of (→, the switch 22.2
4 can be turned on/off individually.

しかもそのオン/オフの継続時間も任意に制御できるよ
うになっている。また電圧鎮Eb1.Eb2も可変であ
シ、制御可能に構成されている。
Furthermore, the on/off duration can be controlled arbitrarily. Also, voltage suppressor Eb1. Eb2 is also configured to be variable and controllable.

上記実施例装置によシアガラス基板13の表面に、所定
のパターンの2次元導波路を作成する場合には、スイッ
チ22をオフ、スイッチ24をオンにして、電極14と
溶融塩20間にのみ、電源25により、電界を与え、ペ
ン状の内部槽16を。
When creating a two-dimensional waveguide with a predetermined pattern on the surface of the shear glass substrate 13 using the above embodiment apparatus, the switch 22 is turned off, the switch 24 is turned on, and only between the electrode 14 and the molten salt 20 is formed. An electric field is applied by a power source 25 to form a pen-shaped inner tank 16.

ガラス基板13の内底面上を等速で、移動走査し。The inner bottom surface of the glass substrate 13 is moved and scanned at a constant speed.

所定のパターンを描くようになぞってゆく。これによシ
アガラス基板13の内部槽16の先端で走査された部分
で、溶融塩20中からAp+イオンが侵入し、ガラスイ
オン交換がなされ、高屈折率部すなわち光導波路が形成
される。この場合、内部槽16の移動速度が一定なので
、形成された光導波路の深さは一定となる。
Trace as if drawing a prescribed pattern. As a result, Ap+ ions enter from the molten salt 20 at the portion of the shear glass substrate 13 scanned by the tip of the internal tank 16, glass ion exchange is performed, and a high refractive index portion, that is, an optical waveguide is formed. In this case, since the moving speed of the internal tank 16 is constant, the depth of the formed optical waveguide is constant.

ガラス基板13内に1面に平行に光導波路を埋込みたい
場合は、上記のようにしてガラス基板16上に光導波路
が形成された状態よシ、スイッチ24をオフにし、スイ
ッチ22をオンにし、電極14と溶融塩15間に電源2
3により電界を加える。これにより、ガラス基板13の
表面の高屈折率部が。
If you want to embed an optical waveguide parallel to one surface in the glass substrate 13, leave the optical waveguide formed on the glass substrate 16 as described above, turn off the switch 24, turn on the switch 22, A power supply 2 is connected between the electrode 14 and the molten salt 15.
3. Apply electric field. This results in a high refractive index portion on the surface of the glass substrate 13.

ガラス基板16の表面よシ内部に進行し、ガラス基板1
3の表面より一定の深さ内に、光導波路が形成される。
Proceeds from the surface of the glass substrate 16 to the inside, and the glass substrate 1
An optical waveguide is formed within a certain depth from the surface of 3.

また、第5図に示すようにガラス基板1乙に対し、深さ
方向に傾斜を持つ光導波路26を作成する場合には、ガ
ラス基板13の左端中央部に内部槽16を位置させ、ス
イッチ22.24をオンし。
In addition, when creating an optical waveguide 26 having an inclination in the depth direction with respect to the glass substrate 1B as shown in FIG. .24 turned on.

電源23.25でそれぞれ電極14と溶融塩15間、電
極14と溶融塩20間に電界を加え、内部槽16を右方
に向けて等速に移動させればよい。
It is sufficient to apply an electric field between the electrode 14 and the molten salt 15 and between the electrode 14 and the molten salt 20 using the power sources 23 and 25, respectively, and move the internal tank 16 toward the right at a constant speed.

この他、電源23.25の印加の有無、印加時間、印加
電圧及び内部槽16の移動走査速度を。
In addition, the presence or absence of application of the power source 23, 25, the application time, the applied voltage, and the movement scanning speed of the internal tank 16.

例えばマイクロコンピュータ等で制御すれば1種々のパ
ターンを持つ5次元光導波路を任意に作成することがで
きる。
For example, five-dimensional optical waveguides having various patterns can be arbitrarily created by controlling with a microcomputer or the like.

(へ)効果 この発明によれば、2次元光導波路のみならず。(to) Effect According to this invention, not only a two-dimensional optical waveguide.

種々のパターンを持つ6次元光導波路を、自由任意に作
成することができる。
Six-dimensional optical waveguides with various patterns can be freely and arbitrarily created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光導波路の製造に使用されるガラス基板
の斜視図、第2図は従来の光導波路の製造方法を示す図
、第6図はこの発明の1実施例を示す光導波路の製造方
法を示す図、第4図は同実施例の内部槽の先端部を拡大
した断面図、第5図は同実施例によって作成される光導
波路の1例を示す斜視図である。 11:外部槽、 13ニガラス基板。 14:電極、 15:Aダ1を含まない溶融塩、16:
内部槽、20:l’+を含む溶融塩、22・24:スイ
ッチ。 26・25:電源。 特許出願人 株式会社島津製作所 代理人 弁理士 中 村 茂 信 第1図 第5図
FIG. 1 is a perspective view of a glass substrate used for manufacturing a conventional optical waveguide, FIG. 2 is a diagram showing a conventional method for manufacturing an optical waveguide, and FIG. 6 is a diagram of an optical waveguide showing an embodiment of the present invention. FIG. 4 is an enlarged cross-sectional view of the tip of the inner tank of the same embodiment, and FIG. 5 is a perspective view showing an example of an optical waveguide produced by the same embodiment. 11: External tank, 13 Ni glass substrate. 14: Electrode, 15: Molten salt not containing Ada 1, 16:
Internal tank, 20: molten salt containing l'+, 22/24: switch. 26/25: Power supply. Patent applicant Shimadzu Corporation Representative Patent attorney Shigeru Nakamura Figure 1 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)片面に電極を形成した基板の他面を交換イオンを
含まない第1の溶融塩中に浸漬し、内部に交換イオンを
含む第2の溶融塩を満たした。ペン状の槽の先端を前記
基板の他面に当接して。 局部的に基板に第2の溶融塩を接触させ、さらに前記電
極と前記第1の溶融塩及び前記電極と第2の溶融塩間に
、電圧を個別に印加できるようにしておき、前記基板の
他面を前記ペン状の槽の先端で走査しつつ、この走査速
度、前記電極と前記第1の溶融塩、前記電極と前記第2
の溶融塩間の印加電圧、及び印加時間を制御して。 前記ペン状の槽で走査した面にイオン交換を行ない、所
定パターンの高屈折率部を形成するようにした先導波路
の製造方法。
(1) The other side of the substrate with electrodes formed on one side was immersed in a first molten salt not containing exchange ions, and the inside was filled with a second molten salt containing exchange ions. The tip of the pen-shaped tank is brought into contact with the other surface of the substrate. A second molten salt is locally brought into contact with the substrate, and voltages are applied individually between the electrode and the first molten salt and between the electrode and the second molten salt, and the substrate is heated. While scanning the other surface with the tip of the pen-shaped tank, the scanning speed is changed between the electrode and the first molten salt, the electrode and the second molten salt.
By controlling the applied voltage and application time between the molten salts. A method for manufacturing a leading waveguide, which performs ion exchange on a surface scanned by the pen-shaped tank to form a high refractive index portion in a predetermined pattern.
JP59013726A 1984-01-28 1984-01-28 Production of optical waveguide Pending JPS60158407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59013726A JPS60158407A (en) 1984-01-28 1984-01-28 Production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59013726A JPS60158407A (en) 1984-01-28 1984-01-28 Production of optical waveguide

Publications (1)

Publication Number Publication Date
JPS60158407A true JPS60158407A (en) 1985-08-19

Family

ID=11841246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59013726A Pending JPS60158407A (en) 1984-01-28 1984-01-28 Production of optical waveguide

Country Status (1)

Country Link
JP (1) JPS60158407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493476B2 (en) 2000-11-27 2002-12-10 Teem Photonics Apparatus and method for integrated photonic devices having gain and wavelength-selectivity
US6636678B1 (en) 1999-01-27 2003-10-21 Teem Photonics, Inc. Method and apparatus for waveguide optics and devices
US6813405B1 (en) 2002-03-29 2004-11-02 Teem Photonics Compact apparatus and method for integrated photonic devices having folded directional couplers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636678B1 (en) 1999-01-27 2003-10-21 Teem Photonics, Inc. Method and apparatus for waveguide optics and devices
US6970494B1 (en) 1999-01-27 2005-11-29 Teem Photonics, S.A. Rare-earth doped phosphate-glass lasers and associated methods
US6493476B2 (en) 2000-11-27 2002-12-10 Teem Photonics Apparatus and method for integrated photonic devices having gain and wavelength-selectivity
US6954564B2 (en) 2000-11-27 2005-10-11 Teem Photonics Apparatus and method for integrated photonic devices having high-performance waveguides and multicompositional substrates
US6813405B1 (en) 2002-03-29 2004-11-02 Teem Photonics Compact apparatus and method for integrated photonic devices having folded directional couplers

Similar Documents

Publication Publication Date Title
FR2618571B1 (en) LIGHT MODULATION MATERIAL AND MANUFACTURING METHODS
FI873643A (en) FOERFARANDE OCH ANLAEGGNING FOER GALVANISERING AV KOPPARFILM.
EP0392375A3 (en) A method of producing optical waveguides
DE58901396D1 (en) METHOD FOR PRODUCING WAVE GUIDES ON A GLASS SUBSTRATE BY ION EXCHANGE.
JPS60158407A (en) Production of optical waveguide
AU2127288A (en) Process for manufacturing a light-modulation device
JPS57208142A (en) Method for forming fine pattern
DE3885809T2 (en) Light modulation process.
US4404060A (en) Method for producing insulating ring zones by galvanic and etch technologies at orifice areas of through-holes in a plate
JPS53119671A (en) Ion implanting method
JPS5817274B2 (en) Electrodeposition processing method
KR100234625B1 (en) Method for forming of color-pattern
JPS5685813A (en) Manufacture of magnetic bubble element
JPS649683A (en) Formation of outside inclined mirror of semiconductor laser
JPS581128A (en) Transparent patterned electrode
JPS5633601A (en) Production of optical parts
JPH0319314B2 (en)
JPS5660435A (en) Mask pattern forming method
JPS6445193A (en) Method for forming conductor path
JPH0453105B2 (en)
JPS5586119A (en) Ion irradiation
SU34884A1 (en) Method of electrolytic etching of grooves in metals
JPH05157923A (en) Production of stereoscopic optical waveguide
JPS61199596A (en) Micro-shape processing method and mask for micro-shape processing
JPH0372158B2 (en)