JPS60154638A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60154638A
JPS60154638A JP1130584A JP1130584A JPS60154638A JP S60154638 A JPS60154638 A JP S60154638A JP 1130584 A JP1130584 A JP 1130584A JP 1130584 A JP1130584 A JP 1130584A JP S60154638 A JPS60154638 A JP S60154638A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
groove
semiconductor device
silicon
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1130584A
Other languages
Japanese (ja)
Inventor
Keimei Mikoshiba
御子柴 啓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP1130584A priority Critical patent/JPS60154638A/en
Publication of JPS60154638A publication Critical patent/JPS60154638A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To obtain a uniform structure without structually sparse regions and an approximately flat surface after etching in polycrystalline silicon filling an insulating and isolating groove on a silicon substrate, by heat treating the polycrystalline silicon at a specific temperature. CONSTITUTION:A groove 5 formed on the surface of a silicon substrate 1 is covered with an insulation film 2 and polycrystalline silicon is caused to grow in the groove. The polycrystalline silicon is then heat treated at a temperature between about 900 deg.C to 1,100 deg.C, preferebly at about 1,000 deg.C, in the presence of nitride. The polycrystalline silicon 13 thus heat treated is etched to form an insulating and isolating region whose upper surface is approximately flat and in continuation with the surface of the aperture of the groove 5. Since the polycrystalline silicon is kept in a uniform state by the high temperature heat treatment, no deep concave is produced at the center of the groove during the etching process.

Description

【発明の詳細な説明】 イ 産業上の利用分野 本発明は、半導体装置の製造方法、特に、絶縁分離領域
によシ素子間が分離された集積回路の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing an integrated circuit in which elements are separated by insulation isolation regions.

口、従来技術 従来、半導体集積回路における素子間の絶縁分離領域の
形成は、窒化膜をマスクに用いた選択酸化法、いわゆる
LOCO8法が用いられている。このLOCO8法では
、絶縁分離ハターンの端で、横方向に酸化膜が食い込み
、パターン幅が広くなるという欠点があった。さらに、
深い分離領域を形成することは困難であった。
BACKGROUND ART Conventionally, a selective oxidation method using a nitride film as a mask, the so-called LOCO8 method, has been used to form insulating isolation regions between elements in a semiconductor integrated circuit. This LOCO8 method has the disadvantage that the oxide film digs in laterally at the end of the insulation isolation pattern, resulting in a wider pattern width. moreover,
It was difficult to form deep isolation regions.

LOCO8法に代わる絶縁分離法として、溝堀シ分離法
(トレンチ分割法)が検討されている。
A trench isolation method (trench division method) is being considered as an insulation isolation method to replace the LOCO8 method.

この分離法では、シリコン基板にリアクティブ・イオン
会エッチ(RIE)によって、幅1μm程度、深さ1〜
5μm程度の断面がほぼ垂i白な形状、を持り溝を堀弘
この溝内に、例えは、多結晶シリコンを埋め込み表面を
平坦にする。減圧気相成長i、(LPCVD)で形成さ
れる多結晶シリコン膜は、ステップカバレッジに優れる
ため、溝幅程度の厚みに成長すると、溝は多結晶シリコ
ンによって完全に埋められてしまう。第1図ta+はこ
のような多結晶シリコンの成長状態を示す断面図で、図
において、1はシリコン基板、2は絶縁膜で、熱酸化膜
、あるいは、熱酸化膜と気相成長窒化膜の組合せなどで
ある。3は多結晶シリコンで、溝5の中央部分4にわず
かなくelみが生ずるだけである。次に、多結晶シリコ
ン3をエツチングして、溝50部分だけ残して取)去る
。このとき、溝中心部に沿ってエツチング速度が太きい
ために、第1図tblに示すように、溝中央部に大きな
くほみ6が生ずる。
In this separation method, a silicon substrate is etched by reactive ion etch (RIE) to a width of approximately 1 μm and a depth of 1 to 1 μm.
A groove with a cross section of about 5 μm and a substantially vertical shape is formed by burying, for example, polycrystalline silicon into the groove to flatten the surface. A polycrystalline silicon film formed by low-pressure chemical vapor deposition (LPCVD) has excellent step coverage, so when grown to a thickness comparable to the groove width, the groove is completely filled with polycrystalline silicon. Figure 1 (ta+) is a cross-sectional view showing the growth state of such polycrystalline silicon. combination etc. Reference numeral 3 is polycrystalline silicon, and only a slight el is formed in the central portion 4 of the groove 5. Next, the polycrystalline silicon 3 is etched and removed leaving only the groove 50 portion. At this time, since the etching rate is high along the center of the groove, a large depression 6 is formed at the center of the groove, as shown in FIG. 1 tbl.

これは、溝中心部付近では、多結晶シリコンが杓−にな
っていないので、構造的に過疎な状態になっているため
である。
This is because the polycrystalline silicon does not form a ladle near the center of the groove, resulting in a structurally sparse state.

ハ9発明の目的 本発明の目的は、この過疎な状態をなくして、均一な構
造にし、エツチングした後に表面がほぼ平坦ならしめる
半導体装置の製造方法を提供するにある。
C.9 Object of the Invention An object of the present invention is to provide a method for manufacturing a semiconductor device that eliminates this sparse state, provides a uniform structure, and makes the surface substantially flat after etching.

二9発明の構成 本発明では、シリコン基板上の絶縁膜!?(1用の溝を
埋めた多結晶シリコンに対し、900〜1100°C望
ましくは1000°C程度の熱処理を行い、多結晶シリ
コンの結晶粒成長を促して、均一な構造にし、それから
上面がほぼ平坦で溝内にのみ多結晶シリコンが残される
エツチングをする工程を含む。
29 Structure of the Invention In the present invention, an insulating film on a silicon substrate! ? (The polycrystalline silicon filled with the trench for 1 is heat treated at 900 to 1100°C, preferably around 1000°C, to promote crystal grain growth of the polycrystalline silicon and create a uniform structure. It includes an etching process that leaves polycrystalline silicon only in flat grooves.

ホ、実施例 つきに本発明を実施例によシ説明する。E, Example The present invention will now be explained by way of examples.

第2図は、本発明の方法により製造された半導体装置の
絶縁分離領域の部分断面図でおる。
FIG. 2 is a partial cross-sectional view of an isolation region of a semiconductor device manufactured by the method of the present invention.

溝幅が1μm程度の溝5をシリコン基板1の表面に形成
した後、絶縁膜2で覆い、それから、多結晶シリコンを
1μm程度の厚さに成長させ、次に、900°Cから1
100°C程度、望ましくは1000°C程度の温度で
、窒素巾約30分の熱処理を行う。次に、熱処理後の多
結晶シリコン13を、その膜厚たけエツチングすると、
溝5のIf3’rJ口面に連なシ、かつ、はぼ平坦な上
面をもつ絶縁分離領域が形成される。
After forming a groove 5 with a groove width of about 1 μm on the surface of the silicon substrate 1, it is covered with an insulating film 2, and then polycrystalline silicon is grown to a thickness of about 1 μm, and then heated at 900°C for 1 μm.
Heat treatment is performed at a temperature of about 100°C, preferably about 1000°C, for about 30 minutes under nitrogen. Next, the polycrystalline silicon 13 after the heat treatment is etched to the same thickness as the polycrystalline silicon 13.
An insulating isolation region is formed which is continuous with the If3'rJ mouth surface of the groove 5 and has a substantially flat upper surface.

なお、リンあるいはボロン等の不純物を高濃度に多結晶
シリコン中にドープすると、結晶粒の成長が促進される
ことが知られている。多結晶シリコンを熱処理する前に
、不純物をドープしておくことは、一様なエツチング速
度を実現し、平坦な表面を得るのに効果的である。また
、熱処理を高温不純物拡散、たとえば、900°Cから
1000°C程度のボロンあるいはリン拡散だけで行う
こともできる。さらに、熱拡散後に、1000°C8度
の窒素処理を行うこともできる。
Note that it is known that when polycrystalline silicon is doped with impurities such as phosphorus or boron at a high concentration, the growth of crystal grains is promoted. Doping polycrystalline silicon with impurities before heat treating it is effective in achieving a uniform etching rate and obtaining a flat surface. Further, the heat treatment can also be performed only by high-temperature impurity diffusion, for example, boron or phosphorus diffusion at about 900° C. to 1000° C. Further, after thermal diffusion, nitrogen treatment at 1000°C and 8°C can also be performed.

へ1発明の効果 本発明方法によれば、溝内にのみ多結晶シリコンを残す
エツチング前に、高温の熱処理によシ、多結晶シリコン
を均質な状態にしておくので、溝中央部で過疎のため、
上記エツチングの際中央部に深い凹みが発生するという
従来の欠点を改善することができ、信頼性の高い絶縁分
離領域を備えた半導体装置を容易に製造できる。
According to the method of the present invention, the polycrystalline silicon is made homogeneous by high-temperature heat treatment before etching, leaving polycrystalline silicon only in the grooves, so that no depopulation occurs in the center of the grooves. For,
The conventional drawback that a deep recess is generated in the center during etching can be improved, and a semiconductor device having a highly reliable isolation region can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al 、 tblは従来の半導体装置の絶縁分
離領域を形成する工程を説明するだめの断面図、第2図
は本発明の一実施例によシ製造された半導体装置の絶縁
分離領域を示す部分断面図である。 1・・・・シリコン基板、2・・・・・絶縁膜、3,1
3・・・・・多結晶シリコン、4・川・・凹み、5・・
中溝、6・・・・・・深い凹み。 メー \ 代理人 弁理士 内 原 晋、7’ 、、、、r “1
′1゜X、・
FIG. 1 (al and tbl are cross-sectional views illustrating the process of forming an isolation region of a conventional semiconductor device, and FIG. 2 shows an isolation region of a semiconductor device manufactured according to an embodiment of the present invention. 1 is a partial cross-sectional view showing 1... silicon substrate, 2... insulating film, 3, 1
3... polycrystalline silicon, 4... river, dent, 5...
Middle groove, 6...deep dent. Me \ Agent Patent Attorney Susumu Uchihara, 7',,,,r “1
'1゜X,・

Claims (1)

【特許請求の範囲】 1、 シリコン基板の一主面上に絶縁分離用の溝を形成
する工程と、つきに成長法による多結晶シリコンで前記
溝を埋める工程と、つぎに900°Cから1100°C
の範囲内の温度で熱処理を行った後、前記溝の開口面よ
シ上部にある多結晶シリコンをエツチングによシ除去す
る工程とを含むことを特徴とする半導体装置の製造方法
。 2 上記溝を埋める多結晶シリコンは不純物を多量に含
んでいることを特徴とする特許請求の範囲第1項に記載
の半導体装置の製造方法。
[Claims] 1. A step of forming a trench for insulation isolation on one main surface of a silicon substrate, a step of filling the trench with polycrystalline silicon by a growth method, and then a step of heating from 900°C to 1100°C. °C
1. A method of manufacturing a semiconductor device, comprising the step of performing heat treatment at a temperature within the range of 10 to 10, and then removing polycrystalline silicon above the opening surface of the trench by etching. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the polycrystalline silicon filling the groove contains a large amount of impurities.
JP1130584A 1984-01-25 1984-01-25 Manufacture of semiconductor device Pending JPS60154638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1130584A JPS60154638A (en) 1984-01-25 1984-01-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1130584A JPS60154638A (en) 1984-01-25 1984-01-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60154638A true JPS60154638A (en) 1985-08-14

Family

ID=11774290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130584A Pending JPS60154638A (en) 1984-01-25 1984-01-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60154638A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342792A (en) * 1986-03-07 1994-08-30 Canon Kabushiki Kaisha Method of manufacturing semiconductor memory element
US5387540A (en) * 1993-09-30 1995-02-07 Motorola Inc. Method of forming trench isolation structure in an integrated circuit
US5726084A (en) * 1993-06-24 1998-03-10 Northern Telecom Limited Method for forming integrated circuit structure
EP0926728A1 (en) * 1997-12-25 1999-06-30 Matsushita Electronics Corporation Method of manufacturing a BiCMOS semiconductor device
CN105428299A (en) * 2014-08-22 2016-03-23 中芯国际集成电路制造(上海)有限公司 Method for manufacturing deep-trench isolation structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342792A (en) * 1986-03-07 1994-08-30 Canon Kabushiki Kaisha Method of manufacturing semiconductor memory element
US5726084A (en) * 1993-06-24 1998-03-10 Northern Telecom Limited Method for forming integrated circuit structure
US5387540A (en) * 1993-09-30 1995-02-07 Motorola Inc. Method of forming trench isolation structure in an integrated circuit
US5436488A (en) * 1993-09-30 1995-07-25 Motorola Inc. Trench isolator structure in an integrated circuit
EP0926728A1 (en) * 1997-12-25 1999-06-30 Matsushita Electronics Corporation Method of manufacturing a BiCMOS semiconductor device
US6271070B2 (en) 1997-12-25 2001-08-07 Matsushita Electronics Corporation Method of manufacturing semiconductor device
CN105428299A (en) * 2014-08-22 2016-03-23 中芯国际集成电路制造(上海)有限公司 Method for manufacturing deep-trench isolation structure

Similar Documents

Publication Publication Date Title
US4044452A (en) Process for making field effect and bipolar transistors on the same semiconductor chip
US3764409A (en) Method for fabricating a semiconductor component for a semiconductor circuit
JP2551940B2 (en) Method for manufacturing semiconductor device
US4178191A (en) Process of making a planar MOS silicon-on-insulating substrate device
JPS5836499B2 (en) Method for manufacturing semiconductor devices using a two-layer mask
US3951693A (en) Ion-implanted self-aligned transistor device including the fabrication method therefor
JPS60154638A (en) Manufacture of semiconductor device
JP3097107B2 (en) Epitaxial growth method
JPS5812732B2 (en) Manufacturing method for semiconductor devices
JPH01319969A (en) Manufacture of semiconductor device
JPH02295129A (en) Manufacture of semiconductor device
JPS59181529A (en) Semiconductor device and manufacture thereof
JPH0834193B2 (en) Method for manufacturing semiconductor device
JPS5968949A (en) Manufacture of semiconductor device
JPS5878457A (en) Manufacture of semiconductor device
JPS6136381B2 (en)
JPS5893252A (en) Semiconductor device and manufacture thereof
JPS58168260A (en) Semiconductor integrated circuit device and manufacture thereof
RU1828560C (en) Process of manufacture of semiconductor devices
FR2463825A1 (en) METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE IN A SIMULATED EPITAXIAL LAYER
JPH04142777A (en) Forming method for gate electrode or wiring
JPS6088468A (en) Method of producing semiconductor integrated circuit
JPS6080275A (en) Manufacture of semiconductor device
JPH01143231A (en) Manufacture of semiconductor device
JPS61183923A (en) Formation of epitaxial layer