JPS5968949A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5968949A
JPS5968949A JP17940182A JP17940182A JPS5968949A JP S5968949 A JPS5968949 A JP S5968949A JP 17940182 A JP17940182 A JP 17940182A JP 17940182 A JP17940182 A JP 17940182A JP S5968949 A JPS5968949 A JP S5968949A
Authority
JP
Japan
Prior art keywords
film
single crystal
substrate
layer
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17940182A
Other languages
Japanese (ja)
Inventor
Atsushi Ueno
上野 厚
Tadanaka Yoneda
米田 忠央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17940182A priority Critical patent/JPS5968949A/en
Publication of JPS5968949A publication Critical patent/JPS5968949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To obtain flat surface by allowing a single crystal to grow on an Si substrate having a pattern of insulator and selectively etching polycrystal by making use of difference in impurity diffusion speed betwen single crystal and polycrystal. CONSTITUTION:A silicon is epitaxially formed opening to SiO2 2 on the Si substrate 1 and a poly-Si 3 is formed on the film 2 and a single crystal Si 1' is formed within the window. When phosphorus is diffused, it is diffused deep in the film 3 but shallow in the film 1'. The heat treatment is carried out in order to perfectly diffuse phosphorus into the film 3. Thereby, the film 4 is formed. Thereafter the layer 4 is selectively etched with a mixed solution of fluoric acid, nitric acid and acetic acid and etching is stopped when the layer 4 is almost perfectly removed. Thereby, the single crystal Si 1' is not almost etched, the substrate surface is flattened, a micro-miniature buried pattern can be obtained, disconnection can be prevented. Moreover, since there is no difference in size conversion as the reverse pattern of insulating film, a high integration density LSI can be obtained with good yield.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関し、特に絶縁膜中に
導体を埋込む方法であシ、高密度、高集積化を図るLS
I製造技術に利用出来るものであ半都体集積回路の高密
度、高集積化に伴ない一素子の微細化を図る目的で基板
表面の平担化が望まれるようになってきた。その為従来
は第1図に示すように、寸ずaにおいてシリコン基板1
上にシリコン酸化膜2(約5000A)PSG膜(Ph
ospho 5ilicate Glass)2’(約
30ooA)をイj;積し、レジストマスク(図示して
゛いない)を用いて反応性スパノタエノチシグ法等のド
ライエツチングあるいil−、l:湿式エツチングで開
口部を形成し、次に多結晶シリコン膜3を開口部段部と
ほぼ同等の膜厚(約5oooA )にCVD法(Che
micalVapor Deposition−気相成
長法)で形成する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device, and in particular to a method of embedding a conductor in an insulating film, and a method of manufacturing a semiconductor device to achieve high density and high integration.
With the increasing density and integration of semicircular integrated circuits, it has become desirable to have a flat substrate surface for the purpose of miniaturizing one element. Therefore, conventionally, as shown in FIG.
Silicon oxide film 2 (approximately 5000A) and PSG film (Ph
A layer of ospho 5 illicate glass) 2' (approximately 30 ooA) is deposited, and a resist mask (not shown) is used to perform dry etching such as reactive spanometric etching or wet etching. An opening is formed, and then the polycrystalline silicon film 3 is coated by CVD (Chemistry) to a thickness approximately equal to that of the step of the opening (approximately 500A).
It is formed by vapor deposition (vapor phase growth method).

次に10000C程度の尚iR*i電気炉で熱処理を施
こし、PSG膜2′から多結晶シリコン膜3に燐を拡散
する。次に弗酸、硝酸、酢酸の混合液を用いて多結晶シ
リコン膜3をエツチングすると、燐が拡散された多結晶
シリコン部は拡散されていない多結晶シリコン部(開口
部内)より数十倍速いエツチング速度の為、bに示すよ
うにPSG膜2′りの多結晶シリコン膜は完全にエツチ
ングされ、開口部内の不純物の拡散されていない多結晶
シリコン膜はほとんど残り、はぼ基板表面は平担となる
Next, heat treatment is performed in an iR*i electric furnace at about 10,000 C to diffuse phosphorus from the PSG film 2' into the polycrystalline silicon film 3. Next, when the polycrystalline silicon film 3 is etched using a mixed solution of hydrofluoric acid, nitric acid, and acetic acid, the polycrystalline silicon portion where phosphorus is diffused is etched several tens of times faster than the polycrystalline silicon portion (within the opening) where phosphorus is not diffused. Due to the etching speed, as shown in b, the polycrystalline silicon film on the PSG film 2' is completely etched, and most of the polycrystalline silicon film in the opening where impurities have not been diffused remains, leaving the entire substrate surface flat. becomes.

しかるにこの方法では、PSG膜の開口部側面に接する
多結晶シリコン膜にも燐は拡散し易く又開口部寸法が狭
く、開口部段差及びpsG膜厚が大となる程開口部内の
多結晶シリコン膜に横方向から燐が深く拡散される。こ
のことはエンチングで除去される部分が多く、開口部内
の多結晶シリコン膜の側面が凹部となシ、基板表面がで
こぼことなり微細パターン形成が難がしく、かつ次に金
属配線等を形成すると断線し易くなる。これは高密度、
高集積化のIC製造が容易でない事を示している。
However, in this method, phosphorus easily diffuses into the polycrystalline silicon film in contact with the side surfaces of the opening of the PSG film, and the smaller the opening size and the larger the opening step and the psG film thickness, the more the polycrystalline silicon film inside the opening becomes Phosphorus is diffused deeply from the lateral direction. This means that many parts are removed by etching, the sides of the polycrystalline silicon film inside the opening are not concave, and the substrate surface is uneven, making it difficult to form fine patterns, and when metal wiring etc. are formed next, disconnections occur. It becomes easier to do. This is high density,
This shows that manufacturing highly integrated ICs is not easy.

発明の目的 本発明は以上の問題点を考慮し、絶縁物の逆パターンを
自己整合的に導体物で形成し、かつ基板表面を平担にす
る簡単な方法を提供するものである。
OBJECTS OF THE INVENTION The present invention takes the above-mentioned problems into consideration and provides a simple method for forming a reverse pattern of an insulating material using a conductive material in a self-aligned manner and for making the substrate surface flat.

発明の構成 本発明の方法は絶縁物のパターンノ、(板に半導体の弔
結晶を成長せしめ、絶縁物上の多結晶半導体層と基板上
の単結晶半導体層の不純物拡散速度差を利用して、多結
晶半導体層を選択的にエツチングして基板表面を平担に
するものである。
Structure of the Invention The method of the present invention is based on a pattern of an insulator (by growing a semiconductor crystal on a plate and utilizing the difference in impurity diffusion rate between a polycrystalline semiconductor layer on the insulator and a single crystal semiconductor layer on the substrate). , the polycrystalline semiconductor layer is selectively etched to make the substrate surface flat.

実施例の説明 以下本発明の一実施例を図面に沿って詳細に説明する。Description of examples An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図(a)において、まず単結晶半導体シリコン基板
1上にシリコン酸化膜2を熱酸化法あるいは気相成長法
(CVD法)等で形成し、フォトリングラフィ技術によ
りレジストパターンをマスク(図示していない)にシリ
コン酸化膜2をエツチングし、シリコン基板1の一部を
露出させる。
In FIG. 2(a), first, a silicon oxide film 2 is formed on a single-crystal semiconductor silicon substrate 1 by a thermal oxidation method or a vapor phase epitaxy (CVD method), and then a resist pattern is masked using a photolithography technique (see FIG. (not shown), the silicon oxide film 2 is etched to expose a part of the silicon substrate 1.

この場合湿式エツチングよりドライエツチングで急峻な
開口部が好ましい。
In this case, dry etching is preferred over wet etching to form a steep opening.

(b)ニオイて、例えばエピタキシャル法によリシリコ
ンを基板表面に結晶成長させる。この処理でシリコン酸
化膜2のパターン上にH多結Aシリコン膜3が、開口部
内のシリコン基板上には単結晶シリコン膜1′が形成さ
れる。
(b) Crystals of silicon are grown on the surface of the substrate by, for example, an epitaxial method. By this process, an H-poly A silicon film 3 is formed on the pattern of the silicon oxide film 2, and a single crystal silicon film 1' is formed on the silicon substrate within the opening.

次に(C)において、基板表面よりn型の不純物、例え
ば1燐を熱拡散あるいは燐を含むシリコンガラス膜より
拡散あるいはイオン注入法で燐を注入し、高1t’ll
’L熱処理で、シリコンエピタキシャル層に燐ヲ拡散す
ると、多結晶シリコン膜3に深く、弔結晶シリコン膜1
′に浅く拡散される。これは拡散係数の述いにより、燐
の不純物に対し多結晶シリコンIrJ、 1 o−10
c4/sec 、単結晶シリコンは1O−12c+fi
/SeCと多結晶シリコンは2桁程大きい為である。こ
こでは多結晶シリコン膜3が完全に燐で拡散される条件
で熱処理し、できるだけ単結晶シリコン膜1′には燐を
拡散しないようにするのが望ましい。しかし、これは上
記のように拡散係数が2桁異なるので容易である。以上
の処理で燐の拡散層4が形成される。
Next, in (C), an n-type impurity such as 1 phosphorus is implanted from the surface of the substrate by thermal diffusion or by diffusion or ion implantation through a silicon glass film containing phosphorus, and a high 1t'll.
When phosphorus is diffused into the silicon epitaxial layer by the L heat treatment, it is deep in the polycrystalline silicon film 3 and the crystalline silicon film 1
′ is shallowly diffused. This is due to the description of the diffusion coefficient, which means that polycrystalline silicon IrJ, 1 o-10
c4/sec, single crystal silicon is 1O-12c+fi
/SeC and polycrystalline silicon are about two orders of magnitude larger. Here, it is preferable to carry out the heat treatment under conditions in which the polycrystalline silicon film 3 is completely diffused with phosphorus, and to prevent phosphorus from being diffused into the single crystal silicon film 1' as much as possible. However, this is easy because the diffusion coefficients differ by two orders of magnitude as described above. Through the above processing, a phosphorus diffusion layer 4 is formed.

次に(d)において、シリコンエピタキシャル層の燐拡
散層4をエツチングする。この場合エノヂング法として
、弗酸、硝酸、酢酸の混合液を用いると燐の拡散層が拡
散されていない層より数十1台のエツチング速度を有し
、かつ多結晶シリコンの方が弔結晶シリコンより数倍速
くエツチングされる為、多結晶シリコン膜3が完全にエ
ツチングされたところでエツチングを停止すると、単結
晶シリコン膜1′ハはとんどエツチングされず、図のよ
うに基板表面は平担に制御できる。その他cF4 ガス
を用いたドライエツチング方式により、プラズマエツチ
ングによってシリコンエピタキシャル層をエツチングし
ても、多結晶シリコン膜3が速くエツチングされ、上記
と同等に基板表面を平担にすることができる。不純物と
して燐をシリコンエピタキシャル層に拡散しだが、  
Asやsbでも良い。
Next, in (d), the phosphorus diffusion layer 4 of the silicon epitaxial layer is etched. In this case, when a mixed solution of hydrofluoric acid, nitric acid, and acetic acid is used as the etching method, the etching rate of the phosphorus diffused layer is several tens of orders of magnitude higher than that of the undiffused layer. Since etching is several times faster than etching, if etching is stopped when the polycrystalline silicon film 3 is completely etched, the monocrystalline silicon film 1' will hardly be etched and the substrate surface will become flat as shown in the figure. can be controlled. In addition, even if the silicon epitaxial layer is etched by plasma etching using a dry etching method using cF4 gas, the polycrystalline silicon film 3 can be etched quickly and the substrate surface can be made flat in the same manner as described above. Although phosphorus is diffused into the silicon epitaxial layer as an impurity,
As or sb may also be used.

尚上記不純物として”%を用いた方が、拡散有無のエッ
チレートの差が犬であるが、P型でもエッチレートの差
が有り、効果はffJ、られる。まだ上記エッチレート
を考慮し、絶縁膜開口部段差とシリコンエピタキシャル
層の膜厚及び拡散条件を制御することにより、高精度に
基板表面を平担にすることができる。
Note that if % is used as the above impurity, the difference in etch rate between diffusion and non-diffusion is better, but there is also a difference in etch rate even for P type, and the effect is ffJ. By controlling the step difference in the film opening, the film thickness of the silicon epitaxial layer, and the diffusion conditions, the substrate surface can be made flat with high precision.

」二記実施例ではシリコンをエピタキシャル法により結
晶成長を行なったが、他の方法として最近注目されるよ
うになってきた分子線エビタキシー(M B E: m
oleculer beam epitaxy)  と
呼ばれる結晶成長法を用いても良い。寸だ以上の説明で
は基板表面を平担化する為、導体膜を埋込む簡単な方法
を示しただけであるが、平担化を行なった後、この導体
中に不純物を拡散し、下地基板や、さらに」二層に金属
や半導体膜の配線層や電極部とオーミック接触させるこ
とも出来る。文通に絶縁膜の厚さや寸法を考慮して導体
部(ここではシリコン単結晶)に能動領域を形成するこ
とによりデバイス作成が可能である。
In Example 2, crystal growth of silicon was carried out by epitaxial method, but as another method, molecular beam epitaxy (MBE: m
A crystal growth method called olecular beam epitaxy may also be used. In the above explanation, we have only shown a simple method of embedding a conductive film to flatten the surface of the substrate, but after flattening, impurities are diffused into the conductor and the base substrate Furthermore, it is also possible to make ohmic contact between the two layers and a wiring layer or an electrode part of a metal or semiconductor film. It is possible to create a device by forming an active region in a conductor (silicon single crystal in this case), taking into account the thickness and dimensions of the insulating film.

発明の効果 以上より本発明方法を用いる事により、基板表向が平担
になり、かつ導体埋込み部を電極あるいは能動領域とし
て用いることにより、利用分野がさらに広まる。又微細
パターンが可能であり、最終の金属配線層等の断線の心
配もなく、さらに絶縁膜の逆パターンとして寸法変換差
がない利点により高密度高集積のLSIが歩留り良く製
造でき、工業上有益である。
Effects of the Invention As described above, by using the method of the present invention, the surface of the substrate can be flattened, and the buried conductor portion can be used as an electrode or an active region, so that the field of application can be further expanded. In addition, fine patterns are possible, there is no need to worry about disconnections in the final metal wiring layer, etc., and there is no difference in dimensional conversion as the insulating film is reversely patterned, allowing high-density, high-integration LSIs to be manufactured with good yield, which is industrially beneficial. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は従来の半導体装置の要部製
造工程断面図、第2図(&)〜(d)は本発明の半導体
装置の製造方法の一実施例を示す工程断面図である。 1・・・・・・シリコン基板、1′・・・・・・単結晶
シリコン層、2・・・・・・シリコン酸化膜、2′・・
・・・・PSG膜、3・・・・・・多結晶シリコン層、
4・・・・・・燐拡散層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名22
FIGS. 1(a) and 1(b) are cross-sectional views of the manufacturing process of the main parts of a conventional semiconductor device, and FIGS. 2(&) to (d) are cross-sectional views of the manufacturing process of the semiconductor device of the present invention. It is a diagram. 1...Silicon substrate, 1'...Single crystal silicon layer, 2...Silicon oxide film, 2'...
...PSG film, 3...polycrystalline silicon layer,
4... Phosphorus diffusion layer. Name of agent: Patent attorney Toshio Nakao and 1 other person22
9

Claims (1)

【特許請求の範囲】[Claims] 「)1.結晶基板が一部露出した絶縁膜パターンを有す
る半導体結晶基板表面に半導体の結晶成長を行ない中結
晶基板上に単結晶半導体層、絶縁膜バタ表面より不純物
を心入す;=比ミニし7」二記多結晶半心体層に不純物
を深く、上記単結晶半導体層に浅く形成する工程と、上
記不純物を拡散した多結晶下心体層をエツチングする工
程とを有することを特徴とする半導体装1行の製造方法
") 1. Semiconductor crystal growth is performed on the surface of a semiconductor crystal substrate having an insulating film pattern with a part of the crystal substrate exposed, and impurities are implanted from the surface of the single crystal semiconductor layer and insulating film on the middle crystal substrate; = ratio Mini-7'' is characterized by comprising the steps of forming impurities deeply in the polycrystalline half-core layer and shallowly in the single-crystalline semiconductor layer, and etching the polycrystalline lower core layer in which the impurities are diffused. A method for manufacturing one line of semiconductor devices.
JP17940182A 1982-10-12 1982-10-12 Manufacture of semiconductor device Pending JPS5968949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17940182A JPS5968949A (en) 1982-10-12 1982-10-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17940182A JPS5968949A (en) 1982-10-12 1982-10-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5968949A true JPS5968949A (en) 1984-04-19

Family

ID=16065215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17940182A Pending JPS5968949A (en) 1982-10-12 1982-10-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5968949A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226951A (en) * 1985-04-01 1986-10-08 Hitachi Ltd Capacitor
JPS63128750A (en) * 1986-11-19 1988-06-01 Toshiba Corp Semiconductor device
KR970003651A (en) * 1995-06-20 1997-01-28 BPS film planarization method of semiconductor device
KR20000017361A (en) * 1998-08-18 2000-03-25 칼 하인쯔 호르닝어 Method for producing semiconductor-insulator layer and semiconductor component having the semiconductor-insulator layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226951A (en) * 1985-04-01 1986-10-08 Hitachi Ltd Capacitor
JPS63128750A (en) * 1986-11-19 1988-06-01 Toshiba Corp Semiconductor device
KR970003651A (en) * 1995-06-20 1997-01-28 BPS film planarization method of semiconductor device
KR20000017361A (en) * 1998-08-18 2000-03-25 칼 하인쯔 호르닝어 Method for producing semiconductor-insulator layer and semiconductor component having the semiconductor-insulator layer

Similar Documents

Publication Publication Date Title
JP2615390B2 (en) Method of manufacturing silicon carbide field effect transistor
US4361600A (en) Method of making integrated circuits
US4891092A (en) Method for making a silicon-on-insulator substrate
TW200425335A (en) A method of forming an element of a microelectronic circuit
US3698947A (en) Process for forming monocrystalline and poly
EP0127814B1 (en) Process for forming a narrow mesa on a substrate and process for making a self-aligned gate field effect transistor
JPS5968949A (en) Manufacture of semiconductor device
JPH0582441A (en) Silicon carbide bipolar semiconductor device and its manufacture
JPH05304202A (en) Fabrication of semiconductor device
JPS5852843A (en) Manufacture of semiconductor integrated circuit device
JP2000100931A (en) Semiconductor device and manufacture thereof
JPS60193379A (en) Formation for low-resistance single crystal region
JP2527016B2 (en) Method for manufacturing semiconductor film
JP2005085777A (en) Process for fabricating semiconductor microstructure and semiconductor device
EP0233248A1 (en) Dielectric isolation structure for integrated circuits
JPS5968950A (en) Manufacture of semiconductor device
JPS59134819A (en) Manufacture of semiconductor substrate
JPS63198373A (en) Semiconductor device and its manufacture
JPH02268440A (en) Manufacture of semiconductor device
JPH0258848A (en) Manufacture of semiconductor device
JPS6189667A (en) Manufacture of semiconductor device
JPS6080275A (en) Manufacture of semiconductor device
JPH0284741A (en) Manufacture of semiconductor device
JPH0399421A (en) Formation of soi structure
JPS58204553A (en) Manufacture of complementary dielectric isolating substrate