JPS60154463A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS60154463A
JPS60154463A JP59011672A JP1167284A JPS60154463A JP S60154463 A JPS60154463 A JP S60154463A JP 59011672 A JP59011672 A JP 59011672A JP 1167284 A JP1167284 A JP 1167284A JP S60154463 A JPS60154463 A JP S60154463A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
molybdenum sulfide
serving
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59011672A
Other languages
Japanese (ja)
Inventor
Konosuke Ikeda
宏之助 池田
Shinji So
慎治 宗
Satoshi Ubukawa
生川 訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59011672A priority Critical patent/JPS60154463A/en
Publication of JPS60154463A publication Critical patent/JPS60154463A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve performance of a nonaqueous electrolyte battery having a voltage of 1.5V by adding molybdenum sulfide to a positive electrode. CONSTITUTION:Commercially available iron disulfide, molybdenum sulfide serving as additive, acetylene black and graphite serving as conductive material, and fluorine resin powder serving as binder are mixed in the weight ratio of 80:10:6:4 to prepare a positive mix. A pellet formed by press-molding the positive mix is baked at 200-300 deg.C to obtain a positive electrode 1. A negative electrode 4 is formed by punching a lithium sheet in a disc having a diameter of 15.0mm.. Electrolyte is prepared by dissolving lithium fluoborate of 1mol/l in a mixed solvent of polypylene carbonate and 1,2-dimethoxyethane. As shown in the figure, a battery (A) manufactured by this invention shows that increase in internal resistance in the final stage of discharge is suppressed and discharged performance is improved compared with a conventional battery (B).

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は二硫化鉄を正極活物質とする非水電解液電池に
関するものである、 (U) 従来技術 リチウム、ナトリウム或いはこれらの合金を負極活物質
とし、金属の酸化物、硫化物、塩化物やハロゲン炭素な
どを正極活物質とし、プロピレンカーボネー l−1y
−ブチルラクトン、1.2ジメトキシエタンなどの有機
溶媒に過塩素酸リチウム、ホウフッ化リチウム、アルミ
ニウムリチウムなどの無機塩を溶解したるものを電解液
として用いる非水電解液電池は高エネルギー密度を有し
、且自己放電が少ないという利点を有するため、近年、
特に注1されており現在までに二酸化マンガン、フッ化
炭素を正極活物質とする3、0v系の非水電解液電池が
提案されている。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a non-aqueous electrolyte battery using iron disulfide as a positive electrode active material. (U) Prior art: Lithium, sodium or an alloy thereof The negative electrode active material is metal oxide, sulfide, chloride, halogen carbon, etc., and the positive electrode active material is propylene carbonate l-1y.
-Non-aqueous electrolyte batteries that use an electrolyte prepared by dissolving an inorganic salt such as lithium perchlorate, lithium borofluoride, or lithium aluminum in an organic solvent such as butyllactone or 1.2 dimethoxyethane have a high energy density. In addition, it has the advantage of less self-discharge, so in recent years,
In particular, as noted in Note 1, 3.0 V type non-aqueous electrolyte batteries using manganese dioxide and carbon fluoride as positive electrode active materials have been proposed to date.

一方、例えば特公昭56−36794号公報に開示され
ているように正極活物質として二硫化鉄(FeSt)を
用いれば、1.5v系の非水電解液電池が得られ、既存
の乾電池やアルカリ乾電池と代替しうる利点がある。
On the other hand, if iron disulfide (FeSt) is used as the positive electrode active material as disclosed in Japanese Patent Publication No. 56-36794, a 1.5V non-aqueous electrolyte battery can be obtained, which can be used to replace existing dry batteries or alkaline batteries. It has the advantage of being able to replace dry batteries.

(ハ)発明の目的 本発明は特に二硫化鉄を正極活物質とする1、5V系非
水電解液電池の電池特性を改善することを目的とする。
(c) Purpose of the Invention The purpose of the present invention is particularly to improve the battery characteristics of a 1.5V nonaqueous electrolyte battery using iron disulfide as a positive electrode active material.

(ニ) 発明の構成 本発明はリチウム、ナトリウム或いはこれらの合金を活
物質とする負極と、二硫化鉄を活物質とする正極と、非
水電解液とを備えるものであって、前記正極に硫化モリ
ブデンを添加したことを特徴とする非水電解液電池にあ
る。
(D) Structure of the Invention The present invention comprises a negative electrode using lithium, sodium, or an alloy thereof as an active material, a positive electrode using iron disulfide as an active material, and a non-aqueous electrolyte, the positive electrode comprising: A non-aqueous electrolyte battery characterized by the addition of molybdenum sulfide.

(ホ) 実施例 以下本発明電池の実施例について詳述する。(e) Example Examples of the battery of the present invention will be described in detail below.

市販二硫化鉄(FeSt)に添加剤としての硫化モリブ
デン(MoSs)、導電剤としてのアセチレンブラック
及び黒鉛、及び結着剤としてのフッ素樹脂粉末を80:
10:6 : 4の重量比で加え充分混合してなる正極
合剤を約1)://CIl+2の圧力で加圧成型し径1
5.0IIi111厚み1.1mのベレットを得、その
後このペレットを200〜300 ’Cの温度で焼成し
て正極とする。
Commercially available iron disulfide (FeSt) was mixed with molybdenum sulfide (MoSs) as an additive, acetylene black and graphite as conductive agents, and fluororesin powder as a binder at 80:
A positive electrode mixture prepared by adding and thoroughly mixing at a weight ratio of 10:6:4 is press-molded at a pressure of approximately 1)://CI1+2 to a diameter of 1.
5.0IIi111 A pellet with a thickness of 1.1 m is obtained, and then this pellet is fired at a temperature of 200-300'C to form a positive electrode.

負極はリチウム板を0.61110の厚みに圧延し、こ
の圧延板を径15.0mmに打抜いたものである。又電
解液はプロピレンカーボネートと1.2ジメトキシエタ
ンとの混合溶媒にホウフッ化リチウムを1モル/P溶解
させたものである。
The negative electrode was obtained by rolling a lithium plate to a thickness of 0.61110 mm, and punching this rolled plate into a diameter of 15.0 mm. The electrolytic solution was prepared by dissolving 1 mol/P of lithium fluoroborate in a mixed solvent of propylene carbonate and 1.2 dimethoxyethane.

第1図は本発明電池の断面図を示し、(1)は正極であ
って正極缶(2)の内底面に正極集電体く3)を介して
圧接されている。又、(4)は負極であって負極毎(5
)の内底面に負極集電体(6)を介して圧着きれている
。(7)はポリプロピレン不織布よりなるセパレータ、
(8)は絶縁バッキングである。
FIG. 1 shows a cross-sectional view of the battery of the present invention, in which (1) is a positive electrode, which is pressed into contact with the inner bottom surface of a positive electrode can (2) via a positive electrode current collector 3). Also, (4) is a negative electrode, and each negative electrode (5
) is completely crimped onto the inner bottom surface of the negative electrode current collector (6). (7) is a separator made of polypropylene nonwoven fabric;
(8) is an insulating backing.

第2図は本発明電池(A)と従来電池(B)とを20°
Cにおいて5.6にΩ定負荷放電した時の放電特性及び
内部抵抗特性を比較したものである。
Figure 2 shows the battery of the present invention (A) and the conventional battery (B) at 20 degrees.
This is a comparison of the discharge characteristics and internal resistance characteristics when discharging at a constant load of 5.6 Ω at C.

尚、従来電池(B)の二硫化鉄正極には硫化モリブデン
は添加されていない。
Note that molybdenum sulfide is not added to the iron disulfide positive electrode of the conventional battery (B).

第2図より明白なるように本発明電池(A)は従来電池
(B)に比して放電後期における内部抵抗の上昇が抑制
され放電特性が改善きれていることがわかる。
As is clear from FIG. 2, it can be seen that the battery (A) of the present invention suppresses the increase in internal resistance in the late stage of discharge and has improved discharge characteristics compared to the conventional battery (B).

この理由を考察するに、二硫化鉄単独の従来電池の場合
には、理由は詳かでないが放電後期にお°゛1放寛生成
物0増加を因とし1内部抵抗が増加 (するものと考え
られるのに対し、本発明電池の場合には、放電後期にお
いて添加剤としての硫化モリブデンが反応に関与し、こ
の硫化モリブデンの反応生成物が正極の内部抵抗の上昇
を抑制するように作用するものと考えられる。
Considering the reason for this, in the case of a conventional battery containing only iron disulfide, the internal resistance increases in the late stage of discharge due to an increase in release products (although the reason is not clear). In contrast, in the case of the battery of the present invention, molybdenum sulfide as an additive participates in the reaction in the late stage of discharge, and the reaction product of this molybdenum sulfide acts to suppress the increase in internal resistance of the positive electrode. considered to be a thing.

第3図は硫化モリブデンの添加量と、正極活物質利用率
及び電池放電容量との関係を示す図であり、第3図より
正極活物質利用率について云えば1.0重量%以上で効
果が表われるが20.0重量%以−Eではその効果はほ
とんど一定となる。又、電池放電容量について云えば1
.0重量%以上で効果が表われ15.0重量%で無添加
の場合より若干効果が認められるに過ぎない。
Figure 3 is a diagram showing the relationship between the amount of molybdenum sulfide added, the positive electrode active material utilization rate, and the battery discharge capacity. Figure 3 shows that the positive electrode active material utilization rate is effective at 1.0% by weight or more. However, at 20.0% by weight or more, the effect becomes almost constant. Also, speaking of battery discharge capacity, 1
.. At 0% by weight or more, the effect appears, and at 15.0% by weight, it is only slightly more effective than when no additive is added.

従っ工、硫化モリブデンの添加量としては正極重量に対
して1.0〜15.0重量%程度が好ましい。
Accordingly, the amount of molybdenum sulfide added is preferably about 1.0 to 15.0% by weight based on the weight of the positive electrode.

(へン 発明の効果 本発明電池によれは、二硫化鉄を活物質とする正極に硫
化モリブデンを添加してので放電後期にお【する内部抵
抗の上昇が抑制され、放電特性が改善されるものであり
、特に既存の乾電池やアルカリ乾電池の電池電圧とほぼ
同様の電池電圧を有する1、5v系非水電解液電池の実
用化に’ff−Jるとこる極めて大である。
Effects of the Invention In the battery of the present invention, since molybdenum sulfide is added to the positive electrode, which uses iron disulfide as an active material, the increase in internal resistance in the late stage of discharge is suppressed, and the discharge characteristics are improved. This is especially important for the practical application of 1.5V non-aqueous electrolyte batteries, which have a battery voltage that is almost the same as that of existing dry batteries and alkaline batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の鞭断面図、第2図は本発明電池と
従来電池との電池特性比較図、第3図は添加剤の添加量
と正極活物質利用率及び電池放電容量との関係を示す図
である。 (1)・・・正極、(2〉・・・正極缶、(3〉・・正
極集電体、(4)・・・負極、(5)・・・負極毎、(
6)・・・負極集を体、(7)・・・セパレータ、 (
8)・・・絶縁バッキング、(A)・・・本発明電池、
(B)・・・従来電池。 出願人 三洋電機株式会社 代理人 弁理士 佐野静夫
Figure 1 is a cross-sectional view of the battery of the present invention, Figure 2 is a comparison of battery characteristics between the battery of the present invention and a conventional battery, and Figure 3 is the relationship between the amount of additives added, the utilization rate of positive electrode active material, and the battery discharge capacity. It is a figure showing a relationship. (1)...Positive electrode, (2>...Positive electrode can, (3>...Positive electrode current collector, (4)...Negative electrode, (5)...Each negative electrode, (
6)... Negative electrode collection, (7)... Separator, (
8)...Insulating backing, (A)...Battery of the present invention,
(B)...Conventional battery. Applicant Sanyo Electric Co., Ltd. Agent Patent Attorney Shizuo Sano

Claims (1)

【特許請求の範囲】 ■ リチウム、ナトリウム或いはこれらの合金を活物質
とする負極と、二硫化鉄を活物質とする正極と、非水電
解液とを備えるものであって、前記正極に硫化モリブ1
ンを添加したことを特徴とする非水電解液電池。 ■前記硫化モリブデンの添加量が正極重量に苅してlO
〜15.0重量%であることを特徴とする特許請求の範
囲第0項記載の非水電解液電池。
[Claims] ■ A negative electrode containing lithium, sodium, or an alloy thereof as an active material, a positive electrode containing iron disulfide as an active material, and a non-aqueous electrolyte, the positive electrode containing molybum sulfide. 1
A non-aqueous electrolyte battery characterized by the addition of ■The amount of molybdenum sulfide added is 10% by weight of the positive electrode.
The non-aqueous electrolyte battery according to claim 0, wherein the content is 15.0% by weight.
JP59011672A 1984-01-24 1984-01-24 Nonaqueous electrolyte battery Pending JPS60154463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59011672A JPS60154463A (en) 1984-01-24 1984-01-24 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59011672A JPS60154463A (en) 1984-01-24 1984-01-24 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS60154463A true JPS60154463A (en) 1985-08-14

Family

ID=11784475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59011672A Pending JPS60154463A (en) 1984-01-24 1984-01-24 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS60154463A (en)

Similar Documents

Publication Publication Date Title
US9666862B2 (en) Secondary battery of improved lithium ion mobility and cell capacity
JP4785482B2 (en) Nonaqueous electrolyte secondary battery
JPH07107851B2 (en) Non-aqueous secondary battery
JP3133318B2 (en) Rechargeable battery
JPH02148665A (en) Electrolyte for lithium secondary battery
JP2701327B2 (en) Non-aqueous electrolyte secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPS6151387B2 (en)
JPS60154463A (en) Nonaqueous electrolyte battery
JP3831547B2 (en) Non-aqueous electrolyte secondary battery
JPS60160566A (en) Nonaqueous electrolyte battery
JP2692932B2 (en) Non-aqueous secondary battery
JPS62272472A (en) Nonaqueous solvent secondary battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPH0711967B2 (en) Non-aqueous electrolyte battery
JPS6166363A (en) Nonaqueous electrolyte cell
JPS61179063A (en) Lithium secondary battery
JPS59165372A (en) Nonaqueous electrolyte secondary battery
JP2656305B2 (en) Organic electrolyte secondary battery
JPS60150555A (en) Nonaqueous electrolyte cell
JPS60150554A (en) Nonaqueous electrolyte cell
JPS6142858A (en) Nonaqueous electrolyte battery
JPH0350385B2 (en)
JPH01227355A (en) Nonaqueous electrolyte battery
JP2698180B2 (en) Non-aqueous secondary battery