JP4785482B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4785482B2
JP4785482B2 JP2005281955A JP2005281955A JP4785482B2 JP 4785482 B2 JP4785482 B2 JP 4785482B2 JP 2005281955 A JP2005281955 A JP 2005281955A JP 2005281955 A JP2005281955 A JP 2005281955A JP 4785482 B2 JP4785482 B2 JP 4785482B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
potential
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005281955A
Other languages
Japanese (ja)
Other versions
JP2007095443A (en
Inventor
晋吾 戸出
洋行 藤本
康文 高橋
晃 木下
達行 桑原
和弘 長谷川
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005281955A priority Critical patent/JP4785482B2/en
Publication of JP2007095443A publication Critical patent/JP2007095443A/en
Application granted granted Critical
Publication of JP4785482B2 publication Critical patent/JP4785482B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、金属リチウムまたはリチウムイオンを吸蔵・放出し得る合金、もしくは炭素材料などを負極活物質とし、化学式:LiMO2(Mは遷移金属)で表されるリチウム遷移金属複合酸化物を正極材料とする非水電解質電池が、高エネルギー密度を有する電池として注目されている。 In recent years, metallic lithium or an alloy capable of inserting and extracting lithium ions, or a carbon material is used as a negative electrode active material, and a lithium transition metal composite oxide represented by a chemical formula: LiMO 2 (M is a transition metal) is used as a positive electrode material. Nonaqueous electrolyte batteries are attracting attention as batteries having a high energy density.

上記リチウム遷移金属複合酸化物の例としては、リチウムコバルト複合酸化物(LiCoO2)が代表的なものとして挙げられ、既に非水電解質二次電池の正極活物質材料として実用化されている。しかし、遷移金属としてNiを含むものやMnを含むものも検討されており、また、これらの3種類の遷移金属元素全てを含む材料系も盛んに検討がなされてきた(例えば、特許文献1〜4、非特許文献1)。このようなNi、Co、Mnを含むリチウム遷移金属酸化物の中で、MnとNiの組成が等しい化学式:LiMnxNixCo(1-2x)2で表される材料が、充電状態(高い酸化状態)でも特異的に高い熱的安定性を示すことが、非特許文献2などで報告されている。 A typical example of the lithium transition metal composite oxide is lithium cobalt composite oxide (LiCoO 2 ), which has already been put into practical use as a positive electrode active material for non-aqueous electrolyte secondary batteries. However, those containing Ni or Mn as a transition metal have been studied, and material systems containing all these three kinds of transition metal elements have been actively studied (for example, Patent Documents 1 to 3). 4, Non-Patent Document 1). Among such lithium transition metal oxides containing Ni, Co, and Mn, a material represented by the chemical formula: LiMn x Ni x Co (1-2x) O 2 having the same composition of Mn and Ni is in a charged state ( It has been reported in Non-Patent Document 2 and the like that specifically shows high thermal stability even in a high oxidation state).

また、特許文献5にはNiとMnが実質的に等しい複合酸化物が、LiCoO2と同等の4V近傍の電圧を有し、かつ高容量で優れた充放電効率を示すことが報告されている。このような、NiとMnとCoを含み、そのNiとMnを実質的に等しく含む層状構造を有するリチウム遷移金属複合酸化物(例えば、化学式:LiaMnsNitCou2(0≦a≦1.2、s+t+u=1、0<s≦0.5、0<t≦0.5、0.45≦s/(s+t)≦0.55、0.45≦t/(s+t)≦0.55、u≧0を満たす。)を主材(50重量%以上)とする正極を用いた電池は、充電時の高い熱的安定性を有することから電池の信頼性が飛躍的に向上することが期待できる。 Patent Document 5 reports that a composite oxide in which Ni and Mn are substantially equal has a voltage in the vicinity of 4 V equivalent to LiCoO 2 , and has a high capacity and excellent charge / discharge efficiency. . Includes such, Ni, Mn, and Co, the lithium transition metal composite oxide having a substantially equal comprising layered structure that Ni and Mn (e.g., Formula: Li a Mn s Ni t Co u O 2 (0 ≦ a ≦ 1.2, s + t + u = 1, 0 <s ≦ 0.5, 0 <t ≦ 0.5, 0.45 ≦ s / (s + t) ≦ 0.55, 0.45 ≦ t / (s + t) ≦ Batteries using a positive electrode whose main material (50% by weight or more satisfies 0.55, u ≧ 0) have a high thermal stability during charging, so the reliability of the battery is dramatically improved. Can be expected to do.

さらに、このようなリチウム遷移金属複合酸化物は、その高い構造安定性から、現状の充電電圧より高く(例えば、正極の電位で4.5V(vs.Li/Li+)以上に)設定しても、現在使用されているLiCoO2などより良好なサイクル特性を示すことが報告されている(非特許文献3)。 Furthermore, such a lithium transition metal composite oxide is set to be higher than the current charging voltage (for example, 4.5 V (vs. Li / Li + ) or more at the positive electrode potential) because of its high structural stability. Has also been reported to exhibit better cycle characteristics than LiCoO 2 and the like currently used (Non-Patent Document 3).

現在、リチウム含有遷移金属酸化物(例えば、LiCoO2)を正極に用い、負極に炭素材料を用いる非水電解質二次電池では、その充電終止電圧は一般に4.1V〜4.2Vとなっているが、この場合、正極は理論容量に対して50〜60%しか利用されていない。従って、化学式:LiaMnsNitCou2(0≦a≦1.2、s+t+u=1、0<s≦0.5、0<t≦0.5、0.45≦s/(s+t)≦0.55、0.45≦t/(s+t)≦0.55、u≧0)で表され、層状構造を有するリチウム遷移金属複合酸化物を用いれば、充電電圧を高く設定しても熱的安定性を大きく低下させることなく、正極の容量を理論容量に対し70%以上で利用することも可能であり、電池の高容量化・高エネルギー密度化が可能となる。 Currently, in a non-aqueous electrolyte secondary battery using a lithium-containing transition metal oxide (for example, LiCoO 2 ) as a positive electrode and a carbon material as a negative electrode, the charge end voltage is generally 4.1 V to 4.2 V. However, in this case, only 50 to 60% of the positive electrode is used with respect to the theoretical capacity. Thus, the chemical formula: Li a Mn s Ni t Co u O 2 (0 ≦ a ≦ 1.2, s + t + u = 1,0 <s ≦ 0.5,0 <t ≦ 0.5,0.45 ≦ s / ( s + t) ≦ 0.55, 0.45 ≦ t / (s + t) ≦ 0.55, u ≧ 0), and a lithium transition metal composite oxide having a layered structure is used, the charging voltage is set high. However, the capacity of the positive electrode can be used at 70% or more of the theoretical capacity without greatly degrading the thermal stability, and the capacity and energy density of the battery can be increased.

しかし、化学式:LiaMnsNitCou2(0≦a≦1.2、s+t+u=1、0<s≦0.5、0<t≦0.5、0.45≦s/(s+t)≦0.55、0.45≦t/(s+t)≦0.55、u≧0を満たす。)で表され、層状構造を有するリチウム遷移金属複合酸化物を正極活物質として用いた場合でも、正極の充電電位が4.5V(vs.Li/Li+)以上となる高電位充電状態では、Liの脱離量が増し、結晶構造中に酸素イオン同士が対向する箇所が増加するため、結晶構造が不安定化し、同時に電解液共存下での熱的安定性も低下するため、安全性の確保が困難となる。すなわち、電池の満充電状態での正極の電位が4.5V(vs.Li/Li+)以上となる電池(例えば、負極の充電電位が0.1V(vs.Li/Li+)である炭素負極を用いる場合であれば、充電電圧が4.4V以上となる電池)では電池の安全性に対して課題があった。
特許第2561556号 特許第3244314号 特開平10−199525号公報 国際公開第02/41419号パンフレット 特開2002−42813号公報 Journal of Power Sources 90(2000)176-181 Electrochemical and Solid-State Letters, 4(12) A200-A203(2001) Chemistry Letters, 2001, P.642-643
However, the chemical formula: Li a Mn s Ni t Co u O 2 (0 ≦ a ≦ 1.2, s + t + u = 1,0 <s ≦ 0.5,0 <t ≦ 0.5,0.45 ≦ s / ( s + t) ≦ 0.55, 0.45 ≦ t / (s + t) ≦ 0.55, u ≧ 0), and a lithium transition metal composite oxide having a layered structure is used as the positive electrode active material However, in a high-potential charge state where the charge potential of the positive electrode is 4.5 V (vs. Li / Li + ) or higher, the amount of Li desorption increases, and the number of locations where oxygen ions face each other in the crystal structure increases. In addition, the crystal structure becomes unstable, and at the same time, the thermal stability in the coexistence of the electrolytic solution is lowered, so that it is difficult to ensure safety. That is, a battery in which the potential of the positive electrode is 4.5 V (vs. Li / Li + ) or more when the battery is fully charged (for example, carbon whose charging potential of the negative electrode is 0.1 V (vs. Li / Li + )). In the case of using a negative electrode, a battery having a charging voltage of 4.4 V or higher has a problem with respect to battery safety.
Japanese Patent No. 2561556 Japanese Patent No. 3244314 JP-A-10-199525 International Publication No. 02/41419 Pamphlet JP 2002-42813 A Journal of Power Sources 90 (2000) 176-181 Electrochemical and Solid-State Letters, 4 (12) A200-A203 (2001) Chemistry Letters, 2001, P.642-643

本発明の目的は、LiとNiとMnとを含有し、層状構造を有するリチウム遷移金属複合酸化物を主材とする正極を用いた非水電解質二次電池において、満充電での正極の電位が4.5V(vs.Li/Li+)以上になる場合においても、熱的安定性の高い安全性に優れる非水電解質二次電池を提供することにある。 An object of the present invention is to provide a positive electrode potential at full charge in a non-aqueous electrolyte secondary battery using a positive electrode containing a lithium transition metal composite oxide having a layered structure and containing Li, Ni, and Mn. The object of the present invention is to provide a non-aqueous electrolyte secondary battery having high thermal stability and excellent safety even when the voltage is 4.5 V (vs. Li / Li + ) or more.

本発明の非水電解質二次電池は、リチウムイオンを吸蔵・放出可能な材料を用いた正極及び負極と、非水電解質とを備え、かつ正極の電位が4.5V(vs.Li/Li+)に
達するまで充電した際の正極と負極の対向充電容量比が1.0〜1.15となるように構成された非水電解質二次電池において、正極活物質の主材が化学式:LiaMnsNitCouMov2(0≦a≦1.2、s+t+u=1、0<s≦0.5、0<t≦0.5、0.45≦s/(s+t)≦0.55、0.45≦t/(s+t)≦0.55、u>0、0.001≦v≦0.01を満たす。)で表されるものであることを特徴とする。
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode and a negative electrode using a material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte, and the positive electrode has a potential of 4.5 V (vs. Li / Li + In the non-aqueous electrolyte secondary battery configured such that the opposite charge capacity ratio between the positive electrode and the negative electrode is 1.0 to 1.15 when charged until reaching a), the main material of the positive electrode active material is a chemical formula: Li a Mn s Ni t Co u Mo v O 2 (0 ≦ a ≦ 1.2, s + t + u = 1,0 <s ≦ 0.5,0 <t ≦ 0.5,0.45 ≦ s / (s + t) ≦ 0 0.55, 0.45 ≦ t / (s + t) ≦ 0.55, u> 0 , 0.001 ≦ v ≦ 0.01)).

ここで、正極にLiCoO2を用い、負極に炭素材料やLi合金材料を用いる従来の電池では、電池の充電電圧としては、4.1V〜4.2Vであり、負極に炭素材料を用いた場合では充電状態での正極の電位は4.2〜4.3V(vs.Li/Li+)となる。また、この電圧で充電した際の対向充電容量比は、一般的に1.0〜1.15となるように設計されている(正極の充電量<負極の充電量)。このように設計されている理由は、この対向充電容量比が1.0未満の場合は負極表面に金属リチウムが析出し、電池のサイクル特性や安全性が著しく低下し、対向充電容量比が1.15を超えると反応に関与しない余分な負極材料が増えるため電池のエネルギー密度が低下する。従って、本発明の非水電解質二次電池では、負極に炭素材料やLi合金材料などのリチウムを吸蔵・放出が可能な材料を用い、正極の電位が4.5V(vs.Li/Li+)に達するまで充電した際の対向充電容量比が1.0〜1.15となるようなものが代表的なものとして例示される。例えば、4.3V(vs.Li/Li+)となるまで充電される従来の非水電解質二次電池における1.0〜1.15の範囲の対向充電容量比を、正極の電位が4.5V(vs.Li/Li+)に達するまで充電した際における対向充電容量比に換算すると、0.89〜0.99となり、本発明の範囲から外れる。 Here, in a conventional battery using LiCoO 2 for the positive electrode and a carbon material or a Li alloy material for the negative electrode, the charging voltage of the battery is 4.1 V to 4.2 V, and a carbon material is used for the negative electrode Then, the potential of the positive electrode in a charged state is 4.2 to 4.3 V (vs. Li / Li + ). Further, the counter charge capacity ratio when charged at this voltage is generally designed to be 1.0 to 1.15 (charge amount of positive electrode <charge amount of negative electrode). The reason for this design is that when this counter charge capacity ratio is less than 1.0, metallic lithium is deposited on the negative electrode surface, the cycle characteristics and safety of the battery are significantly reduced, and the counter charge capacity ratio is 1 If it exceeds .15, the excess negative electrode material not involved in the reaction increases, so the energy density of the battery decreases. Therefore, in the non-aqueous electrolyte secondary battery of the present invention, a material capable of occluding and releasing lithium, such as a carbon material or a Li alloy material, is used for the negative electrode, and the positive electrode has a potential of 4.5 V (vs. Li / Li + ). A typical example is such that the opposite charge capacity ratio when charging until reaching 1.0 is 1.0 to 1.15. For example, the counter charge capacity ratio in the range of 1.0 to 1.15 in a conventional non-aqueous electrolyte secondary battery charged to 4.3 V (vs. Li / Li + ) is obtained, and the potential of the positive electrode is 4. When converted to the counter charge capacity ratio when charged until reaching 5 V (vs. Li / Li + ), it is 0.89 to 0.99, which is outside the scope of the present invention.

負極の活物質が炭素材料である場合、正極の電位が4.5V(vs.Li/Li+)となったときの電池電圧は、4.4Vとなる。従って、本発明の非水電解質二次電池においては、負極活物質が炭素材料である場合、上記の対向充電容量比は、電池の充電電圧を4.4Vまで充電した際の対向充電容量比となる。 When the negative electrode active material is a carbon material, the battery voltage when the positive electrode potential is 4.5 V (vs. Li / Li + ) is 4.4 V. Therefore, in the non-aqueous electrolyte secondary battery of the present invention, when the negative electrode active material is a carbon material, the above-described counter charge capacity ratio is the same as the counter charge capacity ratio when the battery charge voltage is charged to 4.4 V. Become.

本発明において用いられるモリブデンを含有するリチウム遷移金属複合酸化物は、化学式:LiaMnsNitCouMov2(0≦a≦1.2、s+t+u=1、0<s≦0.5、0<t≦0.5、0.45≦s/(s+t)≦0.55、0.45≦t/(s+t)≦0.55、u>0、0.001≦v≦0.01を満たす。)で表されるものである。また、本発明において用いるリチウム遷移金属複合酸化物は、高電位下での正極活物質と電解質との反応を抑えるために、正極活物質の比表面積としては0.1〜2.0m2/gの範囲内であることが望ましい。
Lithium transition metal composite oxide containing molybdenum used in the present invention has the formula: Li a Mn s Ni t Co u Mo v O 2 (0 ≦ a ≦ 1.2, s + t + u = 1,0 <s ≦ 0. 5, 0 <t ≦ 0.5, 0.45 ≦ s / (s + t) ≦ 0.55, 0.45 ≦ t / (s + t) ≦ 0.55, u> 0 , 0.001 ≦ v ≦ 0. 01 is satisfied). In addition, the lithium transition metal composite oxide used in the present invention has a specific surface area of 0.1 to 2.0 m 2 / g in order to suppress the reaction between the positive electrode active material and the electrolyte under a high potential. It is desirable to be within the range.

本発明で用いる非水電解質の溶媒としては、高い誘電率を有する環状カーボネートと、粘性の低い鎖状カーボネートの混合溶媒を用いることが望ましいが、環状カーボネートは高電位下での酸化分解を生じやすいことから、その混合比としては10〜30体積%が望ましい。また、正極の集電体としては、厚み10〜30μmのアルミニウム箔が一般的に用いられるが、このような集電体を用いた場合、高電位(4.5V(vs.Li/Li+)以上)では、箔そのものの腐食が進行する可能性があるため、そのような腐食を抑制する作用がある(フッ化アルミニウムの不動態皮膜が形成されるためと考えられる)LiPF6を支持塩として含むことが望ましい。さらに、正極が高電位になった場合には、導電剤として用いる炭素表面上での電解液の酸化分解も進行しやすくなるため、正極中に含まれる導電剤としての炭素の量は5重量%以下が望ましい。 As the non-aqueous electrolyte solvent used in the present invention, it is desirable to use a mixed solvent of a cyclic carbonate having a high dielectric constant and a chain carbonate having a low viscosity, but the cyclic carbonate is likely to cause oxidative decomposition at a high potential. Therefore, the mixing ratio is preferably 10 to 30% by volume. Further, as the positive electrode current collector, an aluminum foil having a thickness of 10 to 30 μm is generally used. When such a current collector is used, a high potential (4.5 V (vs. Li / Li + )) is used. in more), there is a possibility that the corrosion of the foil itself progresses, as such corrosion is the effect of suppressing the (presumably because passive film of aluminum fluoride is formed) of LiPF 6 supporting salt It is desirable to include. Furthermore, when the positive electrode is at a high potential, the oxidative decomposition of the electrolytic solution on the carbon surface used as the conductive agent is likely to proceed. Therefore, the amount of carbon as the conductive agent contained in the positive electrode is 5% by weight. The following is desirable.

化学式:LiaMnsNitCouMov2(0≦a≦1.2、s+t+u=1、0<s≦0.5、0<t≦0.5、0.45≦s/(s+t)≦0.55、0.45≦t/(s+t)≦0.55、u>0、0.001≦v≦0.01を満たす。)で表され、層状構造を有するリチウム遷移金属複合酸化物を正極活物質とする電極において、正極活物質にモリブデンが含まれることにより、高電位充電状態における熱的安定性が向上する機構については、現時点では明らかではないが、モリブデンが含まれることにより、高電位充電状態において、a)活物質の結晶構造が安定化する、b)遷移金属複合酸化物の酸化状態が変化し、電解液分解反応に対して示す触媒活性が低減する、c)正極活物質表面に電解液分解反応に対して効果的な皮膜が形成されるなどが推察される。いずれにしても、熱的安定性に対するモリブデンの添加効果は、4.3V(vs.Li/Li+)の充電状態では十分に認められず、4.5V(vs.Li/Li+)の高電位な充電状態においてのみ効果的に現れる(表2及び図2,3参照)。
Formula: Li a Mn s Ni t Co u Mo v O 2 (0 ≦ a ≦ 1.2, s + t + u = 1,0 <s ≦ 0.5,0 <t ≦ 0.5,0.45 ≦ s / ( s + t) ≦ 0.55, 0.45 ≦ t / (s + t) ≦ 0.55, u> 0 , 0.001 ≦ v ≦ 0.01), and a lithium transition metal composite having a layered structure In an electrode using an oxide as a positive electrode active material, the mechanism by which molybdenum is contained in the positive electrode active material to improve the thermal stability in a high-potential charged state is not clear at this time, but molybdenum is included. Thus, in a high-potential charged state, a) the crystal structure of the active material is stabilized, b) the oxidation state of the transition metal composite oxide is changed, and the catalytic activity for the electrolytic decomposition reaction is reduced, c) Effective for electrolyte decomposition reaction on the surface of positive electrode active material Such film is formed is inferred. In any case, the effect of adding molybdenum to the thermal stability is not well accepted in the state of charge of 4.3V (vs.Li/Li +), 4.5V of (vs.Li/Li +) High It appears effectively only in a charged state (see Table 2 and FIGS. 2 and 3).

正極活物質中に含まれるモリブデンの量は、リチウム遷移金属複合酸化物中のMo以外の遷移金属元素の総重量に対して、0.1モル%以上、1.0モル%以下であることが望ましい。モリブデンの量が少な過ぎると、熱的安定性に対する効果が現れず、一方、モリブデンの量が多過ぎると、高電位で充電した場合の正極の放電特性に悪影響を及ぼす可能性がある。   The amount of molybdenum contained in the positive electrode active material is 0.1 mol% or more and 1.0 mol% or less with respect to the total weight of transition metal elements other than Mo in the lithium transition metal composite oxide. desirable. If the amount of molybdenum is too small, an effect on thermal stability does not appear. On the other hand, if the amount of molybdenum is too large, the discharge characteristics of the positive electrode when charged at a high potential may be adversely affected.

本発明によれば、化学式:LiaMnsNitCouMov2(0≦a≦1.2、s+t+u=1、0<s≦0.5、0<t≦0.5、0.45≦s/(s+t)≦0.55、0.45≦t/(s+t)≦0.55、u>0、0.001≦v≦0.01を満たす。)で表され、層状構造を有するリチウム遷移金属複合酸化物を主材とする正極を用いた非水電解質二次電池において、正極の電位が4.5V(vs.Li/Li+)以上になる場合においても、熱的安定性の高い安全性に優れる非水電解質二次電池とすることができる。
According to the present invention, the chemical formula: Li a Mn s Ni t Co u Mo v O 2 (0 ≦ a ≦ 1.2, s + t + u = 1,0 <s ≦ 0.5,0 <t ≦ 0.5,0 .45 ≦ s / (s + t) ≦ 0.55, 0.45 ≦ t / (s + t) ≦ 0.55, u> 0 , 0.001 ≦ v ≦ 0.01. In a non-aqueous electrolyte secondary battery using a positive electrode mainly composed of a lithium transition metal composite oxide having a thermal stability even when the potential of the positive electrode is 4.5 V (vs. Li / Li + ) or higher. It can be set as the nonaqueous electrolyte secondary battery excellent in safety | security.

従って、充電電圧を上げて放電容量を高め、かつ熱的安性の高い非水電解質二次電池とすることができる。   Therefore, it is possible to increase the charge voltage to increase the discharge capacity and to provide a non-aqueous electrolyte secondary battery with high thermal safety.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明は下記実施例により何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail on the basis of examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention. is there.

以下に記載した方法により、三電極式ビーカーセルを作製し、それを充電して、充電状態における電極の熱的安定性を評価した。   A three-electrode beaker cell was prepared by the method described below, charged, and the thermal stability of the electrode in the charged state was evaluated.

<実験1>
(実施例1)
〔正極活物質の作製〕
LiOHと、Mn0.33Ni0.33Co0.34(OH)2で表される共沈水酸化物と、MoO2を、Liと、Mo以外の遷移金属と、Moのモル比が1:1:0.01になるように、石川式らいかい乳鉢にて混合した後、空気雰囲気中にて1000℃で20時間熱処理後に粉砕し、平均粒子径が約10μmのLiMn0.33Ni0.33Co0.34Mo0.012で表されるリチウム遷移金属複合酸化物を得た。
<Experiment 1>
(Example 1)
[Preparation of positive electrode active material]
The molar ratio of LiOH, coprecipitated hydroxide represented by Mn 0.33 Ni 0.33 Co 0.34 (OH) 2 , MoO 2 , Li, transition metals other than Mo, and Mo is 1: 1: 0.01. As shown, the mixture was mixed in an Ishikawa type mortar, pulverized after heat treatment at 1000 ° C. for 20 hours in an air atmosphere, and expressed as LiMn 0.33 Ni 0.33 Co 0.34 Mo 0.01 O 2 having an average particle size of about 10 μm. Lithium transition metal composite oxide was obtained.

〔作用極の作製〕
このようにして得た正極活物質に、導電剤として炭素と、結着剤としてポリフッ化ビニリデンと、分散媒としてのN−メチル−2−ピロリドンを、活物質と導電剤と結着剤の重量比が92:5:3の比率になるようにして加えた後に混練して、正極スラリーを作製した。作製したスラリーを集電体としてのアルミニウム箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、集電タブを取り付けることで、作用極を作製した。
(Production of working electrode)
In the positive electrode active material thus obtained, carbon as a conductive agent, polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone as a dispersion medium, the weight of the active material, the conductive agent, and the binder. The mixture was added so that the ratio was 92: 5: 3 and then kneaded to prepare a positive electrode slurry. The produced slurry was applied on an aluminum foil as a current collector, dried, then rolled using a rolling roller, and a current collecting tab was attached to produce a working electrode.

〔電解液の作製〕
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比3:7で混合した溶媒に対し、ヘキサフルオロリン酸リチウム(LiPF6)を濃度が1モル/リットルとなるように溶解して、電解液を作製した。
(Preparation of electrolyte)
In a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 3: 7, lithium hexafluorophosphate (LiPF 6 ) is dissolved so as to have a concentration of 1 mol / liter, An electrolytic solution was prepared.

〔三電極式ビーカーセルの作製〕
Ar(アルゴン)雰囲気下のグローブボックス中にて、図1に示す三電極式ビーカーセルを作製した。なお、対極及び参照極としてはリチウム金属を用いた。図1に示すように、作製した三電極式ビーカーセルにおいては、電解液4中に作用極1、対極2、及び参照極3が浸漬されている。
[Production of three-electrode beaker cell]
A three-electrode beaker cell shown in FIG. 1 was produced in a glove box under an Ar (argon) atmosphere. Note that lithium metal was used as the counter electrode and the reference electrode. As shown in FIG. 1, in the manufactured three-electrode beaker cell, the working electrode 1, the counter electrode 2, and the reference electrode 3 are immersed in the electrolytic solution 4.

〔初期充放電特性の評価〕
作製した三電極式ビーカーセルを、室温にて、0.75mA/cm2(約0.3C)の定電流で、作用極の電位が4.5V(vs.Li/Li+)に達するまで充電し、さらに、0.25mA/cm2(約0.1C)の定電流で、電位が4.5V(vs.Li/Li+)に達するまで充電した後、0.75mA/cm2(約0.3C)の定電流で、電位が2.75V(vs.Li/Li+)に達するまで放電することにより、初期の充放電特性を評価した。
[Evaluation of initial charge / discharge characteristics]
The prepared three-electrode beaker cell is charged at room temperature at a constant current of 0.75 mA / cm 2 (about 0.3 C) until the working electrode potential reaches 4.5 V (vs. Li / Li + ). Furthermore, after charging until the potential reaches 4.5 V (vs. Li / Li + ) at a constant current of 0.25 mA / cm 2 (about 0.1 C), 0.75 mA / cm 2 (about 0 The initial charge and discharge characteristics were evaluated by discharging until the potential reached 2.75 V (vs. Li / Li + ) at a constant current of .3C).

〔熱的安定性の評価〕
初期充放電特性を評価した後、室温にて、0.75mA/cm2(約0.3C)の定電流で、作用極の電位が4.5V(vs.Li/Li+)に達するまで充電し、さらに、0.25mA/cm2(約0.1C)の定電流で、電位が4.5V(vs.Li/Li+)に達するまで充電した。充電後、ビーカーセルを解体し、作用極をEMC中で洗浄した後、真空乾燥した。この作用極の一部を削りとったもの3mgとEC2mgとをアルミニウム製のDSCセルに入れてDSCサンプルを作製した。
[Evaluation of thermal stability]
After evaluating the initial charge / discharge characteristics, charging was performed at room temperature at a constant current of 0.75 mA / cm 2 (about 0.3 C) until the working electrode potential reached 4.5 V (vs. Li / Li + ). Further, the battery was charged with a constant current of 0.25 mA / cm 2 (about 0.1 C) until the potential reached 4.5 V (vs. Li / Li + ). After charging, the beaker cell was disassembled, the working electrode was washed in EMC, and then vacuum dried. A DSC sample was prepared by putting 3 mg of a part of this working electrode and 2 mg of EC into an aluminum DSC cell.

DSC測定は、リファレンスをアルミナとして、作製したサンプルを室温より昇温速度5℃/分で350℃まで行った。   The DSC measurement was performed from room temperature to 350 ° C. at a rate of temperature increase of 5 ° C./min using alumina as a reference.

(実施例2)
正極活物質の作製において、LiOHと、Mn0.33Ni0.33Co0.34(OH)2で表される共沈水酸化物と、MoO2を、Liと、Mo以外の遷移金属と、Moのモル比が1:1:0.005となるように、石川式らいかい乳鉢にて混合した以外は、実施例1と同様にして三電極式ビーカーセルを作製した。
(Example 2)
In the production of the positive electrode active material, the molar ratio of LiOH, a coprecipitated hydroxide represented by Mn 0.33 Ni 0.33 Co 0.34 (OH) 2 , MoO 2 , Li, a transition metal other than Mo, and Mo is 1 A three-electrode beaker cell was prepared in the same manner as in Example 1 except that the mixture was mixed in an Ishikawa-style raid mortar so that the ratio was 1: 0.005.

初期充放電特性、熱的安定性は、実施例1と同様にして評価した。   Initial charge / discharge characteristics and thermal stability were evaluated in the same manner as in Example 1.

(比較例1)
正極活物質の作製において、LiOHと、Mn0.33Ni0.33Co0.34(OH)2で表される共沈水酸化物を、Liと遷移金属全体のモル比が1:1になるようにして、石川式らいかい乳鉢にて混合した以外は、実施例1と同様にして三電極式ビーカーセルを作製した。
(Comparative Example 1)
In the production of the positive electrode active material, LiOH and a coprecipitated hydroxide represented by Mn 0.33 Ni 0.33 Co 0.34 (OH) 2 are used so that the molar ratio of Li to the whole transition metal is 1: 1, A three-electrode beaker cell was produced in the same manner as in Example 1 except that the mixture was mixed in a rough mortar.

初期充放電特性、熱的安定性は、実施例1と同様にして評価した。   Initial charge / discharge characteristics and thermal stability were evaluated in the same manner as in Example 1.

(比較例2)
実施例1と同様にして三電極式ビーカーセルを作製した。
(Comparative Example 2)
A three-electrode beaker cell was produced in the same manner as in Example 1.

初期充放電特性、熱的安定性の評価において、作用極の充電電位を4.3V(vs.Li/Li+)としたこと以外は、実施例1と同様にして評価した。 The initial charge / discharge characteristics and thermal stability were evaluated in the same manner as in Example 1 except that the charging potential of the working electrode was 4.3 V (vs. Li / Li + ).

(比較例3)
実施例2と同様にして三電極式ビーカーセルを作製した。
(Comparative Example 3)
A three-electrode beaker cell was produced in the same manner as in Example 2.

初期充放電特性、熱的安定性の評価において、作用極の充電電位を4.3V(vs.Li/Li+)としたこと以外は、実施例1と同様にして評価した。 The initial charge / discharge characteristics and thermal stability were evaluated in the same manner as in Example 1 except that the charging potential of the working electrode was 4.3 V (vs. Li / Li + ).

(比較例4)
比較例1と同様にして三電極式ビーカーセルを作製した。
(Comparative Example 4)
A three-electrode beaker cell was produced in the same manner as in Comparative Example 1.

初期充放電特性、熱的安定性の評価において、作用極の充電電位を4.3V(vs.Li/Li+)としたこと以外は、実施例1と同様にして評価した。 The initial charge / discharge characteristics and thermal stability were evaluated in the same manner as in Example 1 except that the charging potential of the working electrode was 4.3 V (vs. Li / Li + ).

(比較例5)
正極活物質として、LiCoO2を用いること以外は、実施例1と同様にして三電極式ビーカーセルを作製した。LiCoO2は、LiOHと、Co(OH)2とを、LiとCoのモル比が1:1になるようにして、石川式らいかい乳鉢にて混合した後、空気雰囲気中にて1000℃で20時間熱処理後に粉砕して得た。
(Comparative Example 5)
A three-electrode beaker cell was produced in the same manner as in Example 1 except that LiCoO 2 was used as the positive electrode active material. LiCoO 2 is prepared by mixing LiOH and Co (OH) 2 in a Ishikawa type mortar with a molar ratio of Li and Co of 1: 1, and then in an air atmosphere at 1000 ° C. Obtained by pulverization after heat treatment for 20 hours.

初期充放電特性、熱的安定性の評価において、作用極の充電電位を4.3V(vs.Li/Li+)としたこと以外は、比較例1と同様にして評価した。 The initial charge / discharge characteristics and thermal stability were evaluated in the same manner as in Comparative Example 1 except that the charge potential of the working electrode was 4.3 V (vs. Li / Li + ).

上記のようにして作製した実施例1,2の三電極式ビーカーセルA1,A2及び比較例1〜5の三電極式ビーカーセルX1〜X5の初期充放電特性、及びDSCにより熱的安定性を評価した結果を表1,2に示した。また、表1には、各実施例及び各比較例で作製した正極材料の比表面積も併せて記載した。なお、表2中の発熱ピーク温度とは測定温度領域において最大発熱量を示す時の温度である。また、図2にビーカーセルX2〜X5のDSC測定結果を示し、図3にビーカーセルA1,A2及びビーカーセルX1,X5のDSC測定結果を示す。   The initial charge and discharge characteristics of the three-electrode beaker cells A1 and A2 of Examples 1 and 2 and the three-electrode beaker cells X1 to X5 of Comparative Examples 1 to 5 manufactured as described above, and thermal stability by DSC. The evaluation results are shown in Tables 1 and 2. Table 1 also shows the specific surface areas of the positive electrode materials produced in each example and each comparative example. In addition, the exothermic peak temperature in Table 2 is a temperature when the maximum calorific value is shown in the measurement temperature region. 2 shows DSC measurement results of beaker cells X2 to X5, and FIG. 3 shows DSC measurement results of beaker cells A1 and A2 and beaker cells X1 and X5.

Figure 0004785482
Figure 0004785482

Figure 0004785482
Figure 0004785482

表1から明らかなように、充電終止電位を4.3V(vs.Li/Li+)から4.5V(vs.Li/Li+)とすることにより、初期放電容量が15%以上向上していることがわかる。また、モリブデン(Mo)の添加量について、充電終止電位4.3V(vs.Li/Li+)ではその影響がみられないが、充電終止電位4.5V(vs.Li/Li+)では、その添加量の増加に伴い、初期放電容量の若干の低下が確認されるため、その添加量vが0.01<vとなる領域ではさらに放電容量が低下すると考えられる。従って、添加量vの範囲としては0.001≦v≦0.01を満たすことが望ましい。 As is apparent from Table 1, the initial discharge capacity is improved by 15% or more by changing the charge end potential from 4.3 V (vs. Li / Li + ) to 4.5 V (vs. Li / Li + ). I understand that. Further, the added amount of molybdenum (Mo), but is not observed its effect in the charging cutoff potential 4.3V (vs.Li/Li +), the charging end potential 4.5V (vs.Li/Li +), A slight decrease in the initial discharge capacity is confirmed as the addition amount increases, and it is considered that the discharge capacity further decreases in the region where the addition amount v is 0.01 <v. Accordingly, it is desirable that the range of the addition amount v satisfies 0.001 ≦ v ≦ 0.01.

さらに、表2及び図2,3から明らかなように、LiMn0.33Ni0.33Co0.342の熱的安定性は、4.3V(vs.Li/Li+)の充電終止では、モリブデンの添加によって発熱ピーク強度は低下するが、発熱ピーク温度は低温側にシフトしている。特許文献4では、Niを主体とするNi−Mn−Coリチウム含有遷移金属酸化物にモリブデン(Mo)を添加することが記載されており、該先行技術においても比較例2〜4と同様、ピーク強度は低下しているものの、発熱ピーク温度が低温側にシフトするという傾向を示している。従って、従来の充電電圧である4.2V(正極電位で4.3V(vs.Li/Li+))を充電電圧とする電池では十分な熱的安定性の改善となっていなかった。一方、電圧を4.4V以上に設定する本発明の電池においては、モリブデンの含有量が増すのに伴い発熱ピーク温度・発熱ピーク強度ともに熱的安定性の改善の傾向を示し、電池としての熱的安定性が向上することがわかった。このように、LiMn0.33Ni0.33Co0.342へのモリブデンの添加は、従来の充電電圧よりも高くした(正極の電位で4.5V(vs.Li/Li+)以上)場合にのみ効果的に現れることがわかる。 Further, as is clear from Table 2 and FIGS. 2 and 3, the thermal stability of LiMn 0.33 Ni 0.33 Co 0.34 O 2 is increased by adding molybdenum at the end of charging of 4.3 V (vs. Li / Li + ). Although the exothermic peak intensity decreases, the exothermic peak temperature is shifted to the low temperature side. Patent Document 4 describes that molybdenum (Mo) is added to a Ni—Mn—Co lithium-containing transition metal oxide mainly composed of Ni. In the prior art, as in Comparative Examples 2 to 4, the peak is obtained. Although the strength is decreased, the exothermic peak temperature tends to shift to a low temperature side. Therefore, a battery having a conventional charging voltage of 4.2 V (4.3 V at the positive electrode potential (vs. Li / Li + )) has not been sufficiently improved in thermal stability. On the other hand, in the battery of the present invention in which the voltage is set to 4.4 V or more, the heat stability as a battery shows a tendency to improve the thermal stability of both the exothermic peak temperature and the exothermic peak intensity as the molybdenum content increases. It was found that the mechanical stability was improved. Thus, the addition of molybdenum to LiMn 0.33 Ni 0.33 Co 0.34 O 2 is effective only when the charge voltage is higher than the conventional charge voltage (4.5 V (vs. Li / Li + ) or more at the positive electrode potential). It can be seen that

上記実施例では、ビーカーセルにより本発明の正極材料を評価しているが、本発明の非水電解質二次電池を作製する場合には、正極の電位が4.5V(vs.Li/Li+)に達するまで充電した際の正極と負極の対向充電容量比が、1.0〜1.15となるように正極容量及び負極容量が設計され、非水電解質二次電池が作製される。 In the above examples, the positive electrode material of the present invention is evaluated by a beaker cell. However, when the nonaqueous electrolyte secondary battery of the present invention is manufactured, the potential of the positive electrode is 4.5 V (vs. Li / Li + ), The positive electrode capacity and the negative electrode capacity are designed so that the ratio of the opposing charge capacity of the positive electrode to the negative electrode when it is charged to reach 1.0 to 1.15, and a nonaqueous electrolyte secondary battery is manufactured.

本発明の実施例において作製した三電極式ビーカーセルを示す模式図。The schematic diagram which shows the three-electrode-type beaker cell produced in the Example of this invention. ビーカーセルX2〜X5のDSC測定結果を示す図。The figure which shows the DSC measurement result of beaker cell X2-X5. ビーカーセルA1,A2及びビーカーセルX1,5のDSC測定結果を示す図。The figure which shows the DSC measurement result of beaker cell A1, A2 and beaker cell X1,5.

符号の説明Explanation of symbols

1…作用極
2…対極
3…参照極
4…電解液
DESCRIPTION OF SYMBOLS 1 ... Working electrode 2 ... Counter electrode 3 ... Reference electrode 4 ... Electrolyte

Claims (4)

リチウムイオンを吸蔵・放出可能な材料を用いた正極及び負極と、非水電解質とを備え、かつ前記正極の電位が4.5V(vs.Li/Li+)に達するまで充電した際の正極と負極の対向充電容量比が1.0〜1.15となるように構成された非水電解質二次電池において、
前記正極活物質の主材が化学式:LiaMnsNitCouMov2(0≦a≦1.2、s+t+u=1、0<s≦0.5、0<t≦0.5、0.45≦s/(s+t)≦0.55、0.45≦t/(s+t)≦0.55、u>0、0.001≦v≦0.01を満たす。)で表されるリチウム遷移金属複合酸化物であることを特徴とする非水電解質二次電池。
A positive electrode and a negative electrode using a material capable of inserting and extracting lithium ions, a non-aqueous electrolyte, and a positive electrode when charged until the potential of the positive electrode reaches 4.5 V (vs. Li / Li + ); In the nonaqueous electrolyte secondary battery configured such that the counter charge capacity ratio of the negative electrode is 1.0 to 1.15,
The positive active main material is the chemical formula of the substance: Li a Mn s Ni t Co u Mo v O 2 (0 ≦ a ≦ 1.2, s + t + u = 1,0 <s ≦ 0.5,0 <t ≦ 0.5 0.45 ≦ s / (s + t) ≦ 0.55, 0.45 ≦ t / (s + t) ≦ 0.55, u> 0 , 0.001 ≦ v ≦ 0.01. A nonaqueous electrolyte secondary battery comprising a lithium transition metal composite oxide.
前記負極の活物質が炭素材料であり、前記正極の電位が4.5V(vs.Li/Li+)となったときの電池電圧が4.4Vであることを特徴とする請求項1に記載の非水電解質二次電池。 The active material of the negative electrode is a carbon material, and the battery voltage when the potential of the positive electrode is 4.5 V (vs. Li / Li + ) is 4.4 V. Non-aqueous electrolyte secondary battery. 前記リチウム遷移金属複合酸化物の比表面積が0.1〜2.0m2/gであることを特徴とする請求項1または2に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium transition metal composite oxide has a specific surface area of 0.1 to 2.0 m 2 / g. 前記正極中に、導電剤として炭素材料が含まれており、該炭素材料の含有量が、正極活物質と導電剤と結着剤の合計に対して5重量%以下であることを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池。   The positive electrode contains a carbon material as a conductive agent, and the content of the carbon material is 5% by weight or less based on the total of the positive electrode active material, the conductive agent, and the binder. The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3.
JP2005281955A 2005-09-28 2005-09-28 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4785482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281955A JP4785482B2 (en) 2005-09-28 2005-09-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281955A JP4785482B2 (en) 2005-09-28 2005-09-28 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007095443A JP2007095443A (en) 2007-04-12
JP4785482B2 true JP4785482B2 (en) 2011-10-05

Family

ID=37980894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281955A Expired - Fee Related JP4785482B2 (en) 2005-09-28 2005-09-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4785482B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915227B2 (en) * 2006-12-07 2012-04-11 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
KR101473322B1 (en) 2008-02-28 2014-12-24 삼성에스디아이 주식회사 Cathode active material and cathode and lithium battery containing the material
KR101093705B1 (en) * 2009-04-29 2011-12-19 삼성에스디아이 주식회사 Rechargeable lithium battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
KR20120061943A (en) 2009-12-22 2012-06-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
CN102792496B (en) 2010-02-05 2016-03-23 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
JP5313392B2 (en) 2010-03-04 2013-10-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN102754255B (en) * 2010-03-04 2014-11-05 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US20130143121A1 (en) 2010-12-03 2013-06-06 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material For Lithium-Ion Battery, A Positive Electrode For Lithium-Ion Battery, And Lithium-Ion Battery
JP5808316B2 (en) 2011-01-21 2015-11-10 Jx日鉱日石金属株式会社 Method for producing positive electrode active material for lithium ion battery
JP2012195126A (en) * 2011-03-16 2012-10-11 Nissan Motor Co Ltd Pretreatment method of lithium ion secondary battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
EP2693536B1 (en) 2011-03-31 2017-05-03 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
JP6072689B2 (en) * 2011-07-29 2017-02-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015111491A (en) * 2012-03-23 2015-06-18 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2014021014A1 (en) 2012-08-02 2014-02-06 日産自動車株式会社 Nonaqueous organic electrolyte secondary cell
KR101729824B1 (en) 2012-09-28 2017-04-24 제이엑스금속주식회사 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
US10276868B2 (en) 2015-12-11 2019-04-30 Denso Corporation Non-aqueous electrolyte rechargeable battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075367A (en) * 2000-09-04 2002-03-15 Mitsui Chemicals Inc Positive electrode active material for lithium battery, manufacturing method for the active material, and secondary battery using it
JP4082214B2 (en) * 2000-11-20 2008-04-30 中央電気工業株式会社 Nonaqueous electrolyte secondary battery and its positive electrode active material
JP4297704B2 (en) * 2003-03-14 2009-07-15 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4297709B2 (en) * 2003-03-25 2009-07-15 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5036121B2 (en) * 2003-08-08 2012-09-26 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2007095443A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4785482B2 (en) Nonaqueous electrolyte secondary battery
JP5399188B2 (en) Nonaqueous electrolyte secondary battery
JP4660164B2 (en) Nonaqueous electrolyte secondary battery
JP4721729B2 (en) Nonaqueous electrolyte secondary battery
KR100990252B1 (en) Non-Aqueous Electrolyte Secondary Battery
JP5116329B2 (en) Nonaqueous electrolyte secondary battery
JP2008243810A (en) Nonaqueous electrolyte secondary battery
JP4245562B2 (en) Nonaqueous electrolyte secondary battery
JP4424949B2 (en) Nonaqueous electrolyte secondary battery
KR101255853B1 (en) Nonaqueous electrolyte secondary battery
JP2005340056A (en) Nonaqueous electrolyte secondary battery
JP2005050779A (en) Nonaqueous electrolytic solution secondary battery
WO2014156024A1 (en) Nonaqueous electrolyte secondary battery
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP4297709B2 (en) Nonaqueous electrolyte secondary battery
US10873085B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2004281158A (en) Nonaqueous electrolyte secondary battery
JP2009266791A (en) Nonaqueous electrolyte secondary battery
JP5089097B2 (en) Non-aqueous electrolyte secondary battery and charging / discharging method thereof
JP2004158352A (en) Nonaqueous electrolyte secondary battery
JP2010177207A (en) Non aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees