JPS60149164A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60149164A
JPS60149164A JP486284A JP486284A JPS60149164A JP S60149164 A JPS60149164 A JP S60149164A JP 486284 A JP486284 A JP 486284A JP 486284 A JP486284 A JP 486284A JP S60149164 A JPS60149164 A JP S60149164A
Authority
JP
Japan
Prior art keywords
layer
region
layers
type
scr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP486284A
Other languages
Japanese (ja)
Other versions
JPH0697692B2 (en
Inventor
Shigenori Yakushiji
薬師寺 茂則
Susumu Yasaka
家坂 進
Tsukasa Hattori
服部 宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59004862A priority Critical patent/JPH0697692B2/en
Publication of JPS60149164A publication Critical patent/JPS60149164A/en
Publication of JPH0697692B2 publication Critical patent/JPH0697692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7404Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device
    • H01L29/742Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device the device being a field effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/111Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors
    • H01L31/1113Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors the device being a photothyristor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To obtain the SCR device of high sensitivity by a method wherein a layer of the same conductivity type separated from the gate connection layer of an SCR of short-circuit emitter structure is provided with an MOS gate signal supply part in the neighborhood of the gate connection layer of an MOS structural photo transistor. CONSTITUTION:PB layers 41-44 are formed in an SCR NB layer 3, and a P- layer 11 is formed between the layers 41 and 43. NE layers 51 and 52 and a short-circuit emitter cathode 13 are formed in the layer 41. The photo transistor 19 of MOS structure 18 having an electrode 17 on NE layers 14 and 15 and an insulation film 16 is formed in the layer 42. Then, the layers 15 and 42 are short-circuited with an electrode 20 and connected as required, and the MOS gate signal supply part 21 is made of the layers 11, 41, and 43. When the terminal voltage VAK is less than a constant value VL determined by the interval l of the layer 11, on application of photo trigger signals to the device 19, a gate current flows through the layer 41 and the SCR ignites. When the VAK becomes more than the threshold value VT of the device 19, the layer 14 is short-circuited with the layer 42 via a layer 15 and electrode 20, and then does not ignite because of an supply of current to the layer 41. With this construction, in spite of a large current and a high withstand voltage, the SCR of small size and high sensitivity can be obtained with good yield.

Description

【発明の詳細な説明】 「発明の技術分野」 この発明は、例えばザイリスタと該り゛イリスタのグー
1〜制御素子とが同一半導体基板内にしノリシックに形
成され−C成る複合型の半導体装置に関し、特に、大電
流且つ高面]圧であるにb 7Jrかわらず小型且つ先
高感度であり、しかも、従来からの製造技術によって高
い歩留りで製造りることのてぎる大電力高感度の半導体
装置に関りるらので′ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a composite semiconductor device in which, for example, a Zyristor and a control element of the Zyristor are formed on the same semiconductor substrate in a nonlithic manner. In particular, a high-power, high-sensitivity semiconductor device that is small and highly sensitive despite its large current and high surface pressure, and can be manufactured with high yield using conventional manufacturing technology. There are many people involved in this.

「発明の技術的背量」 最近、ザイリスタのゲート・カソード間にMO8構造を
設け、このMaSIM造を利用してゲート・カソード間
を短絡することによりトリガー機能を制御する方式の電
力用半導体装置が提案されている。
``Technical weight of the invention'' Recently, a power semiconductor device has been developed in which a MO8 structure is provided between the gate and cathode of a Zyristor, and the trigger function is controlled by short-circuiting the gate and cathode using this MaSIM structure. Proposed.

第1図はそのようなトリガー制御方式の電力用半導体装
置の一例である(特開昭 58−105572号公報参
照)。 同図において、1は半導体基板、2は該基板1
の一方の主面に形成されたP型のアノード領域、3は該
基板1の他方の主面を形成しているN型ベース領域、4
はゲート接続領域であるP型ベース領域、5はP型ベー
ス領域4中に形成されたN型のカソード領域ひある。
FIG. 1 shows an example of a power semiconductor device using such a trigger control method (see Japanese Patent Application Laid-Open No. 105572/1983). In the figure, 1 is a semiconductor substrate, 2 is the substrate 1
a P-type anode region formed on one main surface of the substrate 1; 3 an N-type base region forming the other main surface of the substrate 1;
5 is a P-type base region which is a gate connection region, and 5 is an N-type cathode region formed in the P-type base region 4.

N型のカソード領域5の周囲にはP型ベース領域4を隔
てて環状にN型領域6が形成され、カソード領域5どN
型領域6とに跨るように両領域5゜6間のP型ベース領
域4の表面には絶縁膜7と電極8どが設けられてJ3す
、該絶縁II! 7ど電極8とによつ(MO3構造9が
形成されている。MO8構造9に対してバイアスを供給
するためにP型ベース領域4から離れた位置にはP型領
域10が形成され、該P型領域10とMO3構造9の電
極8どが導体を介して電気的に接続され−Cいる。
An annular N-type region 6 is formed around the N-type cathode region 5 with the P-type base region 4 in between.
An insulating film 7, an electrode 8, etc. are provided on the surface of the P-type base region 4 between both regions 5°6 so as to straddle the mold region 6. A MO3 structure 9 is formed between each electrode 8 and a P-type region 10 at a position away from the P-type base region 4 in order to supply a bias to the MO8 structure 9. The P-type region 10 and the electrode 8 of the MO3 structure 9 are electrically connected via a conductor.

前記の如き偶成の公知の半導体装置はゼロクロス機能を
有するSSR用素子としで開発されたものであり、MO
8構造9によりトリガー機能を抑制できることを特徴と
する。 すなわち前記構成においてアノード・カソード
間電圧VAKがP型領域10の位置によって決まる電圧
VAKc以上になるど、MO8構造部9にJ3いては絶
縁膜7の下方のP型ベース領域4に発生したN型チャン
ネルを介してカソード領域5とN型領域6どが電気的に
接続されるため最終的にカソード領域5ど1〕型ベース
領域4とか短絡され、その結果、前記Vxc以上のアノ
ード・カソード間電圧では1〜リガ一機能が抑制される
The above-mentioned well-known semiconductor device was developed as an SSR element having a zero-crossing function, and is
8 structure 9 allows the trigger function to be suppressed. That is, in the above structure, when the anode-cathode voltage VAK exceeds the voltage VAKc determined by the position of the P-type region 10, the N-type Since the cathode region 5 and the N-type region 6 are electrically connected through the channel, the cathode region 5 and the N-type base region 4 are ultimately short-circuited, and as a result, the anode-cathode voltage is higher than the above-mentioned Vxc. In this case, 1 to 1 function is suppressed.

[背景技術の問題点] 前記の如き公知の半導体装置はゼロクロス機能を有する
高感度素子として開発されたものであり、高圧大電流の
スイッチング用素子としでは適していない。
[Problems with Background Art] The above-mentioned known semiconductor devices were developed as highly sensitive elements having a zero-crossing function, and are not suitable as high-voltage, large-current switching elements.

一般に電力用半導体装Uの設計におい−Cは、素子の大
電流化及び高耐圧化のほか、スイッチング機能の高感度
化及び製造の容易さと製造歩留りを一定水準以上に維持
できること等の諸点を考慮しなければならないが、第1
図の如き半導体装置の大電流化と高耐圧化を図ろうとす
る場合には以下の如き問題が生じてくる。
In general, when designing a power semiconductor device U, -C takes into account various points such as increasing the current and withstand voltage of the device, as well as increasing the sensitivity of the switching function, ease of manufacturing, and maintaining manufacturing yield above a certain level. The first thing you have to do is
When attempting to increase the current and withstand voltage of a semiconductor device as shown in the figure, the following problems arise.

■ 素子を大電流化するためには素子面積を大型化しな
りればならないが第1図の素子構造においてはカン−に
とゲートがM OS 4M造によりシャントされ′(い
るため素子を大型化した場合、電流集中を避りるためM
O8M?#造のチャンネル「[]も著しく大きくなる。
■ In order to increase the current of the device, the device area must be increased, but in the device structure shown in Figure 1, the can and gate are shunted by the MOS 4M structure, so it is difficult to make the device large. In order to avoid current concentration, M
O8M? #Zuko's channel ``[] will also become noticeably larger.

 しかし、ペレッ1−サイズには限界があるため、限ら
れたベーン1〜サイズ内でMOSのチャンネル11]を
大きくするには従来よりも精密な象子形成技術を必要と
する。 このため、第1図の如き構造の半導体装置を大
電流化すると製造歩留りが著しく低下する恐れがあった
。 また、素子面積を増大すると、接合容量も増大し、
dv/dtT#!Jiも低下する等の問題があった。
However, since there is a limit to the size of the pellet 1, a more precise inlay forming technique than before is required to enlarge the MOS channel 11 within the limited size of the vane 1. For this reason, when a semiconductor device having a structure as shown in FIG. 1 is made to carry a large current, there is a possibility that the manufacturing yield will be significantly lowered. In addition, increasing the element area also increases the junction capacitance.
dv/dtT#! There were problems such as a decrease in Ji.

■ 一般にミノ〕用半導体装置は光トリガできるように
構成されていることが望ましいが、第1図の半導体装置
を高耐圧化且つ大電流化して大電力用の半導体装置にし
た場合、以下の如き理由から光1〜リガに対する感度低
下が生じるため、入電ツノ用の半導体装置とし”(適ざ
ないものになる。 タなわら、第1図の半導体装置を高
耐圧化1−る場合、各拡散領域の耐圧を高めるためにj
、り深い拡散を必要どするが、各拡散領域の拡散深さが
大きくなるど光照射を行った際に生り゛る有効光電流が
少くなるため、光トリガに対する感度低下をto <こ
とになる。 (■で述べたように第1図の半導体装置を
大電流化した場合、大きなゲート電流を必要とづること
になるが、高耐圧化するど光1−リガを行う際の有効光
電流が少いため感以が低下することになる。) 従って、このような感度低下を補償り゛るためには従来
、光トリガ用光源とし゛C使用されU 8だLE[)よ
りも高出力の光源を要するが、3T2 Irのどころ、
LEDは現状の出力レベルが精一杯であり、またLED
より高出力の他の光源は消費電力や大きさからSSR用
として不適当であるため、感1食低下を補償することは
不可能である。
■Generally, it is desirable that a semiconductor device for use in microscopy be configured so that it can be triggered by light, but if the semiconductor device shown in Figure 1 is made into a high-power semiconductor device by increasing the withstand voltage and current, the following will occur. For this reason, the sensitivity to light 1 to 1 is lowered, making it unsuitable for use as a semiconductor device for power incoming horns. To increase the withstand voltage of the area
However, as the diffusion depth of each diffusion region increases, the effective photocurrent generated when light is irradiated decreases, so the sensitivity to optical triggers decreases to <<. Become. (As mentioned in ■, if the semiconductor device shown in Figure 1 is made to have a large current, a large gate current will be required. However, if the voltage is increased, the effective photocurrent when performing optical 1-regulation will decrease.) Therefore, in order to compensate for such a decrease in sensitivity, a light source with a higher output than the conventional light source used for the optical trigger than the U8 LE [) is required. However, the place of 3T2 Ir,
The current output level of LED is the best, and
Other light sources with higher output power are unsuitable for SSR due to their power consumption and size, and therefore it is impossible to compensate for the decrease in taste sensation.

[発明の目的] この発明の目的は、前記問題点を解決し、第1図の如き
MO8構造を有するサイリスタを、その光感度を低下さ
せずに高電流化及び高耐圧化させた大電力用の半導体′
Jt&置を提供Jることであり、特に従来の製造技術に
よっても歩留り低下を来さずに製造することのできる高
感度の大電力用半導体装置を提供することである。
[Object of the Invention] The object of the present invention is to solve the above-mentioned problems and to provide a thyristor for high power use having a MO8 structure as shown in FIG. semiconductor′
In particular, it is an object of the present invention to provide a high-sensitivity, high-power semiconductor device that can be manufactured using conventional manufacturing techniques without reducing yield.

[発明の概要] この発明の好適実施例に示される本発明の半導体装置は
、該サイリスタのゲート接続領域から離れた位置の同じ
導電型の領域内に形成されたフォトトランジスタと、該
フォト1〜ランジスタ内に形成されたMO8構造部と、
該ゲート接続領域の近傍に形成されたMOSゲート信号
供給部とを有し、これらの各部が同一半導体基板にモノ
リシック形成されるとどもに該サイリスタのカソードが
ショートエミッタ構造となっていることを特徴とする。
[Summary of the Invention] A semiconductor device of the present invention shown in a preferred embodiment of the present invention includes a phototransistor formed in a region of the same conductivity type at a position away from a gate connection region of the thyristor, an MO8 structure formed within the transistor;
and a MOS gate signal supply section formed near the gate connection region, and each of these sections is monolithically formed on the same semiconductor substrate, and the cathode of the thyristor has a short emitter structure. shall be.

このようなWJ造の半導体装置に(13いては、その1
ノイリスクのゲート回路にフォト1〜ランジスタが設け
られているため比較的低出力の光源によっても光トリガ
することができ、また、拡散深さが大きい高耐圧化した
素子であっても比較的低出力の光源によって光トリガす
ることができる。 しかも、ゼロクロス機能を司るMO
’S構造部が)il−1−ランジスタ内に設(プられて
いるため、第1図の従来装置と同様の高感度をり゛イリ
スタに付!05することができる。
In such a semiconductor device manufactured by WJ (13), Part 1
Because Noirisk's gate circuit is equipped with photo 1~transistors, it can be triggered by a relatively low-output light source, and even with a high-voltage element with a large diffusion depth, the output is relatively low. Can be light triggered by a light source. Moreover, the MO that controls the zero cross function
Since the 'S structure is installed in the il-1 transistor, the same high sensitivity as the conventional device shown in FIG. 1 can be imparted to the il-1 transistor.

また、この発明の半導体装置では1ノイリスタのゲート
回路に)、t lヘトランジスタを設()℃グー(・信
号を増幅しているので、ショーテッドLミッタ構造の素
子でありながら光信号で駆動できる。
In addition, in the semiconductor device of the present invention, a transistor is provided in the gate circuit of the Noiristor (1) and a transistor is provided in the gate circuit () and the signal is amplified. can.

[発明の実施例コ 第2図に本発明の一実施例を示ず。 この実施例では本
発明の半導体装置がプレーす型の複合型サイリスタとし
て構成され“Cいる。
[Embodiment of the Invention An embodiment of the invention is not shown in FIG. In this embodiment, the semiconductor device of the present invention is configured as a composite thyristor of the play type.

第2図において、2は半導体基板1のアノード側主面を
構成するとともにカソード側主面にも露出しているP型
のアノード領域、3は半導体基板1のカソード側主面に
露出しCいるN型ベース領域である。 該N型ベース領
域3内にはカソード側主面に露出するP型頭域41〜4
4及び11が形成されており、そのうちの1個のP型頭
域11を除いて他はサイリスタのP型ベース領域である
In FIG. 2, 2 is a P-type anode region that constitutes the main surface on the anode side of the semiconductor substrate 1 and is also exposed on the main surface on the cathode side, and 3 is a P-type anode region that is exposed on the main surface on the cathode side of the semiconductor substrate 1. This is an N-type base region. Within the N-type base region 3 are P-type head regions 41 to 4 exposed on the main surface on the cathode side.
4 and 11 are formed, except for one P-type head region 11, the others are P-type base regions of the thyristor.

P型ベース領域の一つ41にはカソード側主面に露出す
る二つのN型領域51+ 52が設【プられており、両
N型領域5.1.52とP型ベース領域41とに接触す
るカソード電極12がカソード側主面に設けられ、そこ
にサイリスタカソード部13が形成されている。 この
サイリスタカソード部13は図に見られるようにショー
1へエミッタ構造であり、dv/ dt耐量を高くする
のに好適な構造となっている。
One of the P-type base regions 41 is provided with two N-type regions 51+52 exposed on the main surface on the cathode side, and both N-type regions 5.1.52 and P-type base region 41 are in contact with each other. A cathode electrode 12 is provided on the main surface on the cathode side, and a thyristor cathode portion 13 is formed there. As seen in the figure, this thyristor cathode section 13 has an emitter structure to show 1, and has a structure suitable for increasing the dv/dt withstand capability.

サイリスタカソード部13を構成しているP型ベース領
域41から離れた位置の他のP型ベース領域42内には
二つのN型領域14.15が設けられており、該両N型
領域14及び15どその間のP型ベース領域42とに接
して絶縁層1Gが形成されるとともに該絶縁層16の上
に導体電極17が設りられている。 N型領域14と1
〕型ベース領域42及びN型ベース領域3はフォト1〜
ランジスタ19を形成しており、一方、N型領域14及
び15とその間のP型ベース領域42並びに絶縁層16
と導体電極 17によってM OS構造部18が形成さ
れている。 フJ1〜1−ランジスタ19を形成してい
るN型領域14は図に示されるように導体結線によって
1サイリスタ力ソーF部13の「〕型ベース領域41(
もしくはグー1〜接続領域)に電気的に接続され−Cい
る。 一方、他のN型領域15はその上に設りられた短
絡電極20を介し“UP型ベース領域42(すなわち、
)A1〜トランジスタのベース)に接続されている。
Two N-type regions 14 and 15 are provided in another P-type base region 42 located away from the P-type base region 41 constituting the thyristor cathode portion 13, and both N-type regions 14 and An insulating layer 1G is formed in contact with the P-type base region 42 between the two ends of the insulating layer 15, and a conductor electrode 17 is provided on the insulating layer 16. N-type regions 14 and 1
] The type base region 42 and the N type base region 3 are
On the other hand, the N-type regions 14 and 15 and the P-type base region 42 and the insulating layer 16 therebetween form a transistor 19.
A MOS structure 18 is formed by the conductor electrode 17 and the conductor electrode 17 . The N-type region 14 forming the transistors 19 is connected to the " ]-type base region 41 (
or -C is electrically connected to the connection area). On the other hand, the other N type region 15 is connected to the UP type base region 42 (i.e.,
)A1 to the base of the transistor).

MO8構造部18のグー1−にゼロクロス制御信号を供
給するための附加的なP型頭域11がサイリスタカソー
ド部13のP型ベース領域41゜43.44と他のP型
ベース領域43との中間位置に形成されでおり、該P型
領域11によってMOSゲーグー信号供給部21が構成
されている。
An additional P-type head region 11 for supplying a zero-crossing control signal to the groove 1- of the MO8 structure 18 is located between the P-type base region 41°43.44 of the thyristor cathode portion 13 and the other P-type base region 43. It is formed at an intermediate position, and the P-type region 11 constitutes a MOS game signal supply section 21 .

前記の如き構造の本発明の半導体装置において、7ノー
ドA・カソードに間に電圧を印加し且つ電圧を増大させ
てゆくと、P型ベース領域41のまわりに生じる空乏層
は主としてN型ベース領域3内でアノード側に向って広
がるが、電圧がある値VL (これはP壁領域11とP
型ベース領域41及び43との間隔lによって予め定め
られている値)に達すると、空乏層の外線がP壁領域1
1に達し、電圧がV1以上に上昇するとP壁領域11は
空乏層によって囲まれた状態どなってP壁領域11の電
位は一定値に保たれるJ:うになる。
In the semiconductor device of the present invention having the above-described structure, when a voltage is applied between the 7 node A and the cathode and the voltage is increased, the depletion layer generated around the P-type base region 41 mainly forms in the N-type base region. 3, but the voltage spreads toward the anode side at a certain value VL (this is the P wall region 11 and P
When the outer line of the depletion layer reaches a value predetermined by the distance 1 from the type base regions 41 and 43, the outer line of the depletion layer becomes the P wall region 1.
1 and the voltage rises above V1, the P wall region 11 becomes surrounded by a depletion layer and the potential of the P wall region 11 is maintained at a constant value.

なお、印加電圧V’AにがVしよりも小さい場合には、
P壁領域11の電位はアノード電位と同電位であり、P
壁領域11に電気的に接続しているM OS @造部1
8のグー1〜電位もアノード電位と同電位である。
Note that when the applied voltage V'A is smaller than V,
The potential of the P wall region 11 is the same as the anode potential, and the P wall region 11 has the same potential as the anode potential.
M OS electrically connected to wall area 11 @Zobu 1
The potential of No. 8 is also the same potential as the anode potential.

P壁領域11の電位が一定値以下の時(すなわち、印加
電圧V AxがVt以下である時)にフォトトランジス
タに光トリガ信号りが入射するど、フォトトランジスタ
に光電流が生じ、これが増幅されてエミッタ(N型領域
14)から導体結線を介してサイリスクカソード部13
のP型べ一又領域41に流れ、その結果、サイリスクが
点孤される。
When the potential of the P wall region 11 is below a certain value (that is, when the applied voltage VAx is below Vt), when a phototrigger signal is input to the phototransistor, a photocurrent is generated in the phototransistor, and this is amplified. from the emitter (N-type region 14) to the silice cathode section 13 via a conductor connection.
The P-shaped beam flows into the forked area 41, and as a result, the silisk is ignited.

しかしながら、印加電圧V AK h′XM OS構造
部のしきい値電圧VTを超えると、IVI OS構造品
18のゲート直下のP型ベース領域42にNチャンネル
が形成されるため、N型領域14とN型領域15とが電
気的に結合され、その結果、導体結線を介して[〕型ベ
ース領域41に811合されているN型領域14(すな
わち、エミッタ)はNヂ17ンネル及び他方のN型領域
15並びに短絡電極20を介してフォトトランジスタ1
つのベース領域(すなわち1〕型ベース領域42)に短
絡される。
However, when the applied voltage V AK h' The N-type region 14 (i.e., the emitter), which is electrically coupled to the N-type region 15 and thus joined to the []-type base region 41 via a conductive connection, is connected to the N-channel and the other N-type region 14 (i.e., the emitter). Phototransistor 1 via mold region 15 and shorting electrode 20
It is short-circuited to two base regions (ie, type 1 base region 42).

それ故、この状態において(りなわら、印加電圧VAK
がMO8l!を造品18のしきい値電圧VTを上回って
いる状態)フォトトランジスタ19の光トリガ信号りが
入射しても、フォトトランジスタ19からサイリスタの
P型ベース領域41にはグ1−電流が供給されなくなる
ので1ナイリスタは点孤されない。
Therefore, in this state (Rinawara, the applied voltage VAK
is MO8l! (a state in which the threshold voltage VT of the manufactured product 18 is exceeded) Even if an optical trigger signal is input to the phototransistor 19, the current is not supplied from the phototransistor 19 to the P-type base region 41 of the thyristor. 1 Nyrister will not be fired because it will run out.

従ってフォトトランジスタ19がサイリスタにグー1へ
電流を供給できのはアノード・カソード間電圧V AK
がV1以下の場合である。
Therefore, the phototransistor 19 can supply current to the thyristor 1 at the anode-cathode voltage V AK
is below V1.

ちなみに、この実施例ではV□を5〜6Vにするために
1つ型ベース領域41.43の表面濃度を1x 10”
 / cm3.界面電荷密度をIX 10” / cm
2、またMO8構造部の酸化IIAj;pを1500λ
程度としであるが、この酸化膜の絶縁破壊電圧は120
〜130Vである。 よって、120■前後でバンチス
ルーするような間隔lの値は、N型ベース領域3の濃度
を1.x 10” 7cm3. P型領域の拡散深さを
40μIllどしたどき空乏層は30μm1前後広がる
ので、30μn1以下の1直をとっである。
Incidentally, in this example, in order to make V□ 5 to 6 V, the surface concentration of the single type base region 41.43 is set to 1x 10".
/cm3. Interfacial charge density IX 10”/cm
2. Also, the oxidation IIAj of the MO8 structure; p is 1500λ
As a matter of fact, the dielectric breakdown voltage of this oxide film is 120
~130V. Therefore, the value of the interval l that causes bunch-through at around 120 cm is such that the concentration of the N-type base region 3 is 1. x 10" 7cm3. If the diffusion depth of the P-type region is increased to 40μIll, the depletion layer will expand by about 30μm1, so one line of 30μm or less is taken.

「発明の効果] 本発明の半導体装置におりる特徴及び利点を列禁ずれば
次の通りである。
"Effects of the Invention" The features and advantages of the semiconductor device of the present invention are as follows.

(a >第1図の従来装置面のj:うにサイリスクのグ
ー1−・カソード間にMO3構造部を形成した構成では
、大電流化のためにベレッ1−サイズを大型化した場合
に該M OS構造部のチせンネル巾も著しく大きくしな
【)ればならないが該MO3構造部のチトンネル巾を大
巾に増加させるには素子製作工程で高精度の製造技術を
要り°るため歩留りが著しく低下する危険があった。
(a > j on the conventional device side in Figure 1: In the configuration in which the MO3 structure is formed between the goo 1 and the cathode of the sea urchin, when the size of the beret 1 is increased to increase the current, the M The channel width of the OS structure also has to be significantly increased, but increasing the channel width of the MO3 structure requires high-precision manufacturing technology in the element manufacturing process, which reduces yield. There was a risk of a significant decline.

本発明の半導体装置ではサイリスクカソード部から離れ
た位置のサイリスクP型ベース領域内にフA1〜1ヘラ
ンジスタを設【プるとともに該フォトトランジスタ内に
M OS M4 造品を形成したので、サイリスタの電
流容量を増大さじでも該MO8構造部のチ11ンネルI
11を茗しく増大さける必要がなく、従って、電流容量
の大さな素子を製造する場合にも特別に高精度の製造技
4i1.Jを必要としないので歩留り低下の危険性が全
くない。
In the semiconductor device of the present invention, the thyristor transistors are provided in the thyristor P-type base region located away from the thyristor cathode portion, and the MOS M4 structure is formed in the phototransistor. Channel I of the MO8 structure even if the current capacity is increased
11. Therefore, even when manufacturing an element with a large current capacity, a special high-precision manufacturing technique 4i1. Since J is not required, there is no risk of yield reduction.

b)本発明の半導体装置では、4ノ−イリスタのP型ベ
ース領域内にフォトトランジスタを設け、該フォトトラ
ンジスタから該サイリスタのゲート信号を供給する構成
となっているため、微弱な光1−リガ信号でも増幅され
て確実にサイリスタを1〜リガできる。 従って拡散領
域の深い(すなわち高耐圧の)半導体装置を光トリガ方
式で実現することができ、また、特別に臨出ツノの光源
を使用しなくとも現用のLED等の比較的低出力の光源
で1−リガすることのできる高耐圧半導体装置を実現す
ることができる。
b) In the semiconductor device of the present invention, a phototransistor is provided in the P-type base region of the 4-no-iristor, and the gate signal of the thyristor is supplied from the phototransistor. Even the signal is amplified and the thyristor can be reliably triggered. Therefore, it is possible to realize a semiconductor device with a deep diffusion region (that is, a high breakdown voltage) using an optical trigger method, and it is also possible to realize a semiconductor device with a deep diffusion region (that is, a high breakdown voltage) using a light trigger method. 1- A high breakdown voltage semiconductor device that can be triggered can be realized.

(C)フォトトランジスタの面イ資はサイリスタの電流
容♀とは始lυど無関係に設定でさ゛るうえ、MOS構
造部が該フォトトランジスタ られているので、サイリスタの電流容口が非常に大きく
ても素子面積は小さくてずみ、従って電流容量に比して
小型の半導体装置が提供できる。
(C) The surface capacity of the phototransistor can be set independently of the current capacity of the thyristor, and since the MOS structure is made of the phototransistor, even if the current capacity of the thyristor is very large. The element area can be small, and therefore a semiconductor device can be provided that is small compared to its current capacity.

(d.)フォトトランジスタがυイリスタのP型ベース
領域内に形成されているためフォトトランジスタがサイ
リスタの高電界から遮蔽されており、従ってフォトトラ
ンジスタを高感度になるように形成することができる。
(d.) Since the phototransistor is formed within the P-type base region of the υ iristor, the phototransistor is shielded from the high electric field of the thyristor, and therefore the phototransistor can be formed with high sensitivity.

 それ故に、高感度の半導体装置することができる。Therefore, a highly sensitive semiconductor device can be obtained.

(e)サイリスタのカッ〜ド部にショー1〜エミツタ構
造を採用したので外来ノイズ等によるサイリスタ自身の
原点弧が防止されるとともに、高いdV/dt耐♀が保
証されている。
(e) Since the square emitter structure is adopted for the quad portion of the thyristor, the origin arc of the thyristor itself due to external noise etc. is prevented, and high dV/dt resistance is guaranteed.

(f)MOS構造部におけるしきい値電圧VTを5v以
下に設定すれば点弧に伴う電磁障害をほぼ完全に防止す
ることができる。
(f) By setting the threshold voltage VT in the MOS structure to 5 V or less, electromagnetic interference caused by ignition can be almost completely prevented.

以上のように、この発明によれば、従来装置に内在りる
問題点が解決された、入電流、高耐圧、高ii!j度及
び高歩留りの半導体装置が提供される。
As described above, according to the present invention, the problems inherent in conventional devices are solved, and the input current, high withstand voltage, and high II! A semiconductor device with high efficiency and high yield is provided.

なお、前記実施例では本発明を逆阻止三端子1ノイリス
タに適用した場合のみについて説明したが、本発明は他
の形式の制御素子にも適用できることは明らかである。
In the above embodiments, only the case where the present invention is applied to a reverse blocking three-terminal one-noir resistor has been described, but it is clear that the present invention can be applied to other types of control elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体装置の断面図、第2図は本発明の
一実施例の半導体装置の断面図である。 1・・・半導体基板、 2・・・アノード領域、 3・
・・N型ベース領域、 4・・・P型ベース領域、 5
・・・カソード領域、 6・・・N型領域、″7ー絶縁
膜、8・・・電極、 9・・・M O S JM造、 
10・・・P型領域、11・・・P型領域、 12・・
・カソード領域、13・・・サイリスタカソード部、 
14・・・N型領域、16・・・絶縁層、 17・・・
ゲート電極、18・・・MOS構造部、 19・・・7
711〜1〜ランジスタ、 20・・・短絡電極、 2
1・・・MOSゲート信号供給部、41〜44・・・P
型ベース領域、 51,52・・・カソード領域。
FIG. 1 is a sectional view of a conventional semiconductor device, and FIG. 2 is a sectional view of a semiconductor device according to an embodiment of the present invention. 1... Semiconductor substrate, 2... Anode region, 3.
...N-type base region, 4...P-type base region, 5
...Cathode region, 6...N-type region, ``7-insulating film, 8...electrode, 9...MOS JM construction,
10... P type region, 11... P type region, 12...
- Cathode region, 13... thyristor cathode section,
14... N-type region, 16... Insulating layer, 17...
Gate electrode, 18...MOS structure section, 19...7
711-1-ransistor, 20... short circuit electrode, 2
1...MOS gate signal supply section, 41-44...P
mold base region, 51, 52... cathode region;

Claims (1)

【特許請求の範囲】[Claims] 1rl−いに平行な第−及び第二の主表面を有する第一
導電型の半導体基板と、該基板内に形成されるどどもに
該第−主表面に露出している第二導電型の第1領域と、
該第−領域内に形成されるとともに該第−主表面に露出
している第一導電型の第二領域と、該第二領域の表面に
形成された第一の電極と、該基板内で該第−領域から所
定距離だり離れた位置に形成されるとともに該第−主表
面に露出している第二導電型の第三領域と、該基板内で
該第−領域及び該第三領域から離れた位置に形成される
とともに該第−主表面に露出している第二導電型の第四
領域と、該第四領域内にnいに相隔でて形成されるどど
もに該第−主表面に露出しCいる第一導電型の第五及び
第六領域と、該第五及び第六領域とに跨って形成される
とどもに該第四領域上に配置された絶縁層と、該絶縁層
の上に形成された第二の電極と、該基板の第−若しくは
第二の主表面に形成された第二導電型の第も領域と、該
第し領域の表面に形成された第三の電極どを有し−C成
り、該第−領域と該第五領域とが電気的に接続さ、れる
とともに該第三領域と該第二の電極とが電気的に接続さ
れでいることを特徴とする半導体装置。
a semiconductor substrate of a first conductivity type having first and second main surfaces parallel to each other; a first area;
a second region of the first conductivity type formed in the second region and exposed on the first main surface; a first electrode formed on the surface of the second region; a third region of a second conductivity type formed at a predetermined distance or apart from the first region and exposed on the first main surface; A fourth region of the second conductivity type formed at a distant position and exposed on the second main surface, and a fourth region of the second conductivity type formed at a distance from each other within the fourth region. fifth and sixth regions of the first conductivity type exposed on the surface; an insulating layer formed across the fifth and sixth regions and disposed on the fourth region; a second electrode formed on the insulating layer; a second region of the second conductivity type formed on the first or second main surface of the substrate; and a second region of the second conductivity type formed on the surface of the second region. It has three electrodes, and the third region and the fifth region are electrically connected, and the third region and the second electrode are electrically connected. A semiconductor device characterized by:
JP59004862A 1984-01-17 1984-01-17 Semiconductor device Expired - Lifetime JPH0697692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59004862A JPH0697692B2 (en) 1984-01-17 1984-01-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59004862A JPH0697692B2 (en) 1984-01-17 1984-01-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60149164A true JPS60149164A (en) 1985-08-06
JPH0697692B2 JPH0697692B2 (en) 1994-11-30

Family

ID=11595481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59004862A Expired - Lifetime JPH0697692B2 (en) 1984-01-17 1984-01-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0697692B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262370A2 (en) * 1986-09-27 1988-04-06 Kabushiki Kaisha Toshiba Semiconductor device comprising a MOS transistor, and method of making the same
US4956690A (en) * 1987-01-26 1990-09-11 Kabushiki Kaisha Toshiba Zero crossing type thyristor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151077A (en) * 1974-05-23 1975-12-04
JPS5599773A (en) * 1979-01-25 1980-07-30 Nec Corp Silicon control rectifier device
JPS58105572A (en) * 1981-12-18 1983-06-23 Sanken Electric Co Ltd Zero cross photo thyristor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151077A (en) * 1974-05-23 1975-12-04
JPS5599773A (en) * 1979-01-25 1980-07-30 Nec Corp Silicon control rectifier device
JPS58105572A (en) * 1981-12-18 1983-06-23 Sanken Electric Co Ltd Zero cross photo thyristor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262370A2 (en) * 1986-09-27 1988-04-06 Kabushiki Kaisha Toshiba Semiconductor device comprising a MOS transistor, and method of making the same
US4956690A (en) * 1987-01-26 1990-09-11 Kabushiki Kaisha Toshiba Zero crossing type thyristor

Also Published As

Publication number Publication date
JPH0697692B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US4400711A (en) Integrated circuit protection device
JPS62115765A (en) Semiconductor device
JPS60149164A (en) Semiconductor device
JPS609671B2 (en) Light-ignited thyristor
JPH0138382B2 (en)
US3648129A (en) Insulated gate field effect transistor with integrated safety diode
JPH0154865B2 (en)
JPS637471B2 (en)
KR20030057490A (en) Bidirectional static switch responsive in quadrants q4 and q1
JP3155797B2 (en) Overvoltage self-protection semiconductor device and semiconductor circuit using the same
JPS6074678A (en) Semiconductor device
JPH0324789B2 (en)
JPS6112072A (en) Semiconductor device
US4296427A (en) Reverse conducting amplified gate thyristor with plate-like separator section
US3284680A (en) Semiconductor switch
JPS5880866A (en) Bidirectional semiconductor switch
JPS584829B2 (en) semiconductor integrated circuit
JPS60223154A (en) Semiconductor device
JPS6249745B2 (en)
JPH0136262B2 (en)
US4546369A (en) Light-activated amplified gate bi-directional thyristor
US4060824A (en) Slow speed semiconductor switching device
JPH0539638Y2 (en)
JPS583280A (en) Thyristor
JPS61232671A (en) Reverse conductive gto thyristor