JPS6112072A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6112072A
JPS6112072A JP13106984A JP13106984A JPS6112072A JP S6112072 A JPS6112072 A JP S6112072A JP 13106984 A JP13106984 A JP 13106984A JP 13106984 A JP13106984 A JP 13106984A JP S6112072 A JPS6112072 A JP S6112072A
Authority
JP
Japan
Prior art keywords
region
electrode
semiconductor device
potential
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13106984A
Other languages
Japanese (ja)
Other versions
JPH0217940B2 (en
Inventor
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13106984A priority Critical patent/JPS6112072A/en
Publication of JPS6112072A publication Critical patent/JPS6112072A/en
Publication of JPH0217940B2 publication Critical patent/JPH0217940B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/749Thyristor-type devices, e.g. having four-zone regenerative action with turn-on by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7436Lateral thyristors

Abstract

PURPOSE:To obtain a highly integrated semiconductor device in a structure; wherein the control part and the main driving part can be insulated in a DC way in a monolithic structure, the main driving part can be controlled even when the potential thereof is in a floating state, and moreover, the control current can be lessened; by a method wherein specific first - fourth regions and specific first - fourth electrodes are respectively provided in the main surface 9 of one side of the semiconductor device. CONSTITUTION:In case the potential A2 of terminals G3 and G4 is lower than that of a terminal B2, a p channel is formed in the surface of an nB region 15 under a third electrode 33 and positive holes flow into a pB region 13 from a pE<-> region 16. As a result, an injection of electrons into the pB region 13 from an nE region 14 is promoted, the nEpBnB transistor part is turned to ON and electrons flow into the nB region 15. Accordingly, after that, an injection of positive holes into the nB region 15 from the pE<-> region 16 is promoted and the pEnBpE transistor part is turned to ON. As the collector currents of the nEpBnB transistor part and the pEnBpE transistor part mutually become the base current of the other transistor part, a positive feedback is generated, and finally, both transistor parts result in being turned to ON as a thyristor pEnBpBnE.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特に制御部と主駆動部が電
気的に絶縁された電気結合方式の半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to an electrically coupled semiconductor device in which a control section and a main drive section are electrically insulated.

〔発明の背景〕[Background of the invention]

近年産業界における多様なエレクトロニクス化の進展に
伴い微小な制御信号でもって大きな電力の駆動を行うニ
ーズが増大している。この種のニーズに対しては制御部
と主駆動部の電気的な絶縁が必要である。このニーズを
満たす代表的な半導体素子として光結合素子(通称ホト
カプラ)がある。中でも光結合サイリスタは■順・通雨
方向の阻止能力を有する。■スイッチング後の電力損失
が小さい、■自己保持機能を有する等の利点をもってお
り、電子交換機用スイッチや固体リレー等に多用されて
いる。しかしいくつかの重要な問題点を有している。以
下に動作原理も含めて詳述する。
In recent years, with the advancement of various electronics in industry, there has been an increasing need to drive large amounts of electric power with minute control signals. For this kind of needs, electrical isolation of the control part and the main drive part is necessary. A typical semiconductor device that meets this need is an optical coupling device (commonly known as a photocoupler). Among them, the optically coupled thyristor has the ability to block the forward and rainy directions. It has the advantages of ■low power loss after switching, and ■has a self-holding function, and is widely used in electronic exchange switches and solid state relays. However, it has some important problems. This will be explained in detail below, including the principle of operation.

第2図は光結合サイリスタを用いた典型的な基本回路構
成を示す。
FIG. 2 shows a typical basic circuit configuration using optically coupled thyristors.

スイッチ1をとじると発光素子2に電流が流れ光が放射
される。この光によってホトサイリスタ゛3に光電流が
発生し、ホトサイリスタが交流電源4により順バイアス
状態になるとこの光電流でもって点弧する。この場合ホ
トサイリスタと発光素子が電気的に直流的に絶縁されて
いるので通常の電気結合方式と異なり次の利点を有する
。f#JS。
When the switch 1 is closed, current flows through the light emitting element 2 and light is emitted. This light generates a photocurrent in the photothyristor 3, and when the photothyristor is placed in a forward bias state by the AC power source 4, it is ignited by this photocurrent. In this case, since the photothyristor and the light emitting element are electrically DC-insulated, this method has the following advantages, unlike the normal electrical coupling method. f#JS.

6.7は抵抗であり、8は直流電源である。6.7 is a resistor, and 8 is a DC power supply.

(a)  端子Bと端子りの間に電位差が存在しても制
御可能すなわち点弧動作等が可能である。
(a) Even if a potential difference exists between the terminal B and the terminal B, control is possible, that is, ignition operation, etc. is possible.

(b)  発光素子2を流れる電流がサイリスタ側に流
れ込まない。又この逆も起らない。
(b) The current flowing through the light emitting element 2 does not flow into the thyristor side. Nor does the reverse occur.

一方以下の間購点を有する。On the other hand, it has a purchasing point between:

(1)ホトサイリスタ3やトランジスタ1はもっばらS
iを用いて作製されるが、発光素子はQaA8等に代表
されるm−v族もしくはI−VI族の化合物半導体を用
いて作製される。このように材料が異なるためノ・イブ
ワイドIC構成にせざるをえず、精密な組立作業を必要
としコスト高をきたす。化合物半導体ウエノ・の作製技
術やその加工技術がSiの技術に比べつたないこともコ
スト高を助長している。
(1) Photothyristor 3 and transistor 1 are completely S
However, the light-emitting element is manufactured using an m-v group or I-VI group compound semiconductor represented by QaA8 or the like. Because of these different materials, it is necessary to use a wide IC configuration, which requires precise assembly work and increases costs. The fact that the manufacturing technology and processing technology for compound semiconductors are not as good as those for Si also contributes to higher costs.

(2)発光ダイオードの発光効率、ホトサイリスタの受
光効率9発光ダイオードからの光をホトサイリスタに伝
達する効率が小さい。このためこれらの効率を相乗した
光結合効率が小さく、ホトサイリスタを駆動するに当り
発光素子に数mA程度の大きな制御電流を流す必要があ
る。
(2) Light emitting efficiency of light emitting diode, light receiving efficiency of photothyristor 9 The efficiency of transmitting light from the light emitting diode to the photothyristor is low. For this reason, the optical coupling efficiency obtained by combining these efficiencies is small, and it is necessary to flow a large control current of about several milliamperes through the light emitting element to drive the photothyristor.

特公昭42−24863号公報、特公昭53−4658
9号公報にはpnpnをMOSゲート又はMOS・FE
Tでオン駆動する実施例が開示されている。又特開昭5
7−196626号公報にはMO5@FETでオン・オ
フ両駆動を行う実施例が開示されている。これはいずれ
もゲートと主スィッチが絶縁されているという特長は有
するが、主スィッチの電位が70−ティング状態にある
場合はオン駆動ができない。す々わちゲート電位か主ス
ィッチのカソード電位より高い場合もしくは低い場合の
いずれかの場合にしかオン駆動できかい。従って、ホト
カプラと同等の機能は達成できないものである。
Special Publication No. Sho 42-24863, Special Publication No. Sho 53-4658
Publication No. 9 describes pnpn as a MOS gate or MOS/FE.
An example of turning on at T is disclosed. Also, Tokukai Sho 5
No. 7-196626 discloses an embodiment in which both on and off driving is performed using MO5@FET. All of these have the feature that the gate and the main switch are insulated, but if the potential of the main switch is in the 70-ting state, it cannot be turned on. In other words, it can only be turned on when the gate potential is higher or lower than the cathode potential of the main switch. Therefore, it is impossible to achieve the same functionality as a photocoupler.

〔発−の目的〕[Purpose of departure]

本発明の目的はモノリシック構造で制御部と主駆動部を
直流的に絶縁せしめ得るとともに、主駆動部の電位がフ
ローティング状態にあっても制御可能にせしめ且つ制御
電流も小さくせしめ得る高集積な半導体装置を提供する
ことにある。
The object of the present invention is to provide a highly integrated semiconductor that has a monolithic structure and can insulate the control section and the main drive section in terms of direct current, and also allows control even when the potential of the main drive section is in a floating state, and also allows the control current to be small. The goal is to provide equipment.

〔発明の概要〕[Summary of the invention]

上記目的を達成する本発明半導体装置の特徴とするとこ
ろは、一対の主表面を有し、その少なくとも一部に、少
なくとも一方の主表面に露出する第1導電型の第1の領
域、上記第1の領域との間に形成される第1のpn接合
が上記一方の主表面に終端する様に上記第1の領域内に
形成される第2導電屋の第2の領域、上記第2の領域と
の間に形成される第2のpn接合が上記一方の主表面に
終端する様に上記第2の領域内に形成される第1導電型
の第3の領域、上記第1の領域との間に形成される第3
のpn接合が上記第1のpn接合とは離れて少々くとも
上記一方の主表面に終端する様に形成される第2導電屋
の第4の領域を有する半導体基体と、上記第4の領域の
少なくとも一部と低抵抗接触する第1の電極と、上記第
3の領域の少なくとも一部と低抵抗接触する第2の電極
と、上記一方の主表面に於いて絶縁膜を介して上記第2
の領域及び第3の領域上の少なくとも一部に延在する様
に上記第1の領域上の少なくとも一部に設けられる第3
の電極と、上記一方の主表面に於いて絶縁膜を介して上
記第1の領域及び第3の領域上の少なくとも一部に延在
する様に上記第2の領域上の少なくとも一部に設けられ
る第4の電極と、を具備することにある。
The semiconductor device of the present invention that achieves the above object is characterized by having a pair of main surfaces, at least a portion of which includes a first region of a first conductivity type exposed on at least one of the main surfaces; a second region of the second conductive layer formed within the first region such that a first pn junction formed between the first region and the first region terminates on the one main surface; a third region of the first conductivity type formed within the second region such that a second pn junction formed between the region terminates at the one main surface; The third formed between
a semiconductor substrate having a fourth region of a second conductive layer formed in such a way that a pn junction of the second conductor is formed so as to terminate at least on one main surface of the semiconductor body at a distance from the first pn junction; a first electrode in low resistance contact with at least a portion of the third region; a second electrode in low resistance contact with at least a portion of the third region; and a first electrode in low resistance contact with at least a portion of the third region; 2
a third region provided on at least a portion of the first region so as to extend over at least a portion of the first region and the third region;
and an electrode provided on at least a portion of the second region so as to extend over at least a portion of the first region and the third region via an insulating film on the one main surface. and a fourth electrode.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基き詳細に説明する。 The present invention will be explained in detail below based on examples.

〈実施例1〉 第1図は本発明の第1の実施例を示す概略断面図である
<Example 1> FIG. 1 is a schematic sectional view showing a first example of the present invention.

15は、多結晶シリコン20中に絶縁膜17を介して島
状に埋設され、半導体基体23の一方の主表面22に露
出する第1の領域であるn!l (n型ベース)領域、
13は、n11領域15との間に形成される第1のpn
接合が一方の主表面22に終端する様にn11領域15
内に形成される第2の領域であるI)m(I)ベース)
領域、14は、pII領域13との間に形成される第2
のpn接合が一方の主表面22に終端する様に9m領域
13内に形成される第3の領域であるn、(n型エミッ
タ)領域12は、nII領域15との間に形成される第
3のpn接合が第1のpn接合とは離れて一方の主表面
22に終端する様にn3領域15内に形成される第4の
領域であるpz(n型エミッタ)領域である。16はn
B領域15を介して9m領域13に対向する様に、p鳶
領域12中に設けられる第5の領域である1)x−(低
不純物濃度n型エミッタ)領域、21はnB領域15が
絶縁膜17に接する部分に形成された高濃度n1領域で
ある。
15 is a first region n! which is buried in the polycrystalline silicon 20 via the insulating film 17 in the form of an island and is exposed on one main surface 22 of the semiconductor substrate 23. l (n-type base) region,
13 is a first pn formed between the n11 region 15
n11 region 15 so that the bond terminates on one major surface 22.
I)m (I) which is the second region formed within (I) base)
The second region 14 is formed between the pII region 13 and the pII region 13.
The third region (n-type emitter) region 12 is formed within the 9m region 13 so that the pn junction of the region terminates at one main surface 22. A pz (n-type emitter) region is a fourth region formed in the n3 region 15 such that the pn junction of No. 3 terminates on one main surface 22 apart from the first pn junction. 16 is n
The fifth region 1) x- (low impurity concentration n-type emitter) region 21 is provided in the p region 12 so as to face the 9m region 13 via the B region 15, and the nB region 15 is insulated. This is a high concentration n1 region formed in a portion in contact with the film 17.

40は半導体基体23の一方の主表面22上に形成され
る絶縁膜、31は1)m領域12の少なくとも一部と低
抵抗接触する第1の電極であり、A!端子となる。32
はn閣領域14の少なくとも一部と低抵抗接触する第2
の電極であり、B2端子となる。33は絶縁膜40を介
してn11領域15上の少なくとも一部に設けられる第
3の電極であり、G8端子と表る。第3の電極33は絶
縁膜40を介して9m領域13上の少なくとも一部とp
w−領域16上の少なくとも一部とに延在する様に設け
られる。34は絶縁膜40を介してpI+領域13上の
少なくとも一部に設けられる第4の電極であり、G4端
子となる。第4の電極34は絶縁膜40を介してnl領
域15上の少なくとも一部とn罵頭域14上の少なくと
も一部とに延在する様に設けられる。第1の電極31と
第4の電極34との間に、第1の電極31の隣りに第3
の電極33が、第4の電極34の隣りに第2の電極32
が並ぶ様に配置される。G3端子とG4端子とはAt等
の配線によって同電位に接続される。
40 is an insulating film formed on one main surface 22 of semiconductor substrate 23, 31 is a first electrode that makes low resistance contact with at least a part of 1) m region 12, and A! It becomes a terminal. 32
is a second region in low resistance contact with at least a portion of the n-kaku area 14.
This electrode is the B2 terminal. A third electrode 33 is provided on at least a portion of the n11 region 15 via the insulating film 40, and is represented as a G8 terminal. The third electrode 33 connects to at least a portion of the 9m region 13 via the insulating film 40.
It is provided so as to extend over at least a portion of the w-region 16. A fourth electrode 34 is provided on at least a portion of the pI+ region 13 via an insulating film 40, and serves as a G4 terminal. The fourth electrode 34 is provided so as to extend over at least a portion of the nl region 15 and at least a portion of the nl region 14 via the insulating film 40 . Between the first electrode 31 and the fourth electrode 34, there is a third electrode adjacent to the first electrode 31.
The second electrode 32 is adjacent to the fourth electrode 34.
are arranged so that they are lined up. The G3 terminal and the G4 terminal are connected to the same potential by wiring such as At.

本実施例の半導体装置は、例えばF、 H,LEE :
IEEE ’[’ransactions  on E
lectronpevices voムED−15,4
9,1968,p645に示される様なEpitaxi
al passivated integratedに
1rcuit(EPIC)プロセスで作成した誘電体分
離基板の単結晶島内に独立に形成される。
The semiconductor device of this embodiment has, for example, F, H, LEE:
IEEE '['transactions on E
electrompevices vom ED-15,4
9, 1968, p645.
It is formed independently within a single-crystal island of a dielectric isolation substrate created by an al passivated integrated circuit (EPIC) process.

本実施例に於ける各寸法等の具体例を以下に示す。Specific examples of each dimension etc. in this example are shown below.

第1のpn接合及び第3のpn接合の深さ約5μm1第
2のpn接合の深さは約3μmS pB領域13とpv
−領域16との距離は約55μmである。n11領域1
5の不純物濃度は2 X 10”cm−” 。
The depth of the first pn junction and the third pn junction is approximately 5 μm1 The depth of the second pn junction is approximately 3 μm S pB region 13 and pv
- the distance to region 16 is approximately 55 μm; n11 area 1
The impurity concentration of No. 5 is 2 x 10"cm-".

p1+−領域160表面不純物濃度は7X10”副−3
である。第4の電極34の下の1)B領域13はnI+
領域14とセルファライン構造にしであるので10” 
cm−”  程度以下の表面不純物濃度にできる。
The p1+- region 160 surface impurity concentration is 7×10” sub-3
It is. 1) B region 13 under the fourth electrode 34 is nI+
10” since it is between area 14 and the self-line structure.
It is possible to reduce the surface impurity concentration to less than 1 cm.

第3の電極33と第4の電極34゛との下の絶縁膜40
厚さは各々0.9μm、0.7μmである。但し第3.
及び第4の電極33.34の端部における電界集中を緩
和するためにこれらの電極端部の絶縁膜40は約2.7
μmと厚くしている。
Insulating film 40 under the third electrode 33 and fourth electrode 34'
The thicknesses are 0.9 μm and 0.7 μm, respectively. However, 3rd.
In order to alleviate electric field concentration at the ends of the fourth electrodes 33 and 34, the insulating film 40 at the ends of these electrodes has a thickness of about 2.7 cm.
It is made as thick as μm.

第1図を用いて以下に動作機構と特徴を説明する。まず
オンするときの動作機構を説明する。
The operating mechanism and features will be explained below using FIG. First, the operating mechanism when turning on will be explained.

スイッチ1が開いているときはAm、B1間はオフ状態
にある。スイッチ1を閉じ電源8よυG、端子、G4端
子にしきい値より高い電圧を印加した場合、交流電源4
によりA2 、B1間が順バイアス状態になるとオンす
る。この時Gs 、 G4端子の電位とB2.Al端子
の電位の高低関係によらずAs、Bs間をオンさせるこ
とができるが、その動作機構は端子間電位の相対関係で
異る。
When switch 1 is open, the circuit between Am and B1 is in an off state. When switch 1 is closed and a voltage higher than the threshold voltage is applied to power supply 8, υG, terminal, and G4 terminal, AC power supply 4
When the forward bias state is established between A2 and B1, it turns on. At this time, Gs, the potential of the G4 terminal and the B2. Although As and Bs can be turned on regardless of the level relationship of the potentials of the Al terminals, the operating mechanism differs depending on the relative relationship of the potentials between the terminals.

Gs 、G4端子の電位がAl、B!端子の電位より低
い場合は第3の電極33下のn11領域15の表面にp
チャネルが形成されpffi−領域16からp■領域1
3に正孔が流れ込む。この結果n、領領域4から1)+
領域13への電子の注入が促進されn!ipm nm 
 )ジンジスタ部分がオンし、電子がnII領域15内
に流れ込む。従って次にpz−領域16からnB領域1
5内への正孔の注入が促進され1)m n++ I)B
  )ランジスタ部分がオンする。
Gs, the potential of the G4 terminal is Al, B! If the potential is lower than that of the terminal, p is applied to the surface of the n11 region 15 under the third electrode 33.
A channel is formed from pffi-region 16 to p-region 1
Holes flow into 3. As a result, n, territory area 4 to 1) +
Electron injection into region 13 is promoted and n! ipm nm
) The gingister portion turns on and electrons flow into the nII region 15. Therefore, next from pz-region 16 to nB region 1
The injection of holes into 5 is promoted and 1) m n++ I) B
) The transistor part turns on.

ng p+ ns  )ランジスタ部分及びpg n+
+ pm  )ランジスタ部分のコレクタ電流は相互に
他のトランジスタ部分のベース電流となるので正帰還が
起こり、ついにはサイリスタIlf nn I)l n
x としてオンするに至る。
ng p+ ns ) transistor part and pg n+
+ pm) Since the collector currents of the transistor parts mutually become the base currents of other transistor parts, positive feedback occurs, and finally the thyristor Ilf nn I)l n
It turns on as x.

Gs 、G4端子の電位がBz 、 All端子の電位
よりも高い場合は第4の電極34下のp+領域13表面
にnチャネルが形成されnt領域14からnl領域15
へ電子が流れ込む。この結果px−領域16を含むpz
領域12からnl領域15への正孔の注入が促進されp
l nn pm )ランジスタ部分がオンし、正孔がp
H領域13内に流れ込む。
When the potential of the Gs and G4 terminals is higher than the potential of the Bz and All terminals, an n channel is formed on the surface of the p+ region 13 under the fourth electrode 34, and from the nt region 14 to the nl region 15
Electrons flow into. As a result, px-pz containing region 16
The injection of holes from the region 12 to the nl region 15 is promoted and p
l nn pm ) The transistor part turns on and the hole becomes p
It flows into the H region 13.

従って次にnE領域14から9m領域13への電子の注
入が促進されnMpIInBトランジスタ部分がオンし
、上記の正帰還を起こしサイリスタpv nmp++’
n’zがオンする。
Therefore, the injection of electrons from the nE region 14 to the 9m region 13 is promoted, and the nMpIInB transistor section is turned on, causing the above-mentioned positive feedback and the thyristor pv nmp++'
n'z turns on.

Gs 、G4端子の電位がB2端子の電位より高く、A
2端子の電位より低い場合は上記の両ケースの動作が起
こりサイリスタpz nm 1)s nr+がオンする
Gs, the potential of the G4 terminal is higher than the potential of the B2 terminal, and A
When the potential is lower than the potential of the two terminals, the operations in both of the above cases occur and the thyristor pz nm 1) s nr+ is turned on.

本実施例では9m領域13とnl領域14間にノイズ耐
量を増大するために抵抗10にΩを接続した場合、G3
端子の電位を約4vにすることによりA2.Bs端子間
をオンできることを本発明者は確認している。又G4端
子の電位は約7vにすることによりAs、、Bs端子間
をオンできることも本発明者は確認している。従ってこ
の場合Q・G4端子を接続してAl、B2端子間をオン
させるには、この端午電位は約7■にする必要がある。
In this embodiment, when Ω is connected to the resistor 10 between the 9m region 13 and the nl region 14 to increase the noise tolerance, G3
A2. by setting the terminal potential to about 4V. The inventor has confirmed that it is possible to turn on between the Bs terminals. The inventor has also confirmed that by setting the potential of the G4 terminal to about 7V, it is possible to turn on the terminals As and Bs. Therefore, in this case, in order to connect the Q and G4 terminals and turn on the Al and B2 terminals, the voltage potential needs to be about 7.

次に耐圧について第3図、及び第4図を用いて説明する
。まずスイッチ1が閉じられ、Gs lG4端子の電位
がAx 、B雪間がオンしない程度の低い電位に固定さ
れている場合について述る。Al1B2端子が70−テ
ィグなので耐圧はこれら端子の電位とGs 、G4端子
の電位の高低関係で異る。
Next, withstand voltage will be explained using FIGS. 3 and 4. First, a case will be described in which the switch 1 is closed and the potential of the GslG4 terminal is fixed to a low potential that does not turn on Ax and B. Since the Al1B2 terminals are 70-Tig, the withstand voltage varies depending on the potentials of these terminals and the potentials of the Gs and G4 terminals.

Gs 、Ga端子の電位がAm 、Bz端子の電位より
も低い場合は順ψ逆バイアス何れにおいてもn、領域1
5側の空乏層は表面付近でGs 、 G4の電極で拡げ
られるので高耐圧を確保できる。第3図の点線は順バイ
アス時のn11領域15及び9m領域13における空乏
層端の模式図を示す。
If the potential of the Gs and Ga terminals is lower than the potential of the Am and Bz terminals, n and region 1 in both forward and reverse bias.
Since the depletion layer on the 5 side is expanded by the Gs and G4 electrodes near the surface, a high breakdown voltage can be ensured. The dotted line in FIG. 3 shows a schematic diagram of the depletion layer ends in the n11 region 15 and the 9m region 13 during forward bias.

第3及び第4の電極33.34はnu領域15よりも低
電位なのでこれらの電極33.34下のnl領域15の
表面には正電荷が誘発され濃度が低下し空乏層が拡がり
易くなる。第3及び第4の電極33.34は9m領域1
3に比べても低電位であるが、pB領域13はnB領域
15に比べ不純物濃度が十分大きいので誘発される正電
荷の影響は小さい。これらの結果nB領領域5の表面に
おいて空乏層が拡げられることにより電界が緩和され、
耐圧は3iバルク内で規制される程度の高耐圧が確保で
きる。一方、逆バイアス時のnB及びpm、pz−にお
ける空乏層端の模式図を第3図に於いて一点鎖線で示し
たが、第3の電極33下では空乏層は同じメカニズムで
nB領域15側に拡げられる。1)E−領域16では誘
発正電荷により高濃度化し空乏層の拡がりは第3の電極
33がpE−領域16上に存在しない場合に比べ小さく
なるが、nIl領域15側の空乏層が順バイアス時と同
程度拡がるので順バイアス時と同程度の耐圧は確保でき
る。第1の電極31下では逆バイアスなので第1の電極
31の電位がn、領域15の電位より低く、従ってnB
領域15の表面に正電荷が誘起され空乏層は拡がり易い
。以上の結果、やはり耐圧はSiバルク内で規制される
程度の高耐圧を確保できる。本実施例の場合順番逆耐圧
とも例えば400vである。
Since the third and fourth electrodes 33, 34 have a lower potential than the nu region 15, positive charges are induced on the surface of the nl region 15 below these electrodes 33, 34, the concentration decreases, and the depletion layer tends to expand. The third and fourth electrodes 33.34 are 9m area 1
Although the potential is lower than that in pB region 13, the impurity concentration in pB region 13 is sufficiently higher than in nB region 15, so that the influence of induced positive charges is small. As a result, the depletion layer is expanded on the surface of the nB region 5, and the electric field is relaxed.
A high withstand voltage that is regulated within the 3i bulk can be ensured. On the other hand, a schematic diagram of the depletion layer edge in nB, pm, and pz- at the time of reverse bias is shown by a dashed-dotted line in FIG. It will be expanded to 1) In the E-region 16, the concentration increases due to the induced positive charge, and the spread of the depletion layer becomes smaller than when the third electrode 33 does not exist on the pE-region 16, but the depletion layer on the nIl region 15 side is forward biased. Since the voltage spreads to the same extent as in the case of forward bias, it is possible to secure a breakdown voltage of the same extent as in the case of forward bias. Since the reverse bias is applied under the first electrode 31, the potential of the first electrode 31 is n, lower than the potential of the region 15, and therefore nB
Positive charges are induced on the surface of the region 15, and the depletion layer tends to expand. As a result of the above, it is possible to ensure a high breakdown voltage that is regulated within the Si bulk. In this embodiment, the order reverse breakdown voltage is also 400V, for example.

次にG3.G4端子の電位がA2.Bz端子の電位より
も高い場合であるが、この場合は順・逆バイアスいずれ
においてもnB領域15側の表面付近の空乏層は第3.
及び第4の電極33.34が表面に誘発する。負電荷に
より縮められる。順バイアス時には空乏層は第4図に於
ける点線のように々り耐圧は表面の゛電界集中で規制さ
れることとなり低下する。本実施例では例えば約150
Vである。一方、逆バイアス時には第4図の一点鎖線で
示す様に、第3の電極33下のn!1領域15の表面で
は空乏層が縮められるが、第3の電極33下のpv−領
域16では逆に誘発負電荷で低濃度化し空乏層が十分拡
げられる。従って第3の電極33下の付近での電界強度
はバルク内の電界強度以下にできる。第1の電極31下
のn!l領域15の表面では逆バイアスなので第1の電
極31の電位がn!I領域15の電位より低く、従って
nIl領域15の表面に正電荷が誘起され空乏層は拡が
り易く電界強度は低くできる。以上の結果、逆バイアス
時の耐圧は3iバルク内で規制される程度の高耐圧が実
現できる。本実施例では例えば約360vである。
Next, G3. The potential of the G4 terminal is A2. In this case, the depletion layer near the surface on the nB region 15 side is the third.
and a fourth electrode 33,34 is induced on the surface. Contracted by negative charge. At the time of forward bias, the depletion layer collapses as indicated by the dotted line in FIG. 4, and the withstand voltage is regulated by the electric field concentration on the surface, resulting in a decrease. In this embodiment, for example, about 150
It is V. On the other hand, at the time of reverse bias, as shown by the dashed line in FIG. 4, the n! On the surface of the first region 15, the depletion layer is contracted, but in the pv- region 16 under the third electrode 33, the concentration is reduced by the induced negative charge, and the depletion layer is sufficiently expanded. Therefore, the electric field strength near the bottom of the third electrode 33 can be made lower than the electric field strength in the bulk. n! under the first electrode 31! Since the surface of the l region 15 is reverse biased, the potential of the first electrode 31 is n! The potential is lower than that of the I region 15, so positive charges are induced on the surface of the nIl region 15, the depletion layer is likely to expand, and the electric field strength can be lowered. As a result of the above, it is possible to realize a high breakdown voltage at the time of reverse bias, which is regulated within the 3i bulk. In this embodiment, the voltage is approximately 360V, for example.

以上のごとく第3及び第4の電極33.34の電位が固
定されている時は順バイアス時に150v以上、逆バイ
アス時に360v以上の高耐圧を確保できる。スイッチ
1が開いておりG3.G4端子の電位が固定されていな
い時は上述の誘発電荷がほとんど発生せず耐圧は順バイ
アス時に約220V、逆バイアス時に約400Vにでき
る。
As described above, when the potentials of the third and fourth electrodes 33 and 34 are fixed, a high breakdown voltage of 150 V or more can be ensured when forward biased and 360 V or more when reverse biased. Switch 1 is open and G3. When the potential of the G4 terminal is not fixed, the above-mentioned induced charges are hardly generated and the withstand voltage can be approximately 220V when forward biased and approximately 400V when reverse biased.

なお、本実施例のGs 、G4端子、!:A2  ・B
2端子間の直流絶縁耐圧は例えば約650Vである。
Note that Gs, G4 terminal, ! of this embodiment. :A2 ・B
The DC insulation voltage between the two terminals is, for example, about 650V.

又オンされた後100mA通電時のA2 ・8g間の電
位差すなわちオン電圧は約1,3vであった。
Further, after being turned on, the potential difference between A2 and 8g when 100 mA was applied, that is, the on voltage was about 1.3 V.

またオン抵抗は8Ωである。Further, the on-resistance is 8Ω.

〈実施例2〉 第5図は本発明の第2の実施例を示す概略平面図、第6
図は第5図のA−A’概略断面図である。
<Embodiment 2> FIG. 5 is a schematic plan view showing a second embodiment of the present invention, and FIG.
The figure is a schematic sectional view taken along the line AA' in FIG.

本実施例に於いて、第1の実施例と異々る点は次の3点
であり、その他はぼに第1の実施例と同じである。
This embodiment differs from the first embodiment in the following three points, and the rest is essentially the same as the first embodiment.

(1)p++領域14は、nII領域と接する主表面付
近に、第6の領域とガるpx−領域16と同じ表面不純
物濃度のバー(低不純物濃度p型ベース)領域1Bを具
備する。pB−領域18は電界緩和層として働き、順方
向耐圧の向上が図れ、第4の電極34の下ではチャネル
領域となる。
(1) The p++ region 14 includes a bar (low impurity concentration p-type base) region 1B having the same surface impurity concentration as the sixth region and the px- region 16 near the main surface in contact with the nII region. The pB- region 18 functions as an electric field relaxation layer to improve forward breakdown voltage, and becomes a channel region under the fourth electrode 34.

伐)第2の電極32と第3の電極33との間に、9m領
域13の一部と低抵抗接触する第5の電極35を設けて
、図示しない保護回路と接続する。
A fifth electrode 35 is provided between the second electrode 32 and the third electrode 33 and is in low resistance contact with a part of the 9m area 13, and is connected to a protection circuit (not shown).

(3)  pm−領域18を設けたことにより、nE領
域14とpE幀域との主表面での距離が90μmに拡が
る。
(3) By providing the pm-region 18, the distance between the nE region 14 and the pE region on the main surface increases to 90 μm.

本実施例のAg、Bx端子間のオン動作機構は次の点を
除けば第1の実施例と同じである。
The turning-on mechanism between the Ag and Bx terminals of this embodiment is the same as that of the first embodiment except for the following points.

(1)Gs 、G4端子の電位がA2.Bz端子の電位
よりも低い場合、p罵−領域18がpm”  + ”+
px−で構成されるpチャネルMO3)ランジスタ部の
ドレインとして作用してAi、*Bt端子間のオン動作
に寄与する。
(1) Gs, the potential of the G4 terminal is A2. When the potential is lower than the potential of the Bz terminal, the p-type region 18 becomes pm"+"+
It acts as the drain of the p-channel MO3) transistor section composed of px- and contributes to the ON operation between the Ai and *Bt terminals.

(2)G3 、G4端子の電位がAJ 、 B2端子の
電位よりも高い場合、pB領域13の他にpll−領域
18もni r pm”’+ pm 、 11+で構成
される5、nチャネルMO3)う/ジスタのチャネル部
として作用しAJ 、Bz端子間のオン動作に寄与する
(2) When the potential of the G3 and G4 terminals is higher than the potential of the AJ and B2 terminals, in addition to the pB region 13, the pll- region 18 is also composed of nir pm"'+ pm, 11+ 5, n-channel MO3 ) It acts as a channel part of the resistor and contributes to the ON operation between the AJ and Bz terminals.

次に順耐圧に及ぼすpm−領域18の効果について説明
する。第1の実施例では、Gs + Ga端子の電位が
AJ 、Bg端子の電位よりも高い場合、AJ −B1
間を順バイアス時に第3及び第4の電極33.34下の
nII領域15表面付近の空乏層が縮められるため順耐
圧が例えば約150vであった。本実施例でもnB領域
15の表面付近では第1の実施例と同様空乏層が縮めら
れるが、第3の電極33下のplI−領域18表面付近
では負電荷が誘起されるため表面濃度が低下し空乏層が
拡がり易くなる。この結果電界強度を大巾に低減できる
。一方p11−領域18のうち第3及び第4の電極33
.34下にない部分でも不純物濃度が低いことが効を奏
して空乏層が拡がるため表面の接合付近の電界強度が緩
和される。以上の結果順バイアス時の電界集中が緩和さ
れるので、本実施例の場合順耐圧を例えば約360■に
向上できる。
Next, the effect of the pm-region 18 on the forward breakdown voltage will be explained. In the first embodiment, when the potential of the Gs + Ga terminal is higher than the potential of the AJ and Bg terminals, AJ - B1
Since the depletion layer in the vicinity of the surface of the nII region 15 under the third and fourth electrodes 33, 34 is compressed when the voltage is forward biased, the forward breakdown voltage is, for example, about 150V. In this embodiment, the depletion layer is shortened near the surface of the nB region 15 as in the first embodiment, but the surface concentration is reduced near the surface of the plI- region 18 under the third electrode 33 because negative charges are induced. This makes it easier for the depletion layer to expand. As a result, the electric field strength can be reduced significantly. On the other hand, the third and fourth electrodes 33 of the p11-region 18
.. 34, the low impurity concentration is also effective and the depletion layer expands, thereby relaxing the electric field strength near the surface junction. As a result of the above, electric field concentration during forward bias is alleviated, so that in the case of this embodiment, the forward breakdown voltage can be improved to, for example, about 360 cm.

〈実施例3〉 第7図は本発明の第3の実施例を示す概略平面図である
。第2の実施例と比べるとpm−領域1Bを設けること
なしに順方向耐圧を向上せしめることにより、Ax *
 13g間のオン抵抗を低減した点に特長がある実施例
である。
<Embodiment 3> FIG. 7 is a schematic plan view showing a third embodiment of the present invention. Compared to the second embodiment, by improving the forward breakdown voltage without providing the pm-region 1B, Ax *
This embodiment is characterized by a reduction in on-resistance between 13g and 13g.

第5図と比較すると明らかなように第3及び第4の電極
33.34をくし形にし、且つ第2の電極32及び第5
の電極35もくし形にして相互にかみ合せるようにして
いる。電極パターンを改良した点及びpm−領域18を
とり除き且つng領域14とpx領域12間の距離を約
75μmとした点以外は第2の実施例と同じである。
As is clear from a comparison with FIG. 5, the third and fourth electrodes 33 and 34 are comb-shaped, and the second
The electrodes 35 are also comb-shaped so that they interlock with each other. The second embodiment is the same as the second embodiment except that the electrode pattern is improved, the PM-region 18 is removed, and the distance between the NG region 14 and the PX region 12 is set to about 75 μm.

まず耐圧について説明する。A2.Bz間が順バイアス
時にはnl領域15上に張り出した第2及び第5の電極
32.35はフィールドプレートとして作用しn1領域
15表面の電界集中を緩和する。これは第2及び第5の
電極32’、35の電位がnB領域15の電位よりも低
いためn、領域15の表面に正電荷が誘起されnB領域
15の表面濃度が低減することによる。一方、Am t
 82間−41’l1ljバイアス時に第3及び第4の
電極33゜34の電位が第1及び第2の電極31.32
の電位より高いと耐圧が低いことを第1の実施例の中で
説明した。これは第3及び第4の電極33゜34により
n11領域15の表面に負電荷が誘起されることに起因
していた。しかるに、本実施例では第3及び第4の電極
33.34と第2及び第5の電極32.35をくし形に
してかみ合せた結果、上記のn、領域15の表面に第3
及び第4の電極33.34により誘起された負電荷がn
B領域15に延在する第2及び第5の電極32.35に
よる横方向のもれ電界により表面から排斥される。
First, withstand voltage will be explained. A2. When the voltage between Bz and Bz is forward biased, the second and fifth electrodes 32 and 35 extending over the nl region 15 act as field plates to relieve the electric field concentration on the surface of the n1 region 15. This is because the potentials of the second and fifth electrodes 32', 35 are lower than the potential of the nB region 15, so positive charges are induced on the surface of the nB region 15, and the surface concentration of the nB region 15 is reduced. On the other hand, Am t
82-41'l1lj When the bias is applied, the potential of the third and fourth electrodes 33°34 is the same as that of the first and second electrodes 31.32
It was explained in the first embodiment that when the potential is higher than , the withstand voltage is low. This was due to negative charges being induced on the surface of the n11 region 15 by the third and fourth electrodes 33 and 34. However, in this embodiment, as a result of interlocking the third and fourth electrodes 33.34 with the second and fifth electrodes 32.35, a third electrode is formed on the surface of the region 15 in the area n.
and the negative charge induced by the fourth electrode 33.34 is n
It is rejected from the surface by a lateral leakage field by the second and fifth electrodes 32,35 extending in region B 15.

A2 、Bt間がオフ状態にあり高電圧が印加された順
バイアス時にはA3端子の電位すなわちnII領域15
の電位はB2端子の電位よりも十分高く、Gs 、G4
端子の電位により近い値である。従って第3及び第4の
電、極33,34により誘起される負電荷は第2及び第
5の電極32.35によりほぼ完全に排斥されるわけで
ある。この結果nII領域15の表面が低濃度化し空乏
層が拡が9易くな9、高耐圧を実現できるわけである。
During forward bias when A2 and Bt are in the off state and a high voltage is applied, the potential of the A3 terminal, that is, the nII region 15
The potential of Gs, G4 is sufficiently higher than the potential of the B2 terminal.
This value is closer to the terminal potential. Therefore, the negative charges induced by the third and fourth electrodes 33, 34 are almost completely rejected by the second and fifth electrodes 32,35. As a result, the concentration of the surface of the nII region 15 is reduced, and the depletion layer expands easily9, making it possible to achieve a high breakdown voltage.

本実施例では第2及び第5の電極32.35と第3及び
第4の電極33.34との間隔を例えば約8μmとした
ところ約370vの順耐圧を実現できる。なお逆耐圧は
くし形構造にしたことによる影響は与られず約400v
である。
In this embodiment, when the distance between the second and fifth electrodes 32.35 and the third and fourth electrodes 33.34 is set to about 8 μm, for example, a forward breakdown voltage of about 370 V can be achieved. The reverse breakdown voltage is approximately 400V, which is not affected by the comb-shaped structure.
It is.

なお本実施例ではp3−領域18を削除しn、領域14
と、p鵞領域12との間の距離を約75μmに縮めた結
果、オン抵゛抗を小さくできる。すなわち例えば、30
mA通電時のオン抵抗は約6Ωであり、第2の実施例に
比べ約1.5Ω小さい。
Note that in this embodiment, p3-region 18 is deleted and n, region 14 is deleted.
As a result of reducing the distance between the p-type region 12 and the p-type region 12 to about 75 μm, the on-resistance can be reduced. For example, 30
The on-resistance when mA current is applied is about 6Ω, which is about 1.5Ω smaller than that of the second embodiment.

〈実施例4〉 第8図は本発明になる第4の実施例を示す概略断面図で
ある。第2の実施例と比較すると以下の4点以外はほぼ
同じである。
<Embodiment 4> FIG. 8 is a schematic sectional view showing a fourth embodiment of the present invention. When compared with the second embodiment, it is almost the same except for the following four points.

(1)  pv−領域16に対向する位置にのみpB−
領域18を形成した点、 (2)nz 14. pi+ 13.1)n−18,n
i+ 15より構成されるnチャネルMO3−FET(
Dfヤネル部がpE−領域16に対向する位置に形成さ
れるように第3の電極33を設け、且つ第3及び第4の
電極を接続し、一体化した点、(3)  p+r領域1
8が存在しないpII領域13周辺のnB領域15上に
は第2の実施例の第1の電極31と同じ考え方で第5の
電極35もしくは第2の電極32を延在させた点、 (4)急峻な電圧ノイズに対する保護回路(図示せず)
接続用の第5の電極35のコンタクト部を2M領域12
に対向しない側の9m領域13上に設け、nl領域14
,9M領域12間距離を55μmに縮めた点。
(1) pB- only in the position opposite to the pv- region 16
Point where region 18 was formed, (2) nz 14. pi+ 13.1)n-18,n
n-channel MO3-FET (
(3) p+r region 1, in which the third electrode 33 is provided so that the Df yarn part is formed at a position facing the pE- region 16, and the third and fourth electrodes are connected and integrated;
(4 ) Protection circuit against steep voltage noise (not shown)
The contact portion of the fifth electrode 35 for connection is placed in the 2M region 12.
Provided on the 9m area 13 on the side not facing the nl area 14
, 9M The point where the distance between the regions 12 is reduced to 55 μm.

本実施例では第3及び第4の電極33下の電界集中を第
2の実施例と同じように1)m″領域18で緩和できる
ためほぼ同じ耐圧、すなわち例えば屓耐圧約365V、
逆耐圧約400vがえられる。
In this embodiment, as in the second embodiment, the electric field concentration under the third and fourth electrodes 33 can be relaxed in the 1) m'' region 18, so that the breakdown voltage is approximately the same, that is, for example, the breakdown voltage is about 365V,
Reverse breakdown voltage of approximately 400V can be obtained.

一方、オン抵抗(30mA通電時)はnN領域14.2
g領域12間が縮まった結果、約3Ω小さい4.52程
度に低減できる。
On the other hand, the on-resistance (when 30mA is applied) is in the nN range of 14.2
As a result of the distance between the g regions 12 being reduced, it can be reduced to about 4.52, which is about 3Ω smaller.

〈実施例5〉 第9図は本発明の第5の実施例になる概略断面図である
<Embodiment 5> FIG. 9 is a schematic sectional view of a fifth embodiment of the present invention.

本実施例で第1図に示す第1の実施例と異なる点は、p
m−領域がない点のみで、その他は第1め実施例と同じ
である。
This embodiment differs from the first embodiment shown in FIG.
The rest is the same as the first embodiment except that there is no m-region.

〈実施例6〉 第10図は本発明の第6の実施例になる概略断面図であ
る。
<Embodiment 6> FIG. 10 is a schematic sectional view of a sixth embodiment of the present invention.

本実施例で、第9図に示す第5の実施例と異なる点は、
第4の領域である9g領域12がn、領域15を囲む様
に設けられ、かつ第1の電極31が半導体基体23の他
方の主表面24に設けられる点である。
The difference between this embodiment and the fifth embodiment shown in FIG. 9 is as follows.
The fourth region 9g region 12 is provided so as to surround the region 15, and the first electrode 31 is provided on the other main surface 24 of the semiconductor substrate 23.

9m領域12.pm領域i3.nxm領域14接合深さ
は各々約25μm、約25μm、約15μmである。n
l領域15の不純物濃度は1×10” tyn−”であ
る。第4の電極34の下のI)m領域13はガリウムの
みの拡散で形成しておシ、その他のpII領域13やI
)it領域12及びp領域12−1はボロンのみ又はポ
ロ/とガリウムの2重拡散で形成しである。周知のごと
くガリウムはアウト・ディヒユージョンが顕著であるの
で表面付近の濃度は低くできる。従って低いゲート電圧
でnチャネルを形成することができる。本実施例では第
4の電極34下の表面付近の濃度を約5×101stm
−”  である。G3.G4端子を接続した場合A2 
、B!端子間をオンさせるにはGs 、 G4端子電圧
を15Vにする必要がある。但しnN領域14とpB領
域13との間には6にΩの外部抵抗を接続している。本
実施例ではA2.B2端子間に5A通電時のオン電圧は
例えば約1.35Vである。又A2 、Bz端子間の順
・逆阻止電圧は約200 V、Gz  ・G3端子とA
! 命B3端子間の絶縁耐圧は約800vである。
9m area 12. pm area i3. The junction depths of the nxm regions 14 are about 25 μm, about 25 μm, and about 15 μm, respectively. n
The impurity concentration of l region 15 is 1×10"tyn-". The I)m region 13 under the fourth electrode 34 is formed by diffusion of gallium only, and other pII regions 13 and I)
) The IT region 12 and the p region 12-1 are formed by only boron or by double diffusion of polo/and gallium. As is well known, gallium exhibits significant out-diffusion, so the concentration near the surface can be kept low. Therefore, an n-channel can be formed with a low gate voltage. In this embodiment, the concentration near the surface under the fourth electrode 34 is set to approximately 5×101stm.
-”.When G3 and G4 terminals are connected, A2
, B! To turn on between the terminals, it is necessary to set the Gs and G4 terminal voltage to 15V. However, an external resistor of Ω is connected between the nN region 14 and the pB region 13. In this embodiment, A2. The on-voltage when 5A is applied between the B2 terminals is, for example, about 1.35V. Also, the forward and reverse blocking voltage between A2 and Bz terminals is approximately 200 V, and between Gz and G3 terminals and A
! The insulation voltage between the life B3 terminals is approximately 800V.

本実施例は縦溝、造であり第1の電極31をヒートシン
クに直接コンタクトできるので熱抵抗を小さくできる。
This embodiment has a vertical groove structure, and since the first electrode 31 can be brought into direct contact with the heat sink, the thermal resistance can be reduced.

このため電力損失を小さくできるという特徴がある。Therefore, it has the characteristic that power loss can be reduced.

以上、本実施例によればpz nu 1)w nz素子
をn。
As described above, according to this embodiment, the number of pz nu 1)w nz elements is n.

p両チャネルのMOS @FETで駆動できるようにし
た結果モノリシック構造で光結合サイリスタと同じ機能
を実現でき且つ制御電流を大巾に低減できる。さらにゲ
ート電極下に1)l領域より低不純物濃度のpx−領域
を(場合によってはpE側にもplより低濃度のpm’
″も)設けることにより、逆耐圧(場合によっては順耐
圧)を著しく向上できる。
As a result of being able to drive with a p-channel MOS @FET, it is possible to realize the same function as an optically coupled thyristor with a monolithic structure, and to significantly reduce the control current. Furthermore, under the gate electrode, 1) a px- region with a lower impurity concentration than the l region (in some cases, a pm' region with a lower impurity concentration than pl on the pE side as well);
''), the reverse breakdown voltage (or forward breakdown voltage in some cases) can be significantly improved.

本発明は以上の実施例に限定されるものではなく同じ思
想にもとづき各種の変形一応用が可能なことは当業者に
自明なことである。
It is obvious to those skilled in the art that the present invention is not limited to the embodiments described above, and that various modifications and applications can be made based on the same idea.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、モノリシック構造で制御部と主駆動部
を直流的に絶縁できるとともに、ユニポーラ素子の電位
がフローティング状態にあっても確実に制御でき、その
制御電流も小さくでき、かつ高集積な半導体装置を得る
ことができる。
According to the present invention, the control section and the main drive section can be isolated in terms of direct current with a monolithic structure, the potential of the unipolar element can be controlled reliably even in a floating state, the control current can be reduced, and the A semiconductor device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施鉤を示す概略断面図、第2
図は従来例を示す回路図、第3図及び第4図は第1の実
施例の効果を説明するだめの概略断面図、第5図及び第
6図は本発明の第2の実施例を示す概略平面図及び概略
断面図、第7図は本発明の第3の実施例を示す概略平面
図、第8図は本発明の第4の実施例を示す概略断面図、
第9図は本発明の第5の実施例を示す概略断面図、第1
0図は本発明や第6の実施例を示す概略断面図である。 12・・・pz領領域13・・・p1領域、14・・・
ng領領域15・・・nII領域、31・・・第1の電
極、32・・・第2の電極、33・・・第3の電極、3
4・・・第4の電策 1 慕 策 2 図 1   D 躬 3 口 も 4 日 第 5 喝 も C(2) も cl   日 活 10  口
FIG. 1 is a schematic sectional view showing a first implementation hook of the present invention, and FIG.
The figure is a circuit diagram showing a conventional example, Figures 3 and 4 are schematic cross-sectional views for explaining the effects of the first embodiment, and Figures 5 and 6 are diagrams showing a second embodiment of the present invention. 7 is a schematic plan view showing a third embodiment of the present invention, and FIG. 8 is a schematic sectional view showing a fourth embodiment of the present invention.
FIG. 9 is a schematic cross-sectional view showing the fifth embodiment of the present invention;
FIG. 0 is a schematic sectional view showing the present invention and a sixth embodiment. 12... pz area 13... p1 area, 14...
ng region 15... nII region, 31... first electrode, 32... second electrode, 33... third electrode, 3
4...Fourth electric plan 1 Pleasure plan 2 Figure 1 D Mistake 3 Mouth too 4th Day 5 Cheer too C(2) Mo cl Nikkatsu 10 mouth

Claims (10)

【特許請求の範囲】[Claims] 1.一対の主表面を有し、その少なくとも一部に、少な
くとも一方の主表面に露出する第1導電型の第1の領域
、上記第1の領域との間に形成される第1のpn接合が
上記一方の主表面に終端する様に上記第1の領域内に形
成される第2導電型の第2の領域、上記第2の領域との
間に形成される第2のpn接合が上記一方の主表面に終
端する様に上記第2の領域内に形成される第1導電型の
第3の領域、上記第1の領域との間に形成される第3の
pn接合が上記第1のpn接合とは離れて少なくとも上
記一方の主表面に終端する様に形成される第2導電型の
第4の領域を有する半導体基体と、上記第4の領域の少
なくとも一部と抵抗接触する第1の電極と、上記第3の
領域の少なくとも一部と低抵抗接触する第2の電極と、
上記一方の主表面に於いて絶縁膜を介して上記第2の領
域及び第3の領域上の少なくとも一部に延在する様に上
記第1の領域上の少なくとも一部に設けられる第3の電
極と、上記一方の主表面に於いて絶縁膜を介して上記第
1の領域及び第3の領域上の少なくとも一部に延在する
様に上記第2の領域上の少なくとも一部に設けられる第
4の電極と、を具備することを特徴とする半導体装置。
1. It has a pair of main surfaces, a first region of a first conductivity type exposed on at least one of the main surfaces, and a first pn junction formed between the first region and the first region. a second region of a second conductivity type formed in the first region so as to terminate on the one main surface; a second pn junction formed between the second region; a third region of the first conductivity type formed in the second region so as to terminate on the main surface of the third region; a third pn junction formed between the first region and the first region; a semiconductor substrate having a fourth region of a second conductivity type formed so as to terminate on at least one main surface apart from the pn junction; and a first region in resistive contact with at least a portion of the fourth region. a second electrode in low resistance contact with at least a portion of the third region;
A third portion provided on at least a portion of the first region so as to extend over at least a portion of the second region and the third region via an insulating film on the one main surface. an electrode, provided on at least a portion of the second region so as to extend over at least a portion of the first region and the third region via an insulating film on the one main surface of the electrode; A semiconductor device comprising: a fourth electrode.
2.特許請求の範囲第1項に於いて、上記第4の領域は
、上記第1の領域内に設けられることを特徴とする半導
体装置。
2. The semiconductor device according to claim 1, wherein the fourth region is provided within the first region.
3.特許請求の範囲第1項に於いて、上記第4の領域は
、上記第1の領域を囲む様に設けられることを特徴とす
る半導体装置。
3. The semiconductor device according to claim 1, wherein the fourth region is provided so as to surround the first region.
4.特許請求の範囲第1項に於いて、上記第4の領域は
、上記第2の領域に対向する領域に低不純物濃度の第5
の領域を有することを特徴とする半導体装置。
4. In claim 1, the fourth region includes a fifth region having a low impurity concentration in a region opposite to the second region.
A semiconductor device characterized by having a region.
5.特許請求の範囲第1項または、第4項に於いて、上
記第2の領域は、上記第1の領域と接する上記一方の主
表面付近に低不純物濃度の第6の領域を有することを特
徴とする半導体装置。
5. Claims 1 or 4 are characterized in that the second region has a sixth region with a low impurity concentration near the one main surface in contact with the first region. semiconductor device.
6.特許請求の範囲第5項に於いて、上記第5の領域と
上記第6の領域との不純物濃度はほぼ等しいことを特徴
とする半導体装置。
6. 6. The semiconductor device according to claim 5, wherein impurity concentrations in the fifth region and the sixth region are approximately equal.
7.特許請求の範囲第1項または第2項に於いて、上記
第1の電極、上記第2の電極、上記第3の電極、上記第
4の電極は上記一方の主表面に設けられることを特徴と
する半導体装置。
7. Claim 1 or 2 is characterized in that the first electrode, the second electrode, the third electrode, and the fourth electrode are provided on the one main surface. semiconductor device.
8.特許請求の範囲第3項に於いて、上記第2の電極、
上記第3の電極、上記第4の電極は上記一方の主表面に
設けられ、上記第1の電極は他方の主表面に設けられる
ことを特徴とする半導体装置。
8. In claim 3, the second electrode,
A semiconductor device, wherein the third electrode and the fourth electrode are provided on one main surface, and the first electrode is provided on the other main surface.
9.特許請求の範囲第1項に於いて、上記第2の領域の
一部と低抵抗接触する第5の電極を具備することを特徴
とする半導体装置。
9. A semiconductor device according to claim 1, further comprising a fifth electrode that makes low resistance contact with a portion of the second region.
10.特許請求の範囲第1項に於いて、上記第3の電極
と上記第4の電極とは一体化されることを特徴とする半
導体装置。
10. The semiconductor device according to claim 1, wherein the third electrode and the fourth electrode are integrated.
JP13106984A 1984-06-27 1984-06-27 Semiconductor device Granted JPS6112072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13106984A JPS6112072A (en) 1984-06-27 1984-06-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13106984A JPS6112072A (en) 1984-06-27 1984-06-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6112072A true JPS6112072A (en) 1986-01-20
JPH0217940B2 JPH0217940B2 (en) 1990-04-24

Family

ID=15049270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13106984A Granted JPS6112072A (en) 1984-06-27 1984-06-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6112072A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153579U (en) * 1986-03-20 1987-09-29
JPH03124065A (en) * 1989-10-06 1991-05-27 Toshiba Corp Integrated circuit element
US5135038A (en) * 1990-07-20 1992-08-04 The Goodyear Tire & Rubber Company Tire treads
JPH04216674A (en) * 1990-02-28 1992-08-06 American Teleph & Telegr Co <Att> Horizontal-type mos control-type thyristor
JP2003100374A (en) * 2001-09-26 2003-04-04 Yokowo Co Ltd Spring connector
US7205581B2 (en) 2001-03-09 2007-04-17 Infineon Technologies Ag Thyristor structure and overvoltage protection configuration having the thyristor structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061188A (en) * 1973-09-24 1975-05-26
JPS5093379A (en) * 1973-12-19 1975-07-25
JPS56155570A (en) * 1980-05-02 1981-12-01 Fujitsu Ltd Semiconductor device
JPS5832459A (en) * 1981-08-20 1983-02-25 Nec Corp Semiconductor device
JPS58125871A (en) * 1981-12-16 1983-07-27 ゼネラル・エレクトリツク・カンパニイ Semiconductor element improved in turn off capacity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061188A (en) * 1973-09-24 1975-05-26
JPS5093379A (en) * 1973-12-19 1975-07-25
JPS56155570A (en) * 1980-05-02 1981-12-01 Fujitsu Ltd Semiconductor device
JPS5832459A (en) * 1981-08-20 1983-02-25 Nec Corp Semiconductor device
JPS58125871A (en) * 1981-12-16 1983-07-27 ゼネラル・エレクトリツク・カンパニイ Semiconductor element improved in turn off capacity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153579U (en) * 1986-03-20 1987-09-29
JPH03124065A (en) * 1989-10-06 1991-05-27 Toshiba Corp Integrated circuit element
JPH04216674A (en) * 1990-02-28 1992-08-06 American Teleph & Telegr Co <Att> Horizontal-type mos control-type thyristor
US5135038A (en) * 1990-07-20 1992-08-04 The Goodyear Tire & Rubber Company Tire treads
US7205581B2 (en) 2001-03-09 2007-04-17 Infineon Technologies Ag Thyristor structure and overvoltage protection configuration having the thyristor structure
JP2003100374A (en) * 2001-09-26 2003-04-04 Yokowo Co Ltd Spring connector

Also Published As

Publication number Publication date
JPH0217940B2 (en) 1990-04-24

Similar Documents

Publication Publication Date Title
US4199774A (en) Monolithic semiconductor switching device
US3512058A (en) High voltage transient protection for an insulated gate field effect transistor
US6133607A (en) Semiconductor device
US5910664A (en) Emitter-switched transistor structures
JPS58212168A (en) Mos-fet gate bipolar transistor and thyristor capable of turning on and off with unipolar gate input signal
KR100200352B1 (en) Protection device of semiconductor device
JPS609669B2 (en) thyristor
EP0622849A1 (en) A monolithic integrated structure of an electronic device having a predetermined unidirectional conduction threshold
KR920010314B1 (en) Semiconductor device
JPH043115B2 (en)
EP0177665B1 (en) Self turnoff type semiconductor switching device
EP0338312B1 (en) Insulated gate bipolar transistor
US5587595A (en) Lateral field-effect-controlled semiconductor device on insulating substrate
US6137122A (en) Latch-up controllable insulated gate bipolar transistor
US4939564A (en) Gate-controlled bidirectional semiconductor switching device with rectifier
JPH10505953A (en) Controllable semiconductor components
JPS6112072A (en) Semiconductor device
US7071516B2 (en) Semiconductor device and driving circuit for semiconductor device
JP3103655B2 (en) Semiconductor device
JPH04261065A (en) Semiconductor device
EP0253353B1 (en) Composite semiconductor device
GB2289371A (en) A semiconductor device and control method
JPH03225960A (en) Semiconductor device
JPS605568A (en) Vertical insulated gate field effect transistor
JPS637471B2 (en)