JPS637471B2 - - Google Patents

Info

Publication number
JPS637471B2
JPS637471B2 JP56203586A JP20358681A JPS637471B2 JP S637471 B2 JPS637471 B2 JP S637471B2 JP 56203586 A JP56203586 A JP 56203586A JP 20358681 A JP20358681 A JP 20358681A JP S637471 B2 JPS637471 B2 JP S637471B2
Authority
JP
Japan
Prior art keywords
semiconductor region
type
conductivity type
thyristor
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56203586A
Other languages
Japanese (ja)
Other versions
JPS58105572A (en
Inventor
Takami Terajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP56203586A priority Critical patent/JPS58105572A/en
Publication of JPS58105572A publication Critical patent/JPS58105572A/en
Publication of JPS637471B2 publication Critical patent/JPS637471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/111Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors
    • H01L31/1113Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors the device being a photothyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7404Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device
    • H01L29/742Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device the device being a field effect transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Thyristors (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は、ゼロクロス(零交差)又はその近傍
時点でのみオンする構造のゼロクロス光サイリス
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zero-cross optical thyristor that is turned on only at or near a zero-cross.

サイリスタの1種であるゼロクロス光トライア
ツクは、例えば、「日経エレクトロニクス」の
1979年12月10日号に掲載されている。この公知の
ゼロクロス光トライアツクは、第1図に示す如
く、N1〜N9のN型半導体領域と、P1〜P6のP型
半導体領域と、MOS型FETのゲートG1,G2と、
抵抗領域R1,R2と、第1及び第2の電極MT1
MT2とを有し、第2図に示す等価回路となるよ
うに構成されている。なお、第2図のトランジス
タQ1はN1とP1とN2とで構成され、トランジスタ
Q2はN3とP2とN2とで構成され、トランジスタQ3
はP6とN2とP1とで構成され、トランジスタQ4
P3とN2とP2とで構成され、エンハンスメント型
絶縁ゲート電界効果トランジスタ(FET)であ
るQ5はN7とP5とN8とG2とで構成され、FETQ6
はN5とP4とN6とG1とで構成されている。
Zero-cross optical triax, which is a type of thyristor, is manufactured by Nikkei Electronics, for example.
Published in the December 10, 1979 issue. As shown in FIG. 1, this known zero-cross optical triax consists of N-type semiconductor regions N 1 to N 9 , P-type semiconductor regions P 1 to P 6 , and gates G 1 and G 2 of MOS FETs. ,
resistance regions R 1 , R 2 and first and second electrodes MT 1 ,
MT 2 , and is configured to have the equivalent circuit shown in FIG. Note that the transistor Q1 in Fig. 2 is composed of N1 , P1, and N2, and the transistor Q1 is composed of N1, P1, and N2 .
Q 2 consists of N 3 , P 2 and N 2 , and transistor Q 3
is composed of P 6 , N 2 and P 1 , and transistor Q 4 is
Q5, which is an enhancement type insulated gate field effect transistor ( FET) consisting of P 3 , N 2 , and P 2 , is composed of N 7 , P 5 , N 8 , and G 2 , and FET Q 6
is composed of N 5 , P 4 , N 6 and G 1 .

このゼロクロス光トライアツクに印加する交流
正弦波電圧の高い振幅時点に光を入射させても、
トライアツクは直ちにオンにならず、電圧が低く
なつた時点即ちゼロクロス近傍でオンする。即
ち、電圧が高い時点では、FETQ6がオンし、光
照射で光励起電流を流しても、P1−N6−N5
MT1の経路で流れてしまい、ターンオンさせる
ことは不可能である。このように、交流波形のゼ
ロクロス以外で導通することが阻止されると、ス
イツチング時に発生するノイズを大幅に低減させ
ることができる。しかし、第1図のゼロクロス光
トライアツクは、今迄外部回路で構成していたゼ
ロクロス制御回路をトライアツクに一体化したよ
うな構成であるために、構成が複雑であるという
欠点を有する。
Even if light is incident on this zero-cross optical triax at a high amplitude point of the AC sinusoidal voltage,
The triac does not turn on immediately, but turns on when the voltage becomes low, that is, near the zero cross. That is, when the voltage is high, FETQ 6 is turned on, and even if a photoexcitation current is caused to flow through light irradiation, P 1 −N 6 −N 5
It flows along the path of MT 1 and it is impossible to turn it on. In this way, if conduction is prevented at points other than the zero cross of the AC waveform, the noise generated during switching can be significantly reduced. However, the zero-cross optical triac shown in FIG. 1 has a disadvantage in that the structure is complicated because the zero-cross control circuit, which has hitherto been constructed as an external circuit, is integrated into the triac.

そこで、本発明の目的は構成の簡単なゼロクロ
ス機能を有する光サイリスタを提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an optical thyristor having a simple configuration and a zero-crossing function.

上記目的を達成するための本発明は、理解を容
易にするために実施例を示す図面の符号を参照し
て説明すると、第1導電型の第1の半導体領域1
と、前記第1の半導体領域1に隣接する第2導電
型の第2の半導体領域2と、前記第2の半導体領
域2に隣接する第1導電型の第3の半導体領域3
と、前記第3の半導体領域3に隣接する第2導電
型の第4の半導体領域4と、表面に露出する部分
を有して前記第2の半導体領域2に囲まれている
第1導電型の第5の半導体領域5と、前記第1の
半導体領域1と前記第5の半導体領域5との間に
エンハンスメント型絶縁ゲート電界効果トランジ
スタのチヤンネルが形成されるように少なくとも
前記第2の半導体領域2の表面部分2a上に設け
られた絶縁層12と、前記絶縁層12の上に設け
られた前記電界効果トランジスタのゲート電極1
3と、前記ゲート電極13を前記第3の半導体領
域3に電気的に接続するための第1の接続部分1
4と、前記第5の半導体領域5を前記第2の半導
体領域2に電気的に接続する第2の接続部分16
と、前記第1の半導体領域1に接続された第1の
電極10と、前記第4の半導体領域4に接続され
た第2の電極11と、光駆動させるための受光面
8と、を具備していることを特徴とするゼロクロ
ス機能を有した単一又は両方向の光サイリスタに
係わるものである。
To achieve the above object, the present invention will be described with reference to the reference numerals in the drawings showing the embodiments for easy understanding.
a second semiconductor region 2 of a second conductivity type adjacent to the first semiconductor region 1; and a third semiconductor region 3 of a first conductivity type adjacent to the second semiconductor region 2.
a fourth semiconductor region 4 of the second conductivity type adjacent to the third semiconductor region 3; and a fourth semiconductor region 4 of the first conductivity type surrounded by the second semiconductor region 2 with a portion exposed on the surface. and at least the second semiconductor region such that a channel of an enhancement type insulated gate field effect transistor is formed between the first semiconductor region 1 and the fifth semiconductor region 5. an insulating layer 12 provided on the surface portion 2a of 2; and a gate electrode 1 of the field effect transistor provided on the insulating layer 12.
3, and a first connection portion 1 for electrically connecting the gate electrode 13 to the third semiconductor region 3.
4, and a second connection portion 16 that electrically connects the fifth semiconductor region 5 to the second semiconductor region 2.
, a first electrode 10 connected to the first semiconductor region 1, a second electrode 11 connected to the fourth semiconductor region 4, and a light-receiving surface 8 for optical driving. This invention relates to a single or bidirectional optical thyristor having a zero-crossing function.

上記本発明によれば、第2の半導体領域2の中
に第5の半導体領域5を設け、第1の半導体領域
1と第5の半導体領域5との間にMOS・FETを
作り、且つ第5の半導体領域5と第2の半導体領
域2とを電気的に接続するのみで、ゼロクロス近
傍でオンさせる機能が生じるので、構成を大幅に
簡略化することが可能になる。
According to the present invention, the fifth semiconductor region 5 is provided in the second semiconductor region 2, the MOS/FET is formed between the first semiconductor region 1 and the fifth semiconductor region 5, and the fifth semiconductor region 5 is provided in the second semiconductor region 2. By simply electrically connecting the semiconductor region 5 of No. 5 and the second semiconductor region 2, a function of turning on near the zero cross is generated, making it possible to greatly simplify the configuration.

次に図面を参照して本発明の実施例について述
べる。
Next, embodiments of the present invention will be described with reference to the drawings.

第3図は本発明の実施例に係わるゼロクロス光
サイリスタを説明的に示す一部切欠斜視図であ
る。この光サイリスタは、一般の電気制御サイリ
スタと同様に、第1導電型(この実施例ではN
型)の第1の半導体領域1と、第2導電型(この
実施例ではP型)の第2の半導体領域2と、N型
の第3の半導体領域3と、P型の第4の半導体領
域4とから成る4層構造を有し、更に、第2の半
導体領域2に囲まれ且つ第1の半導体領域1をリ
ング状に囲むように配されたN型の第5の半導体
領域5を有する。なお、第1の半導体領域1はサ
イリスタを2つのトランジスタから成る等価回路
で示す場合に於ける第1のトランジスタのN型エ
ミツタ領域として働く部分であり、平均不純物濃
度約1020/cm3の領域である。また第2の半導体領
域2は等価回路の第1のトランジスタのP型ベー
ス領域として働く部分であり、平均不純物濃度約
5×1016/cm3の領域である。また第2の半導体領
域3は等価回路の第2のトランジスタのN型ベー
ス領域として働く部分であり、平均不純物濃度約
1×1014/cm3の領域である。また第4の半導体領
域4は等価回路の第2のトランジスタのP型エミ
ツタ領域として働く部分であり、平均不純物濃度
約5×1019/cm3の領域である。また第5の半導体
領域5は新たに設けられたMOS型FETを構成し
且つ第2の半導体領域2との電気的接続にも利用
するための領域であり、平均不純物濃度約1020
cm3を有する。また、第1、第2及び第5の半導体
領域1,2,5はプレーナ型に形成され、光7を
受ける受光面8を備えた主表面9に夫々の一部が
露出されている。
FIG. 3 is a partially cutaway perspective view illustrating a zero-cross optical thyristor according to an embodiment of the present invention. This optical thyristor, like a general electrically controlled thyristor, is of the first conductivity type (in this example, N
a first semiconductor region 1 of a second conductivity type (in this embodiment, a P type), a second semiconductor region 2 of a second conductivity type (P type in this embodiment), a third semiconductor region 3 of an N type, and a fourth semiconductor region of a P type. It has a four-layer structure consisting of a region 4, and further includes an N-type fifth semiconductor region 5 surrounded by the second semiconductor region 2 and arranged so as to surround the first semiconductor region 1 in a ring shape. have Note that the first semiconductor region 1 is a portion that functions as an N-type emitter region of the first transistor when a thyristor is represented by an equivalent circuit consisting of two transistors, and is a region with an average impurity concentration of approximately 10 20 /cm 3 . It is. The second semiconductor region 2 serves as a P-type base region of the first transistor of the equivalent circuit, and has an average impurity concentration of about 5×10 16 /cm 3 . The second semiconductor region 3 serves as an N-type base region of the second transistor of the equivalent circuit, and has an average impurity concentration of about 1×10 14 /cm 3 . The fourth semiconductor region 4 serves as a P-type emitter region of the second transistor of the equivalent circuit, and has an average impurity concentration of about 5×10 19 /cm 3 . The fifth semiconductor region 5 constitutes a newly provided MOS FET and is also used for electrical connection with the second semiconductor region 2, and has an average impurity concentration of about 10 20 /
with cm 3 . Further, the first, second, and fifth semiconductor regions 1, 2, and 5 are formed in a planar shape, and a portion of each is exposed on a main surface 9 provided with a light-receiving surface 8 that receives light 7.

10は第1の半導体領域1に接続された第1の
電極としてのカソードであり、11は第4の半導
体領域4に接続された第2の電極としてのアノー
ドである。12はMOS型FETを構成するSiO2
Si3N4から成る絶縁層である。13はAlから成る
FETのゲート電極である。N+型の第1の半導体
領域1とN+型の第5の半導体領域5との間で表
面に露出するP型の第2の半導体領域2の表面部
分2aはイオン注入で低不純物濃度とされたNチ
ヤンネル形成領域である。
10 is a cathode as a first electrode connected to the first semiconductor region 1, and 11 is an anode as a second electrode connected to the fourth semiconductor region 4. 12 is SiO 2 + that constitutes a MOS type FET
It is an insulating layer made of Si 3 N 4 . 13 consists of Al
This is the gate electrode of the FET. The surface portion 2a of the P-type second semiconductor region 2 exposed at the surface between the N + -type first semiconductor region 1 and the N + -type fifth semiconductor region 5 is doped with a low impurity concentration by ion implantation. This is the N-channel forming region.

表面部分2aと絶縁層12とゲート電極13と
から成るエンハンスメント型Nチヤンネル
MOS・FETのゲート電極13を第3の半導体領
域3に接続するための第1の接続部分14は、第
3の半導体領域3の中に形成されたN+型の接続
用半導体領域3aと配線導体15とから成る。第
5の半導体領域5と第2の半導体領域2とを電気
的に接続するための第2の接続部分16は第5の
半導体領域5と第2の半導体領域2との外周側の
PN接合を金属層で短絡することによつて形成さ
れている。
Enhancement type N channel consisting of surface portion 2a, insulating layer 12 and gate electrode 13
The first connecting portion 14 for connecting the gate electrode 13 of the MOS/FET to the third semiconductor region 3 is connected to the N + type connecting semiconductor region 3a formed in the third semiconductor region 3 and the wiring. It consists of a conductor 15. The second connection portion 16 for electrically connecting the fifth semiconductor region 5 and the second semiconductor region 2 is located on the outer peripheral side of the fifth semiconductor region 5 and the second semiconductor region 2.
It is formed by shorting a PN junction with a metal layer.

第4図は主表面9に於ける各半導体領域の配置
を概略的に示すものである。この図から明らかな
ように実際のサイリスタは、第3図にその半分を
示す微小サイリスタを同一基板内に多数設け、ア
ノード11、カソード10、ゲート電極13、第
2の接続部分16を互いに並列接続することによ
つて構成されている。
FIG. 4 schematically shows the arrangement of each semiconductor region on the main surface 9. As shown in FIG. As is clear from this figure, in an actual thyristor, a large number of micro thyristors, half of which are shown in FIG. It is composed of:

次にこの光サイリスタの動作を説明する。今、
カソード10とアノード11との間に正弦波交流
電圧が印加されており、且つカソード10が負、
アノード11が正となる極性を有して正弦波の高
い電圧が印加されている時点即ちゼロクロス近傍
以外の例えば6ボルト以上の電圧が印加される時
点で、光7が受光面8に投射されても、このサイ
リスタはオン状態とならない。これを詳しく説明
すると、アノード・カソード間電圧VAKが6ボル
ト以上になると、アノード11の6ボルトの電圧
がアノード11、第4の半導体領域4、第3の半
導体領域3、N+型半導体領域3a、配線導体1
5、及びゲート電極13から成る経路で、ゲート
電極13に印加され、また第2の半導体領域2の
電位はN+P接合が順方向バイアス状態であるた
めにカソード10の電位にほぼ等しくなり、結
局、ゲート電極13と第2の半導体領域2との間
の電位差がカソード・アノード間電圧VAKに近い
電圧となり、この電位差が約5ボルト以上になる
と表面部分2aにNチヤンネルが形成される。従
つて、正弦波交流電圧の振幅が約6ボルト以上の
場合には第1の半導体領域1と第5の半導体領域
5とが電気的に接続され、結局、P型ベースの第
2の半導体領域2、短絡電極である第2の接続部
分16、N+型の第5の半導体領域5、表面部分
2aのN型チヤンネル、N+型の第1の半導体領
域1、及びカソード10から成る電気的回路が形
成される。このため、光7の照射でホール・エレ
クトロン対を発生させ、逆バイアス状態にある
PN-接合をオンにしようとしても、光励起電流
が、上記のチヤンネルを通る電気回路で流れてし
まい、オンにすることが不可能である。
Next, the operation of this optical thyristor will be explained. now,
A sinusoidal AC voltage is applied between the cathode 10 and the anode 11, and the cathode 10 is negative,
At the time when the anode 11 has a positive polarity and a high sinusoidal voltage is applied, that is, at a time when a voltage other than near zero cross, for example, 6 volts or more is applied, the light 7 is projected onto the light receiving surface 8. However, this thyristor does not turn on. To explain this in detail, when the anode-cathode voltage V AK becomes 6 volts or more, the 6 volt voltage of the anode 11 is applied to the anode 11, the fourth semiconductor region 4, the third semiconductor region 3, and the N + type semiconductor region. 3a, wiring conductor 1
5 and the gate electrode 13, and the potential of the second semiconductor region 2 is approximately equal to the potential of the cathode 10 because the N + P junction is in a forward bias state. Eventually, the potential difference between the gate electrode 13 and the second semiconductor region 2 becomes a voltage close to the cathode-anode voltage VAK , and when this potential difference becomes about 5 volts or more, an N channel is formed in the surface portion 2a. Therefore, when the amplitude of the sinusoidal AC voltage is about 6 volts or more, the first semiconductor region 1 and the fifth semiconductor region 5 are electrically connected, and as a result, the P-type base second semiconductor region 2. An electrical circuit consisting of a second connecting portion 16 which is a shorting electrode, a fifth N + type semiconductor region 5, an N channel in the surface portion 2a, a first N + type semiconductor region 1, and a cathode 10. A circuit is formed. For this reason, irradiation with light 7 generates hole-electron pairs, resulting in a reverse bias state.
If we try to turn on the PN -junction , the photoexcited current will flow in the electrical circuit through the above channel, making it impossible to turn on.

しかし、光7の照射を継続し、交流電圧の次の
周期でゼロボルトラインを交流電圧が横切るゼロ
クロス近傍時点ではアノード・カソード間電圧
VAKが6ボルト以下であり、ゲート電極13と第
2の半導体領域2との間の電位差も5ボルト以下
であるので、表面部分2aにNチヤンネルが形成
されない。従つて、光7の照射で生じた光励起電
流はPN-接合をオン状態にするために有効に利
用され、サイリスタは直ちにオンになる。サイリ
スタが一度オンになると、交流電圧の振幅が例え
高くなつても、アノード・カソード間電圧VAK
低く保たれるので、MOS・FETのチヤンネルが
形成されることはない。
However, when the irradiation of light 7 is continued and the AC voltage crosses the zero volt line in the next cycle of the AC voltage, the voltage between the anode and cathode approaches zero.
Since V AK is 6 volts or less and the potential difference between the gate electrode 13 and the second semiconductor region 2 is also 5 volts or less, no N channel is formed in the surface portion 2a. Therefore, the photoexcitation current generated by irradiation with light 7 is effectively used to turn on the PN - junction, and the thyristor is immediately turned on. Once the thyristor is turned on, even if the amplitude of the AC voltage increases, the anode-cathode voltage V AK remains low, so no MOS/FET channel is formed.

上述から明らかなように本実施例によれば、次
の利点が得られる。
As is clear from the above, this embodiment provides the following advantages.

(a) 第1の半導体領域1と第5の半導体領域5と
の間にMOS型FETを形成し、且つN+型の第5
の半導体領域5とP型の第2の半導体領域2と
を短絡電極構造の第2の接続部分16にて接続
し、且つゲート電極13を第1の接続部分14
にて第3の半導体領域3に接続するのみで、ゼ
ロクロス近傍でのオン機能を得ることが可能に
なる。従つて、ゼロクロス光サイリスタの構成
を大幅に簡単にすることが可能になる。
(a) A MOS type FET is formed between the first semiconductor region 1 and the fifth semiconductor region 5, and an N + type fifth semiconductor region 5 is formed.
The semiconductor region 5 and the P-type second semiconductor region 2 are connected by a second connection portion 16 having a short-circuit electrode structure, and the gate electrode 13 is connected to the first connection portion 14.
By simply connecting it to the third semiconductor region 3 at , it is possible to obtain an on function near the zero cross. Therefore, it becomes possible to significantly simplify the configuration of the zero-crossing optical thyristor.

(b) 第1の半導体領域1を取り囲むように第5の
半導体領域5が形成され、これ等の間に
MOS・FETが設けられているので、FETの実
効チヤンネル幅が大きくなり、MOS・FETの
オン抵抗が低くなる。従つて、アノード・カソ
ード間に急な立ち上りの順電圧が印加されてオ
ンにさせようとする変位電流が生じ、dv/dt
効果による誤動作が生じようとしても、
MOS・FET回路で変位電流を吸収する効果が
良くなり、dv/dt耐量の増大が計れる。
(b) A fifth semiconductor region 5 is formed so as to surround the first semiconductor region 1, and a fifth semiconductor region 5 is formed between these regions.
Since a MOS/FET is provided, the effective channel width of the FET becomes larger and the on-resistance of the MOS/FET becomes lower. Therefore, a rapidly rising forward voltage is applied between the anode and cathode, causing a displacement current that tries to turn on the dv/dt.
Even if a malfunction occurs due to the effect,
MOS/FET circuits are more effective at absorbing displacement currents, increasing dv/dt withstand capability.

(c) 第4図に示す如く、多数の微小サイリスタを
組合せた構造であるので、各微小サイリスタに
於けるP型ベース即ち第2の半導体領域2に
dv/dt効果で変位電流が生じ、短絡電極構造
の第2の接続部分16に向つて横方向に流れて
も、横方向の距離が短いので、P型ベースの横
方向抵抗による電圧降下が非常に小さくなり、
dv/dt効果で誤動作することが防止される。
(c) As shown in Figure 4, since the structure is a combination of many micro thyristors, the P-type base of each micro thyristor, that is, the second semiconductor region 2,
Even though the dv/dt effect causes a displacement current to flow laterally towards the second connection part 16 of the short-circuit electrode structure, the voltage drop due to the lateral resistance of the P-type base is very small due to the short lateral distance. becomes smaller,
Malfunctions are prevented due to the DV/DT effect.

(d) 第4図に示す如く、微小サイリスタの組合せ
としたので、PN-接合のほぼ全部を同時にオ
ンにすることが可能になる。また、各サイリス
タの第2の接続部分16が相互に接続されてい
るので、光照射が主表面9に於いて不均一であ
つても、各サイリスタの第2の半導体領域2が
同電位となり、素子全面が殆んど同時に点弧さ
れる。従つて、di/dt耐量を大きくすることが
できる。
(d) As shown in FIG. 4, the combination of micro thyristors makes it possible to turn on almost all of the PN - junctions at the same time. Further, since the second connection portions 16 of each thyristor are connected to each other, even if the light irradiation is uneven on the main surface 9, the second semiconductor region 2 of each thyristor has the same potential. The entire surface of the element is fired almost simultaneously. Therefore, di/dt tolerance can be increased.

次に本発明の別の実施例のゼロクロス光サイリ
スタを示す第5図について述べる。但し、第5図
の符号1〜5,7〜16で示す部分は第3図で同
一符号で示した部分と実質的に同一であるので、
その説明を省略する。この実施例では、第3図の
N+型半導体領域3aの代りに、P型の接続用半
導体領域6が設けられている。そして、P型の第
2の半導体領域2と半導体領域6との最短間隔
は、アノード11とカソード10との間に印加す
る電圧が所定値になつた時に第2の半導体領域2
と第6の半導体領域6との間が空間電荷層(空乏
層)で埋められるような値例えば20μmに設定さ
れている。このように構成すると、サイリスタの
オンがMOS・FETで阻止されている期間に於い
て、アノード・カソード間電圧VAKが約20ボルト
になると、PN-接合から延びてくる空乏層が領
域6に達し、これ以上VAKが上昇しても領域2と
ゲート電極13との間の電位差の上昇がにぶくな
る。従つて、MOS・FETのサイリスタオン阻止
期間における破壊を防止することが出来る。
Next, FIG. 5, which shows a zero-crossing optical thyristor according to another embodiment of the present invention, will be described. However, since the parts indicated by numerals 1 to 5 and 7 to 16 in Fig. 5 are substantially the same as the parts indicated by the same numerals in Fig. 3,
The explanation will be omitted. In this example, the
A P-type connection semiconductor region 6 is provided in place of the N + -type semiconductor region 3a. The shortest distance between the P-type second semiconductor region 2 and the semiconductor region 6 is determined by the distance between the second semiconductor region 2 and the semiconductor region 6 when the voltage applied between the anode 11 and the cathode 10 reaches a predetermined value.
The value is set to, for example, 20 μm so that the space between the semiconductor region 6 and the sixth semiconductor region 6 is filled with a space charge layer (depletion layer). With this configuration, when the anode-cathode voltage V AK reaches approximately 20 volts during the period when the thyristor is blocked from turning on by the MOS/FET, the depletion layer extending from the PN - junction will reach region 6. Even if V AK increases further, the potential difference between region 2 and gate electrode 13 increases slowly. Therefore, it is possible to prevent the MOS/FET from being destroyed during the thyristor-on blocking period.

第6図は、P型半導体領域6の効果を説明する
ものである。今、アノード11を0ボルト、カソ
ード10に負の電圧VKを加え、アノード・カソ
ード間電圧を増大すると、第2の半導体領域2の
電位VAはカソード電圧VKの変化にほぼ追従して
変化する。また、P型半導体領域6の表面電位
VB即ちゲート電極13の電位は、領域2と領域
6との間が空乏層で埋まると、ガードリング効果
と同様な働きで、カソード電圧VKを一定の比率
で分圧したような状態となり、第6図のVBで示
すように変化する。これにより、VAとVBとの差
VABはほぼ一定に保たれ、VAKの増大によつて
MOS・FETが破壊しなくなり、MOS、FETは
VAKが1000ボルトになつても破壊しない。なお、
第5図の光サイリスタの領域6以外の部分は第3
図及び第4図と同様に構成されているので、前述
の実施例と同一の利点を有する。
FIG. 6 explains the effect of the P-type semiconductor region 6. Now, if we apply 0 volts to the anode 11 and a negative voltage V K to the cathode 10 to increase the voltage between the anode and cathode, the potential V A of the second semiconductor region 2 will almost follow the change in the cathode voltage V K. Change. In addition, the surface potential of the P-type semiconductor region 6
When the gap between regions 2 and 6 is filled with a depletion layer, V B, that is, the potential of the gate electrode 13, acts like a guard ring effect and becomes a state where the cathode voltage V K is divided at a constant ratio. , changes as shown by V B in FIG. This makes the difference between V A and V B
V AB remains approximately constant, and by increasing V AK
MOS/FET will not be destroyed, MOS/FET will be
V AK will not be destroyed even if it reaches 1000 volts. In addition,
The parts other than the area 6 of the optical thyristor in FIG.
Since the structure is similar to that shown in FIG. 4 and FIG. 4, it has the same advantages as the previous embodiment.

次に本発明の更に別の実施例を示す第7図につ
いて述べる。但し、符号1〜16で示す部分は第
3図及び第5図で同一符号で示す部分と同一構成
であるので、その説明を省略する。この実施例は
本発明を双方向制御可能なゼロクロス光サイリス
タ即ちトライアツクに適用したものである。従つ
て、鎖線で分断されている左半分の第1のサイリ
スタ部分と右半分の第2のサイリスタとを逆並列
接続した構成になつている。このトライアツクの
場合にも単一方向制御のサイリスタと同様な作用
効果を得ることが出来る。
Next, FIG. 7 showing still another embodiment of the present invention will be described. However, since the parts indicated by reference numerals 1 to 16 have the same configuration as the parts indicated by the same reference numerals in FIGS. 3 and 5, the explanation thereof will be omitted. This embodiment is an application of the present invention to a bidirectionally controllable zero-crossing optical thyristor or triax. Therefore, the first thyristor portion on the left half and the second thyristor portion on the right half, which are separated by a chain line, are connected in antiparallel. In the case of this triax as well, the same effects as those of a unidirectionally controlled thyristor can be obtained.

以上、本発明の実施例について述べたが、本発
明はこれに限定されるものではなく、更に変形可
能なものである。例えば、完全なプレーナ構造の
サイリスタにも適用可能である。又、接続部分1
4をワイヤで説明的に示しているが、クロス配線
等としても勿論差支えない。又、フオトダイオー
ド等を光7を付与するために一体化しても差支え
ない。
Although the embodiments of the present invention have been described above, the present invention is not limited thereto and can be further modified. For example, it is also applicable to a thyristor with a completely planar structure. Also, connection part 1
Although 4 is shown as a wire for explanatory purposes, it is of course possible to use a cross wiring or the like. Further, a photodiode or the like may be integrated to provide the light 7.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のゼロクロス光トライアツクを示
す断面図、第2図は第1図のトライアツクの等価
回路図、第3図は本発明の実施例に係わるゼロク
ロス光サイリスタの第4図の−線に相当する
部分の一部切欠斜視図、第4図は第3図のサイリ
スタの主表面に於ける各半導体領域の多数を示す
平面図、第5図は本発明の別の実施例に係わるゼ
ロクロス光サイリスタの一部切欠斜視図、第6図
は第5図のサイリスタの特性図、第7図は本発明
の更に別の実施例に係わるゼロクロス光サイリス
タを示す断面図である。 なお図面に用いられている符号に於いて、1は
第1の半導体領域、2は第2の半導体領域、2a
は表面部分、3は第3の半導体領域、4は第4の
半導体領域、5は第5の半導体領域、6は接続用
半導体領域、7は光、8は受光面、9は主表面、
10は第1の電極(カソード)、11は第2の電
極(アノード)、12は絶縁層、13はゲート電
極、14は第1の接続部分、15は配線導体、1
6は第2の接続部分である。
FIG. 1 is a cross-sectional view showing a conventional zero-cross optical triax, FIG. 2 is an equivalent circuit diagram of the triax shown in FIG. 1, and FIG. 4 is a plan view showing a large number of semiconductor regions on the main surface of the thyristor shown in FIG. 3; FIG. 5 is a diagram showing a zero-cross light according to another embodiment of the present invention. FIG. 6 is a characteristic diagram of the thyristor shown in FIG. 5, and FIG. 7 is a sectional view showing a zero-cross optical thyristor according to still another embodiment of the present invention. In the symbols used in the drawings, 1 is the first semiconductor region, 2 is the second semiconductor region, 2a
is a surface portion, 3 is a third semiconductor region, 4 is a fourth semiconductor region, 5 is a fifth semiconductor region, 6 is a connecting semiconductor region, 7 is light, 8 is a light-receiving surface, 9 is a main surface,
10 is a first electrode (cathode), 11 is a second electrode (anode), 12 is an insulating layer, 13 is a gate electrode, 14 is a first connection part, 15 is a wiring conductor, 1
6 is the second connection part.

Claims (1)

【特許請求の範囲】 1 第1導電型の第1の半導体領域1と、 前記第1の半導体領域1に隣接する第2導電型
の第2の半導体領域2と、 前記第2の半導体領域2に隣接する第1導電型
の第3の半導体領域3と、 前記第3の半導体領域3に隣接する第2導電型
の第4の半導体領域4と、 表面に露出する部分を有して前記第2の半導体
領域2に囲まれている第1導電型の第5の半導体
領域5と、 前記第1の半導体領域1と前記第5の半導体領
域5との間にエンハンスメント型絶縁ゲート電界
効果トランジスタのチヤンネルが形成されるよう
に少なくとも前記第2の半導体領域2の表面部分
2a上に設けられた絶縁層12と、 前記絶縁層12の上に設けられた前記電界効果
トランジスタのゲート電極13と、 前記ゲート電極13を前記第3の半導体領域3
に電気的に接続するための第1の接続部分14
と、 前記第5の半導体領域5を前記第2の半導体領
域2に電気的に接続する第2の接続部分16と、 前記第1の半導体領域1に接続された第1の電
極10と、 前記第4の半導体領域4に接続された第2の電
極11と、 光駆動させるための受光面8と、 を具備していることを特徴とするゼロクロス機能
を有した単一又は両方向の光サイリスタ。 2 前記第1の接続部分14は、前記第3の半導
体領域3で囲まれるように設けられた第2導電型
の接続半導体領域6と、前記ゲート電極13と前
記接続半導体領域6とを接続する配線導体15と
から成るものである特許請求の範囲第1項記載の
光サイリスタ。 3 前記第5の半導体領域5は、前記第1の半導
体領域1が露出する側の表面に露出するように配
置され且つ前記第1の半導体領域1をリング状に
囲むように形成されたものである特許請求の範囲
第1項又は第2項記載の光サイリスタ。
[Claims] 1: a first semiconductor region 1 of a first conductivity type; a second semiconductor region 2 of a second conductivity type adjacent to the first semiconductor region 1; and the second semiconductor region 2. a third semiconductor region 3 of the first conductivity type adjacent to the third semiconductor region 3; a fourth semiconductor region 4 of the second conductivity type adjacent to the third semiconductor region 3; a fifth semiconductor region 5 of the first conductivity type surrounded by the second semiconductor region 2; and an enhancement type insulated gate field effect transistor between the first semiconductor region 1 and the fifth semiconductor region 5; an insulating layer 12 provided on at least the surface portion 2a of the second semiconductor region 2 so that a channel is formed; a gate electrode 13 of the field effect transistor provided on the insulating layer 12; The gate electrode 13 is connected to the third semiconductor region 3.
a first connecting part 14 for electrically connecting to
a second connection portion 16 that electrically connects the fifth semiconductor region 5 to the second semiconductor region 2; a first electrode 10 connected to the first semiconductor region 1; A single or bidirectional optical thyristor with a zero-cross function, comprising: a second electrode 11 connected to a fourth semiconductor region 4; and a light-receiving surface 8 for optical driving. 2. The first connection portion 14 connects the second conductivity type connection semiconductor region 6 provided so as to be surrounded by the third semiconductor region 3, the gate electrode 13, and the connection semiconductor region 6. The optical thyristor according to claim 1, which comprises a wiring conductor 15. 3. The fifth semiconductor region 5 is arranged so as to be exposed on the surface of the side where the first semiconductor region 1 is exposed, and is formed so as to surround the first semiconductor region 1 in a ring shape. An optical thyristor according to claim 1 or 2.
JP56203586A 1981-12-18 1981-12-18 Zero cross photo thyristor Granted JPS58105572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56203586A JPS58105572A (en) 1981-12-18 1981-12-18 Zero cross photo thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56203586A JPS58105572A (en) 1981-12-18 1981-12-18 Zero cross photo thyristor

Publications (2)

Publication Number Publication Date
JPS58105572A JPS58105572A (en) 1983-06-23
JPS637471B2 true JPS637471B2 (en) 1988-02-17

Family

ID=16476532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56203586A Granted JPS58105572A (en) 1981-12-18 1981-12-18 Zero cross photo thyristor

Country Status (1)

Country Link
JP (1) JPS58105572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4105646A1 (en) * 1990-02-23 1991-08-29 Matsushita Electric Works Ltd METHOD FOR PRODUCING AN OPTICALLY TRIGGERED LATERAL THYRISTOR

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035571A (en) * 1983-08-08 1985-02-23 Sanken Electric Co Ltd Semiconductor device
JPS6074678A (en) * 1983-09-30 1985-04-26 Toshiba Corp Semiconductor device
JPH0697692B2 (en) * 1984-01-17 1994-11-30 株式会社東芝 Semiconductor device
JPS63124477A (en) * 1986-11-12 1988-05-27 Mitsubishi Electric Corp Photocoupler having zero-cross function
JPH02126677A (en) * 1988-11-07 1990-05-15 Toshiba Corp Semiconductor device
JPH04249370A (en) * 1991-02-05 1992-09-04 Sharp Corp Photo-triac
CN108288656B (en) * 2018-03-08 2020-03-31 电子科技大学 High di/dt tolerance light-operated thyristor
CN108493291B (en) * 2018-04-13 2020-03-31 电子科技大学 Layout design method for high di/dt light-operated thyristor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146190A (en) * 1975-06-11 1976-12-15 Hitachi Ltd Diode circuit
JPS5235586A (en) * 1975-09-12 1977-03-18 Mitsubishi Electric Corp Semiconductor device
JPS5245288A (en) * 1975-06-19 1977-04-09 Asea Ab Semiconductor device
JPS5477584A (en) * 1978-11-13 1979-06-21 Hitachi Ltd Semiconductor switch
JPS553694A (en) * 1978-06-16 1980-01-11 Motorola Inc Device for triggering monolithic semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146190A (en) * 1975-06-11 1976-12-15 Hitachi Ltd Diode circuit
JPS5245288A (en) * 1975-06-19 1977-04-09 Asea Ab Semiconductor device
JPS5235586A (en) * 1975-09-12 1977-03-18 Mitsubishi Electric Corp Semiconductor device
JPS553694A (en) * 1978-06-16 1980-01-11 Motorola Inc Device for triggering monolithic semiconductor
JPS5477584A (en) * 1978-11-13 1979-06-21 Hitachi Ltd Semiconductor switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4105646A1 (en) * 1990-02-23 1991-08-29 Matsushita Electric Works Ltd METHOD FOR PRODUCING AN OPTICALLY TRIGGERED LATERAL THYRISTOR
DE4105646C2 (en) * 1990-02-23 1994-07-28 Matsushita Electric Works Ltd Method for producing an optically triggerable lateral thyristor

Also Published As

Publication number Publication date
JPS58105572A (en) 1983-06-23

Similar Documents

Publication Publication Date Title
JPH0575110A (en) Semiconductor device
KR920010314B1 (en) Semiconductor device
JP3149773B2 (en) Insulated gate bipolar transistor with current limiting circuit
US5079607A (en) Mos type semiconductor device
JPS637471B2 (en)
JP3103655B2 (en) Semiconductor device
US5621229A (en) Semiconductor device and control method
US4939564A (en) Gate-controlled bidirectional semiconductor switching device with rectifier
US4054893A (en) Semiconductor switching devices utilizing nonohmic current paths across P-N junctions
US4509069A (en) Light triggerable thyristor with controllable emitter-short circuit and trigger amplification
JPS62109365A (en) Semiconductor device
JPH0154865B2 (en)
JPH0465552B2 (en)
US3879744A (en) Bidirectional thyristor
JP2513665B2 (en) Insulated gate type thyristor
JPS623987B2 (en)
JPH0217940B2 (en)
JP3450358B2 (en) Semiconductor device
US4509068A (en) Thyristor with controllable emitter short circuits and trigger amplification
JPH01251755A (en) Thyristor
JPH029463B2 (en)
JPS6043036B2 (en) thyristor
JP2793925B2 (en) Thyristor with control gate
US5258670A (en) Light triggered & quenched static induction thyristor circuit
JPH0139226B2 (en)