JPS6074678A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6074678A
JPS6074678A JP18272883A JP18272883A JPS6074678A JP S6074678 A JPS6074678 A JP S6074678A JP 18272883 A JP18272883 A JP 18272883A JP 18272883 A JP18272883 A JP 18272883A JP S6074678 A JPS6074678 A JP S6074678A
Authority
JP
Japan
Prior art keywords
conductivity type
type
diffusion layer
layer
dirt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18272883A
Other languages
Japanese (ja)
Other versions
JPH0580158B2 (en
Inventor
Shigenori Yakushiji
薬師寺 茂則
Susumu Yasaka
家坂 進
Tsukasa Hattori
服部 宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18272883A priority Critical patent/JPS6074678A/en
Publication of JPS6074678A publication Critical patent/JPS6074678A/en
Publication of JPH0580158B2 publication Critical patent/JPH0580158B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7404Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device
    • H01L29/742Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device the device being a field effect transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To enable the prevention of the insulation breakdown of a gate oxide film without the decrease in zero-cross function even under the condition of high voltage by a method wherein a depletion layer is enabled to reach a P-type diffused region, when an insulation breakdown voltage for a gate oxide film of MOS structure is impressed between a P type anode diffuxed layer and an N type cathode diffused layer. CONSTITUTION:A P type gate diffused layer 22 is formed in the main surface of an N type semiconductor substrate 21, and N type cathode diffused layers 23 and 24 are formed in the surface of this diffused layer 22. A gate oxide film 26 is formed on the surface of the center of the diffused layer 22, so as to be in contact with the respective surfaces of the diffused layers 23 and 24; then the MOS structure part 28 is formed by formation of a gate conductive layer 27 on the surface of the film 26. In such a manner, a floating P type diffused region 29 is formed at a distance l to which a depletion layer 31 reach at the insulation breakdown voltage Vl for the film 26 or less; thereby a potential over the voltage Vl does not impressed on the layer 27 of the part 28, and accordingly the insulation breakdown of the film 26 is prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、例えばSSR(5otld 5tate 
Retay)に使用され、MO8(M@tatOxld
e Sem1conductor )構造によってトリ
が機能が制御される、サイリスタおよびトライアック等
の半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field of the invention] This invention relates to, for example, SSR (5otld 5tate
MO8 (M@tatOxld)
The present invention relates to semiconductor devices such as thyristors and triacs whose functions are controlled by a structure.

〔発明の技術的背景〕[Technical background of the invention]

例えば温度制御回路および時間制御回路に使用されるS
SHには、一般に電気トリガまたは光トリガによってス
イッチング動作するサイリスタ、トライアック等の半導
体装置が組み込まれる。
For example, S used in temperature control circuits and time control circuits.
The SH generally incorporates a semiconductor device such as a thyristor or a triac that performs a switching operation using an electric trigger or an optical trigger.

tAJkはr−)。、カッ−1間に、。8構造部11を
設けたサイリスタ(特開昭55−74168 )を示す
もので、このサイリスタはP型とN型のタイプの異なる
4つの領域(PNPN )より形成されている。すなわ
ち、このサイリスタは、アノード電極Aにプラス(ト)
、カソード電極Kにマイナス←)の電圧を印加した状態
で、ダート電極Gにプラス(ト)の電圧を印加すると導
通状態になるもので、この場合、MO8構造部11のダ
ート酸化膜に印加される電圧が、そのしきい値電圧を越
えると、ダートG、カソードに間が短絡してトリガ機能
をオフ制御し遮断状態となるものである。このよりな、
MO8構造部11のダート酸化膜のしきい値電圧に対応
する特定電圧範囲でのみトリガ機能をオン制御してサイ
リスタを動作させる機能を、一般に、ゼロクロス機能と
称する。ここで、上記MO8構造部11の?−)部には
、ダート酸化膜の絶縁破壊防止対策として、2つのコン
デンサCIおよびC2で分圧した一方の電圧を印加する
ようにしている。
tAJk is r-). , for a while. This figure shows a thyristor (Japanese Unexamined Patent Publication No. 55-74168) provided with eight structural parts 11, and this thyristor is formed of four regions (PNPN) of different types, P-type and N-type. In other words, this thyristor has a positive (t)
When a positive (←) voltage is applied to the dirt electrode G while a negative (←) voltage is applied to the cathode electrode K, a conductive state is established. When the voltage exceeds the threshold voltage, a short circuit occurs between dart G and the cathode, and the trigger function is controlled to be turned off, resulting in a cutoff state. More than this,
The function of operating the thyristor by turning on the trigger function only in a specific voltage range corresponding to the threshold voltage of the dirt oxide film of the MO8 structure 11 is generally referred to as a zero-cross function. Here, ? of the MO8 structure part 11? -) As a measure to prevent dielectric breakdown of the dirt oxide film, one voltage divided by two capacitors CI and C2 is applied.

次に、第2図および第3図は、それぞれ、上記第1図に
おける場合と同様のトリが機能制御用のMO8構造部1
2および13を設けたサイリスタ(特開昭54−268
0)およびトライアック(特開昭55−3694)を示
すもので、このサイリスタおよびトライアックの何れの
場合においても、MO8構造部12.13のダート部に
は、直接アノードA、カソードに間の電圧が印加される
ようになっている。この場合、f−)酸化膜の絶縁耐圧
を上げる為には、そのダート酸化膜の膜厚を厚く形成し
なければならない。この事は、前記第1図におけるサイ
リスタにおいても同様である。ここで、上記第1図乃至
第3図における半導体装置は、何れの場合においても、
最大電圧が例えば、400 (V)程度以下の低電圧県
外下で使用されるものである。
Next, in FIGS. 2 and 3, the same bird as in FIG. 1 is used for function control MO8 structure 1.
Thyristor equipped with 2 and 13 (Japanese Patent Application Laid-Open No. 54-268
0) and a triac (Japanese Unexamined Patent Publication No. 55-3694). In both the thyristor and the triac, the voltage between the anode A and the cathode is directly applied to the dirt part of the MO8 structure 12.13. It is now applied. In this case, in order to increase the dielectric strength of the f-) oxide film, the dart oxide film must be formed thickly. This also applies to the thyristor shown in FIG. 1 above. Here, in any case, the semiconductor devices shown in FIGS. 1 to 3 are as follows.
It is used outside the prefecture with low voltages where the maximum voltage is, for example, about 400 (V) or less.

〔背景技術の問題点〕[Problems with background technology]

しかし、このように、 MO8構造部のダート酸化膜の
絶縁耐圧を上げる為に、その酸化膜自体の膜厚を厚く形
成したのでtj:、M2S部のしきいftotlEが上
がってトリガ機能を制御する特定電圧範囲が広がる状態
と彦る。すなわち、例えば前述したそれぞれの半導体装
置を、最大電圧1000(イ)程度の高電圧条件下で使
用する場合には、M2S部のしきい値電圧が上がってゼ
ロクロス機能を低下させると共に、比較的高いアノード
A、カソードに間室圧でもトリガ機能がオン制御される
ようになシ、そのスイッチング時に伴なって電磁障害が
発生する恐れがある。
However, in order to increase the withstand voltage of the dirt oxide film in the MO8 structure, the thickness of the oxide film itself is made thicker, so the threshold ftotlE of the M2S part increases and controls the trigger function. It seems like the specific voltage range is expanding. That is, for example, when each of the above-mentioned semiconductor devices is used under a high voltage condition with a maximum voltage of about 1000 (a), the threshold voltage of the M2S section increases and reduces the zero-crossing function, and the relatively high Since the trigger function is controlled to be turned on even when there is pressure between the anode A and the cathode, electromagnetic interference may occur during switching.

〔発明の目的〕[Purpose of the invention]

この発明は上記のような問題点に鑑みなされたもので、
例えば最大電圧1000(Iil)というような高電圧
条件下で使用するような場合でも、ゼロクロス機能を低
下させることなく、ダート酸化膜の絶縁破壊を防止する
ことが可能と力る半導体装置を提供することを目的とす
る。
This invention was made in view of the problems mentioned above.
To provide a semiconductor device capable of preventing dielectric breakdown of a dirt oxide film without deteriorating zero cross function even when used under high voltage conditions such as a maximum voltage of 1000 (Iil). The purpose is to

〔発明の概要〕[Summary of the invention]

すなわちこの発明に係る半導体装置は、N型半導体基板
面のMO8構造を設けたP型ゲート拡散層に近接した距
離で、上記MO8構造のf−)≠°′電気的に接続した
P型拡散領域を形成し、P型アノード拡散層とN型カソ
ード拡散層との間に、上記MO8構造のダート酸化膜の
絶縁破壊電圧を印加した際に、上記P型拡散領域に対し
て空乏層が到達するようにしたものである。
That is, in the semiconductor device according to the present invention, the P-type diffusion region is electrically connected to f-)≠°' of the MO8 structure at a distance close to the P-type gate diffusion layer provided with the MO8 structure on the surface of the N-type semiconductor substrate. When a dielectric breakdown voltage of the dirt oxide film of the MO8 structure is applied between the P-type anode diffusion layer and the N-type cathode diffusion layer, the depletion layer reaches the P-type diffusion region. This is how it was done.

〔発明の実施例〕[Embodiments of the invention]

以下図面によルこの発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第4図はその構成を示すもので、この半導体装置はN型
の半導体基板21から形成する。このN型半導体基板2
1の主表面には、まず、P型f−)拡散層22を形成し
、このP型ダート拡散層22の表面には、例えばそれぞ
れ同一の拡散形状で第1および第2のN型カソード拡散
層23および24を形成する。この第2のN型カソード
拡散層24は、アルミニウム等による導電部25によシ
上記P型?−)拡散層22に電気的に接続されるもので
、このP型ダート拡散層22の中央部表面上には、上記
第1および第2のN型カソード拡散層23.24それぞ
れへζy部に接触するようにしてダート酸化826を形
成する。そして、このダート酸化膜26の表面上には、
r−ト導電層21を形成し、破線で示すようなMOS 
(MatatOxide Sem1conductor
 )構造部28を構成する。
FIG. 4 shows its structure, and this semiconductor device is formed from an N-type semiconductor substrate 21. This N-type semiconductor substrate 2
First, a P-type f-) diffusion layer 22 is formed on the main surface of the P-type dirt diffusion layer 22, and on the surface of this P-type dirt diffusion layer 22, for example, first and second N-type cathode diffusion layers each having the same diffusion shape are formed. Form layers 23 and 24. This second N-type cathode diffusion layer 24 is formed of the above-mentioned P type? -) electrically connected to the diffusion layer 22, and on the central surface of the P-type dirt diffusion layer 22 there is a A dirt oxide 826 is formed in contact. Then, on the surface of this dirt oxide film 26,
A MOS conductive layer 21 is formed as shown by the broken line.
(Matat Oxide Sem1 conductor
) constitutes the structural part 28.

また、このN型半導体基板2ノの主表面には、上記P型
ゲート拡散層22に近接した距離tで、フローティング
P型拡散領域29を形成する。
Furthermore, a floating P-type diffusion region 29 is formed on the main surface of the N-type semiconductor substrate 2 at a distance t close to the P-type gate diffusion layer 22 .

このP型拡散領域29は、上記MO8構造部28のダー
ト酸化膜26上に形成したダート導電層27に電気的に
接続されるもので、このP型拡散領域29を形成したN
型半導体基板21の主表面と反対側の表面には、P型ア
ノード拡散層30を形成する。そして、このP型アノー
ド拡散層30および上記第1のN型カソード拡散層23
、P型ff−)拡散層22から、それぞれ、アノード電
極Aおよびカソード電極に1ゲート電極Gを導出する。
This P-type diffusion region 29 is electrically connected to the dirt conductive layer 27 formed on the dirt oxide film 26 of the MO8 structure 28, and the P-type diffusion region 29 is
A P-type anode diffusion layer 30 is formed on the surface of the semiconductor substrate 21 opposite to the main surface. This P-type anode diffusion layer 30 and the first N-type cathode diffusion layer 23
, P-type ff-) diffusion layer 22, one gate electrode G is led out as an anode electrode A and a cathode electrode, respectively.

ことで、上記P型ゲート拡散層22とP型拡散領域29
との距離tは、アノード電極Aとカッ′(ド電極にとの
間に、ダート酸化膜26の絶縁破壊電圧Vtを印加した
際に、P型f−)拡散層22とN型半導体基板21との
界面に生じる破線aで示すような空乏層31の幅板下に
設定される。
As a result, the P-type gate diffusion layer 22 and the P-type diffusion region 29
When the dielectric breakdown voltage Vt of the dirt oxide film 26 is applied between the anode electrode A and the cathode electrode, the distance t between the P-type f−) diffusion layer 22 and the N-type semiconductor substrate 21 The depletion layer 31 is set under the width plate of the depletion layer 31 as shown by the broken line a generated at the interface with the depletion layer 31.

つtシ、例えば、上記MO8構造部28のしきい値電圧
vTを5〜6M程度に設定する場合には、P型ダート拡
散層22の表面濃度をlXl0”(cIIL−3)、界
面電荷密度をl x l Q”(am−2)とすれば、
ダート酸化膜26の膜厚は1500 (1)程度に設定
される。ここで、このf−)酸化膜26(1500X)
の絶縁破壊電圧Vtは一般に120〜130M程度であ
る。すなわち、このダート酸化膜26(1500X)O
絶縁破壊電圧Vt=120(V)を、P型アノード拡散
層30−N型カソード拡散層23間に印加した場合に生
じる空乏層31の幅は、N型半導体基板21の濃度を1
xlO(cm )、P型ゲート拡散層22の拡散深さを
40(μm)とすれば、30(μm)8度と々る。よっ
て、この場合、上記P型r−)拡散層22とP型拡散領
i″29との距離tは、30(μm)以下〔tく30(
μm))の適描な値に設定すればよい。
For example, when setting the threshold voltage vT of the MO8 structure 28 to about 5 to 6M, the surface concentration of the P-type dirt diffusion layer 22 is set to lXl0'' (cIIL-3), the interface charge density is If it is l x l Q” (am-2), then
The thickness of the dirt oxide film 26 is set to about 1500 (1). Here, this f-) oxide film 26 (1500X)
The dielectric breakdown voltage Vt is generally about 120 to 130M. That is, this dirt oxide film 26 (1500X)O
The width of the depletion layer 31 that occurs when dielectric breakdown voltage Vt=120 (V) is applied between the P-type anode diffusion layer 30 and the N-type cathode diffusion layer 23 is such that the concentration of the N-type semiconductor substrate 21 is 1.
xlO (cm 2 ) and the diffusion depth of the P-type gate diffusion layer 22 is 40 (μm), it is 30 (μm) and reaches 8 degrees. Therefore, in this case, the distance t between the P-type r-) diffusion layer 22 and the P-type diffusion region i''29 is less than or equal to 30 (μm).
It may be set to an appropriate value of μm).

すなわちこのように構成される半導体装置において、ま
ず、アノード電極A−カソード電極に間電圧vAKを、
OMから次第に上昇させると、空乏層31は徐々にN型
基板21側に広がるようになる。ここで、フローティン
グP型拡散領域29およびMO8構造部28のダート導
電層27それぞれの電位は、上記アノードA−カソード
に間電圧V□と同電位になるもので、この電圧vAKが
MO8構造部28のしきい値電圧VT=5〜6(v)程
度に達するまでの範囲内では、トリが機能はオン制御さ
れ、ダート電極Gに供給される電気トリが信号またはP
型ゲート拡散層22の表面に照射される光トリが信号p
hによってこの半導体装置は導通状態となる。この場合
、トリガ機能がオン制御されるMO8構造部28のしき
い値電圧範囲OM〜■、=5〜6Mを比較的狭く設定し
たので、電磁障害が発生することはない。
That is, in the semiconductor device configured in this way, first, a voltage vAK is applied between the anode electrode A and the cathode electrode.
When gradually rising from OM, the depletion layer 31 gradually spreads toward the N-type substrate 21 side. Here, the respective potentials of the floating P-type diffusion region 29 and the dirt conductive layer 27 of the MO8 structure 28 are the same potential as the voltage V□ between the anode A and the cathode, and this voltage vAK is Until the threshold voltage VT of 5 to 6 (v) is reached, the function of the bird is controlled to be on, and the electric bird supplied to the dirt electrode G is not connected to the signal or P
The light beam irradiated onto the surface of the gate diffusion layer 22 generates the signal p.
This semiconductor device becomes conductive due to h. In this case, since the threshold voltage range OM~■,=5~6M of the MO8 structure 28 in which the trigger function is turned on is set to be relatively narrow, electromagnetic interference will not occur.

次に、アノードA−カソードに間電圧vAKが、ms’
m造部28のしきい値電圧v、=5〜6(Vを越えた場
合には、ダート酸化膜26直下のP型ゲート拡散層22
0表面には、nチャンネルが形成されるようになシ、第
1のN型カソード拡散層23と第2のN型カソード拡散
層24とは結合されるように々る。これにより、第1お
よび第2のN型カソード拡散層23.24とP型ダート
拡散層22とは、導電部25により電気的に接続される
ように々す、f−)電極Gとカソード電極にとは短絡す
るように々る。この場合、この半導体装置のトリガ機能
はオフ制御されるようになシ、いかなるトリガ信号や外
来ノイズが供給されたとしても導通状態になることはな
い。
Next, the voltage vAK between the anode A and the cathode is ms'
The threshold voltage v of the m-structured portion 28 is 5 to 6 (if it exceeds V, the P-type gate diffusion layer 22 directly under the dirt oxide film 26
An n-channel is formed on the 0 surface, and the first N-type cathode diffusion layer 23 and the second N-type cathode diffusion layer 24 are bonded together. As a result, the first and second N-type cathode diffusion layers 23 and 24 and the P-type dirt diffusion layer 22 are electrically connected to each other by the conductive portion 25.f-) The electrode G and the cathode electrode It seems like there is a short circuit with Ni. In this case, the trigger function of this semiconductor device is controlled to be off, and will not become conductive even if any trigger signal or external noise is supplied.

そして、アノードA−カソードに間電圧■。And the voltage between the anode A and the cathode is ■.

が、MO8構造部28のf−)酸化膜26の絶縁破壊電
圧Vt−120(V)付近まで上昇した場合には、空乏
層3ノは破Jで示すように、フローティングP型拡散領
域29に到達するようになシ、イワゆる、Δンチスルー
現象が生じる。これによシ、さらにアノードA−カソー
ドに間電圧VAKが上昇した場合には、P型拡散領域2
9は、破線すで示すように、空乏層31によ〕完全に包
囲されるようにな勺、その電位は上記パンチスル一時に
おける電圧値、つまり、ダート酸化膜26の絶縁破壊電
圧Vt=120(V)付近の一定電圧値に保持されるよ
うになる。この場合、MO8構造部28のff−)導電
層27に印加される電圧も、上記一定電圧値に保持され
るようKなるので、例えば、アノードA−カソードに間
電圧V□が、1000(V)というような高電圧まで上
昇したとしても、e−)酸化膜26が絶縁破壊されるよ
うなことはない。
However, when the dielectric breakdown voltage of the f-) oxide film 26 of the MO8 structure 28 rises to around Vt-120 (V), the depletion layer 3 is broken into the floating P-type diffusion region 29 as shown by the broken J. As this happens, the Δ anti-through phenomenon occurs. As a result, if the voltage VAK between the anode A and the cathode further increases, the P-type diffusion region 2
9 is completely surrounded by the depletion layer 31 as already shown by the broken line, and its potential is the voltage value at the time of punching, that is, the dielectric breakdown voltage Vt of the dirt oxide film 26 = 120 ( V) is maintained at a constant voltage value around V). In this case, the voltage applied to the ff-) conductive layer 27 of the MO8 structure 28 is also maintained at the constant voltage value, so that, for example, the voltage V□ between the anode A and the cathode is 1000 (V Even if the voltage rises to a high voltage such as e-), the oxide film 26 will not undergo dielectric breakdown.

したがって、このように構成される半導体装置によれば
、ff−)酸化膜26の絶縁破壊電圧Vt以下で、空乏
層31が到達する距離tに、70−テイングP型拡散領
域29を形成したことによシ、MO8構造部28の?−
)導電層21には、上記絶縁破壊電圧Vtを上回るよう
な電位は一切印加されなくなシ、ダート酸化膜26が絶
縁破壊されるのを防止することができる。
Therefore, according to the semiconductor device configured as described above, the 70-Teing P-type diffusion region 29 is formed at a distance t that the depletion layer 31 reaches at a voltage lower than the dielectric breakdown voltage Vt of the ff-) oxide film 26. Yes, what about MO8 structure part 28? −
) No potential exceeding the dielectric breakdown voltage Vt is applied to the conductive layer 21, thereby preventing dielectric breakdown of the dirt oxide film 26.

尚、上記実施例では、P型アノード拡散層30をN型カ
ソード拡散層23.24の反対側の表面に形成し、縦型
構造としたが、このP型アノード拡散層30は、例えば
第5図に示すように、上記N型カソード拡散層23.2
4と同一の表面に形成し、横型構造としてもよい。また
、各細波を逆導電型にすることも勿論可能である。
In the above embodiment, the P-type anode diffusion layer 30 was formed on the surface opposite to the N-type cathode diffusion layer 23, 24 to have a vertical structure. As shown in the figure, the N-type cathode diffusion layer 23.2
It may be formed on the same surface as 4 and may have a horizontal structure. Furthermore, it is of course possible to make each wavelet of opposite conductivity type.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、アノード。 As described above, according to the present invention, the anode.

カソード間に印加される最大電圧に関係なく、MO8構
造部を設計することができるので、例えば、最大電圧1
000(ロ)というような高電圧条件下で使用するよう
な場合でも、ダート酸化膜を厚く設計する必要がないの
で、ゼロクロス機能を低下させることなく、ダート酸化
膜の絶縁破壊を防止することが可能となる。
Since the MO8 structure can be designed independently of the maximum voltage applied across the cathode, e.g.
Even when used under high voltage conditions such as 000 (b), there is no need to design the dart oxide film to be thick, so it is possible to prevent dielectric breakdown of the dart oxide film without degrading the zero-cross function. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はそれぞれトリガ機能制御用のMO8
構造部を設けた従来の半導体装置を示ず回路構成図、第
4図はこの発明の一実施例に係る半導体装置を示す断面
構成図、第5図は上記この発明の一実施例に係る半導体
装置の他の実施例を示す断面構成図である。 21・・・N型半導体基板、22・・・P型ダート拡散
層、23・・・第1のN型カソード拡散層、24・・・
第2のN型カソード拡散層、25・・・導電部、26・
・・f−)酸化膜、27・・・ダート導電層、28・・
・MO8構造部、29・・・フローティングP型拡散領
域、30・・・P型アノード拡散層、31・・・空乏層
。 出願人代理人 弁理士 鈴 江 武 彦第1図 s2図 第3図
Figures 1 to 3 show MO8 for trigger function control.
FIG. 4 is a cross-sectional configuration diagram showing a semiconductor device according to an embodiment of the present invention; FIG. FIG. 7 is a cross-sectional configuration diagram showing another example of the device. 21... N-type semiconductor substrate, 22... P-type dirt diffusion layer, 23... first N-type cathode diffusion layer, 24...
second N-type cathode diffusion layer, 25... conductive part, 26...
...f-) Oxide film, 27... Dirt conductive layer, 28...
- MO8 structure part, 29... floating P type diffusion region, 30... P type anode diffusion layer, 31... depletion layer. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure s2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)第一導電型半導体基板の表面にそれぞれ形成され
る第二導電型アノード拡散層および第二導電型ダート拡
散層と、この第二導電型y −ト拡散層の表面に形成さ
れる第1および第2の第一導電型カソード拡散層と、こ
の第2の第一導電型カソード拡散層と上記第二導電型ダ
ート拡散層とを電気的に接続する導電部と、上記第二導
電型ダート拡散層の表面上に上記第1および第2の第一
導電型カソード拡散層それぞれの表面に接触して形成さ
れるf−)酸化膜と、このダート酸化膜の表面上に形成
される導電層と、このダート酸化膜上の導電層に電気的
に接続され上記第一導電型半導体基板の表面に上記第二
導電型?−)拡散層に近接した距離で形成される第二導
電型拡散領域とを具備したことを特徴とする半導体装置
。 咳2)上記第二導電型r−)拡散層と第二導電型拡散領
域との距離は、第二導電型アノード拡散層と第1の第一
導電型カソード拡散層との間に、r−)酸化膜の絶縁破
壊電圧を印加した際に、第二導電型ダート拡散層と第一
導電型半導体基板との界面に生じる空乏層の幅以下に設
定したことを特徴とする特許請求の範囲第1項記載の半
導体装置。
(1) A second conductivity type anode diffusion layer and a second conductivity type dirt diffusion layer formed on the surface of the first conductivity type semiconductor substrate, and a second conductivity type y-t diffusion layer formed on the surface of the second conductivity type y-t diffusion layer. 1 and a second first conductivity type cathode diffusion layer; a conductive portion electrically connecting the second first conductivity type cathode diffusion layer and the second conductivity type dirt diffusion layer; an f-) oxide film formed on the surface of the dirt diffusion layer in contact with the respective surfaces of the first and second first conductivity type cathode diffusion layers; and a conductive film formed on the surface of the dirt oxide film. layer and the second conductivity type on the surface of the first conductivity type semiconductor substrate electrically connected to the conductive layer on this dirt oxide film? -) a second conductivity type diffusion region formed at a distance close to the diffusion layer. Cough 2) The distance between the second conductivity type r-) diffusion layer and the second conductivity type diffusion region is such that the distance between the second conductivity type anode diffusion layer and the first first conductivity type cathode diffusion layer is r- ) The width of the depletion layer formed at the interface between the second conductivity type dirt diffusion layer and the first conductivity type semiconductor substrate is set to be less than or equal to the width of the depletion layer formed at the interface between the second conductivity type dirt diffusion layer and the first conductivity type semiconductor substrate when a dielectric breakdown voltage of the oxide film is applied. The semiconductor device according to item 1.
JP18272883A 1983-09-30 1983-09-30 Semiconductor device Granted JPS6074678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18272883A JPS6074678A (en) 1983-09-30 1983-09-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18272883A JPS6074678A (en) 1983-09-30 1983-09-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6074678A true JPS6074678A (en) 1985-04-26
JPH0580158B2 JPH0580158B2 (en) 1993-11-08

Family

ID=16123401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18272883A Granted JPS6074678A (en) 1983-09-30 1983-09-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6074678A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353972A (en) * 1986-08-22 1988-03-08 Hitachi Ltd Composite semiconductor device
JPS6384067A (en) * 1986-09-27 1988-04-14 Toshiba Corp Semiconductor device and manufacture thereof
EP0276703A2 (en) * 1987-01-26 1988-08-03 Kabushiki Kaisha Toshiba Zero-crossing type thyristor
EP0281739A2 (en) * 1987-01-23 1988-09-14 Kabushiki Kaisha Toshiba Semiconductor device comprising a thyristor
US4943835A (en) * 1985-11-22 1990-07-24 Kabushiki Kaisha Toshiba Semiconductor device including protecting MOS transistor
JPH07147394A (en) * 1994-08-05 1995-06-06 Hitachi Ltd Compound semiconductor device
US5747836A (en) * 1995-09-11 1998-05-05 Sharp Kabushiki Kaisha Semiconductor integrated circuit provided with thyristor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105572A (en) * 1981-12-18 1983-06-23 Sanken Electric Co Ltd Zero cross photo thyristor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105572A (en) * 1981-12-18 1983-06-23 Sanken Electric Co Ltd Zero cross photo thyristor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943835A (en) * 1985-11-22 1990-07-24 Kabushiki Kaisha Toshiba Semiconductor device including protecting MOS transistor
JPS6353972A (en) * 1986-08-22 1988-03-08 Hitachi Ltd Composite semiconductor device
JPS6384067A (en) * 1986-09-27 1988-04-14 Toshiba Corp Semiconductor device and manufacture thereof
JPH0548957B2 (en) * 1986-09-27 1993-07-22 Toshiba Kk
EP0281739A2 (en) * 1987-01-23 1988-09-14 Kabushiki Kaisha Toshiba Semiconductor device comprising a thyristor
US4992844A (en) * 1987-01-23 1991-02-12 Kabushiki Kaisha Toshiba Semiconductor device
EP0276703A2 (en) * 1987-01-26 1988-08-03 Kabushiki Kaisha Toshiba Zero-crossing type thyristor
US4956690A (en) * 1987-01-26 1990-09-11 Kabushiki Kaisha Toshiba Zero crossing type thyristor
JPH07147394A (en) * 1994-08-05 1995-06-06 Hitachi Ltd Compound semiconductor device
US5747836A (en) * 1995-09-11 1998-05-05 Sharp Kabushiki Kaisha Semiconductor integrated circuit provided with thyristor

Also Published As

Publication number Publication date
JPH0580158B2 (en) 1993-11-08

Similar Documents

Publication Publication Date Title
US3751722A (en) Mos integrated circuit with substrate containing selectively formed resistivity regions
US3302076A (en) Semiconductor device with passivated junction
GB1579938A (en) Semiconductor devices
US3855611A (en) Thyristor devices
JPS6074678A (en) Semiconductor device
US3432731A (en) Planar high voltage four layer structures
US2994811A (en) Electrostatic field-effect transistor having insulated electrode controlling field in depletion region of reverse-biased junction
US4430663A (en) Prevention of surface channels in silicon semiconductor devices
JP3718223B2 (en) Semiconductor device for high voltage with vertical groove
US5506425A (en) Semiconductor device and lead frame combination
JPS5753944A (en) Semiconductor integrated circuit
JPH0154865B2 (en)
US3704384A (en) Monolithic capacitor structure
US4170019A (en) Semiconductor device with variable grid openings for controlling turn-off pattern
EP4092755A3 (en) Semiconductor device with conductive element formed over dielectric layers and method of fabrication therefor
KR20030057490A (en) Bidirectional static switch responsive in quadrants q4 and q1
JPS57172765A (en) Electrostatic induction thyristor
US3654498A (en) Semiconductor device having an integrated pulse gate circuit and method of manufacturing said device
US3274400A (en) Temperature compensated silicon controlled rectifier
US4163241A (en) Multiple emitter and normal gate semiconductor switch
US4231054A (en) Thyristor with starting and generating cathode base contacts for use in rectifier circuits
US3555372A (en) Semiconductor bilateral switching device
US4187515A (en) Semiconductor controlled rectifier
JPS56110288A (en) Semiconductor laser element
JPS572574A (en) Insulated gate type field effect transistor