JPS6035571A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6035571A
JPS6035571A JP14462983A JP14462983A JPS6035571A JP S6035571 A JPS6035571 A JP S6035571A JP 14462983 A JP14462983 A JP 14462983A JP 14462983 A JP14462983 A JP 14462983A JP S6035571 A JPS6035571 A JP S6035571A
Authority
JP
Japan
Prior art keywords
semiconductor region
voltage
gate
semiconductor
thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14462983A
Other languages
Japanese (ja)
Other versions
JPH029463B2 (en
Inventor
Toru Suzuki
徹 鈴木
Takami Terajima
寺嶋 隆美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP14462983A priority Critical patent/JPS6035571A/en
Publication of JPS6035571A publication Critical patent/JPS6035571A/en
Publication of JPH029463B2 publication Critical patent/JPH029463B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7404Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device
    • H01L29/742Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device the device being a field effect transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To obtain the titled device of combination of an element having P-N junction stably actig with an insulation gate FFT by a method wherein this device is so constructed that the voltage impressed on a gate electrode is controlled by a depletion layer generating at a narrow part when a reverse voltage is impressed between the first semiconductor region and the second one. CONSTITUTION:When a positive voltage is impressed on the anode 8 of a thyristor, and a negative one on the cathode 7, the gate voltage is impressed through the route of the anode 8, forth semiconductor region 4, first semiconductor region 1, narrow part 1a, a connecting semiconductor region 16, a joining electrode 13, a connection conductor 14, and the gate electrode 12, a channel being formed in the surface part 2a, and ON at the part other than the zero-cross of the thyristor being then blocked. Besides, the narrow part 1a impressed with a high anode-gate voltage is filled with the depletion layer, and accordingly the increase of the voltage impressed on the gate electrode 12 is restricted. In other words, the depletion layer shares in the increment of voltage, resulting in the restriction of the increase of voltage in which an insulation film 11 under the electrode 12 shares. Thereby, the breakdown of the insulation film 11 is prevented.

Description

【発明の詳細な説明】 技術分野 本発明は絶縁ゲート電界効果rランジスタ(FET)Y
含むゼロクロス光サイリスタ等の半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an insulated gate field effect transistor (FET)
The present invention relates to semiconductor devices such as zero-cross optical thyristors.

従来技術 本願出願人は特願昭56−203586号(特開昭58
−105572号)でFETの絶縁膜の破壊を防止した
構造のゼロクロス光サイリスタを提案し1こ。このゼロ
クロス光ザイリスタtz、第1図に示す如く、一方の導
電型(この実施例ではN−型)の第1の半導体領域+1
1と、他方の導電型(この実施例ではP型)の第2の半
導体領域(2)と、N型の第3の半導体領域(31と、
P型の第4の半導体領域(4)とから成る4層構造を有
し、更に、第2の半導体領域t2+に囲まれ且つ第3の
半導体領域(3)をリング状に囲むように配されたN型
の第5の半導体領域151と、P型の第6の半導体領域
(6ン乞有する◇Tx オ、第3の半導体領域(3)は
サイリスタ馨2つのトランジスタから成る等価回路で示
j場合に於ける第1のトランジスタのN型エミッタ領域
として働く部分であり、第2の半導体領域+21は上記
等価回路のilのI・ランジスタのP型ベース領域とし
て動り116分であり、第1の半導体領域(11は上記
等価回路の第2のトランジスタのNWベー1m域として
働く部分であり、第4の半導体領域+41は上記等価回
路の第2のトランジスタの1)型エミッタ鎖酸として動
く部分であり、第5の半導体領域(51はM OS型F
’ETを構成し且つ第2の半導体領域+21との電気的
接続にも利用するkめの領域であり、第6の半導体領域
(61k工FETのゲート接続領域である。このゼロク
ロス光サイリスタは、一般の元サイリスタと同様に、第
3の半導体領域+31に第1の電極としてのカソード(
7)を有し、第4の半導体領域(4)に第20′FI7
L極として7ノード(81Y有し、ゲート信号として光
(91乞主面(IOIK投射するようIC構成されてい
る。また、ゼロクロスミ!能を其蹄させるためのMOS
−FETン栴成する5j02 + 5jBN。
Prior Art The applicant of this application has filed Japanese Patent Application No. 56-203586 (Japanese Unexamined Patent Publication No. 58
-105572), we proposed a zero-cross optical thyristor with a structure that prevented the breakdown of the FET insulating film. As shown in FIG. 1, this zero-cross optical zyristor tz has a first semiconductor region +1 of one conductivity type (N- type in this embodiment).
1, a second semiconductor region (2) of the other conductivity type (P type in this example), and a third semiconductor region (31) of N type.
It has a four-layer structure consisting of a P-type fourth semiconductor region (4), and is further surrounded by the second semiconductor region t2+ and arranged so as to surround the third semiconductor region (3) in a ring shape. The third semiconductor region (3) is shown as an equivalent circuit consisting of two thyristor transistors. The second semiconductor region +21 acts as the N-type emitter region of the first transistor in the case, and the second semiconductor region +21 acts as the P-type base region of the I transistor of il in the above equivalent circuit. The semiconductor region (11 is a part that works as the NW base 1m region of the second transistor in the above equivalent circuit, and the fourth semiconductor region +41 is a part that works as a 1) type emitter chain acid of the second transistor in the above equivalent circuit. and the fifth semiconductor region (51 is a MOS type F
This is the kth region that constitutes the ET and is also used for electrical connection with the second semiconductor region +21, and is the gate connection region of the sixth semiconductor region (61k FET.This zero-cross optical thyristor is Similar to a general original thyristor, the third semiconductor region +31 has a cathode (
7), and a 20' FI7 in the fourth semiconductor region (4).
It has 7 nodes (81Y) as the L pole, and the IC is configured to project light (91 points (IOIK) as the gate signal. Also, there is a MOS for zero cross-mi! function.
- 5j02 + 5jBN formed by FET.

から成るゲート絶縁膜(+11が少なくとも第3の半導
体領域(3)と第5の半導体領域(51との間の第2の
半導体領域+21上に設けられ、このゲート絶縁肌目)
上のAIから成るゲート電極[121f)−P型の第6
の半導体領域+61上の電極U」に導体(141で」及
続されている。
A gate insulating film (+11 is provided on the second semiconductor region +21 between at least the third semiconductor region (3) and the fifth semiconductor region (51), and this gate insulating film)
Gate electrode made of upper AI [121f) - P-type sixth
A conductor (141) is connected to the electrode U' on the semiconductor region +61 of the semiconductor region +61.

また、ゲート18号のバイパス回路ン形成するために、
第2の半導体領域(21と第5の半導体領域(51のク
シ局端部とが短絡電極u51によつt接続されている。
Also, in order to form a bypass circuit for gate No. 18,
The second semiconductor region (21) and the comb end portion of the fifth semiconductor region (51) are connected to each other by a shorting electrode u51.

またN型の第3の半導体領域(X(1とN型の第5の半
導体領域(51との間で表面に露出するP型の第2の半
導体領域(21のへチャンネル形成表面部分(2aJは
イオン注入で低不純物濃度とされている。
Additionally, a channel forming surface portion (2aJ) of the P-type second semiconductor region (21) exposed on the surface between the N-type third semiconductor region is said to have a low impurity concentration through ion implantation.

ところで、もし、このゼロクロス光サイリスタにPET
が設けL−1れていないと丁れば、第1の半導体領域I
IIと第2の半導体領域(21とのPN接合に光(1す
χ投射してホール・エレクトロン対乞発生ζせると、サ
イリスタはオン状態VC転換する。そして、この朋1作
はカソード(7)とアノードI)11との間の電圧値に
実質的に無関係に生じる。つまり、交流電圧のゼロクロ
スに無関係に生じる。
By the way, if this zero-cross optical thyristor is made of PET
If L-1 is not provided, the first semiconductor region I
When light (1×) is projected onto the PN junction between II and the second semiconductor region (21), the thyristor changes to the on-state VC. ) and the anode I) 11 substantially independently of the voltage value, ie independently of the zero crossing of the alternating voltage.

しかし、実際にはエンハンスメント型Nチャンネルへ4
 OS −F F、 Tが設けられているので、交流i
a; IE (Dゼロクロスではサイリスクがオン状態
にならない。次にこれ乞詳しく説明する。今、カソード
(71と7ノードt8+との間に正弦波交流電圧が印加
されており、且つカソード(7)が負、7ノード(8)
が正となる極性?有して正弦波の高い電圧(例えば6V
旬上の1tZEE)が印加されている時点で、光(9)
が投射されても、このサイリスタはオン状態とならない
。アノード・カソード間電圧VAKが6ボルト以上にな
ると、7ノード(81の6ボルトの電圧が、7ノード(
8j、第4の半導体領域(4j、第1の半導体領域+1
1、第6の半導体領域(6)、導体I、及びゲート電極
じから成る経路で、ゲート′亀俊(順に印加され、また
第2の半導体領域+21の電位はNP接合が順方向バイ
アス状態であるためにカソード(7)の電位にほぼ等し
くなり、結局、ゲート電極(lzと第2の半導体領域1
2+との間の′電位差が7ノード・カソード間電圧vA
Kに近い電圧となり、この電位差が約5ボルト以上にな
ると表面部分(2aJにNチャンネルが形成される。従
って、正弦波交流電圧の振幅が約6ボル) J2J上の
場合には第3の半導体領域+31と第5の半iL体領域
(51とがtb、置市VC接続され、結局、Pmベース
の第2の半導体領域(2;、旬絡電他(151%へ型の
第5の半導体領域(51%表面部分(2a)のへ型チャ
ンネル、N型の第3の半導体領域(3)。
However, in reality, 4
Since OS-F F and T are provided, AC i
a; IE (At the D zero cross, the sirisk does not turn on. Next, this will be explained in detail. Now, a sine wave AC voltage is applied between the cathode (71) and the 7 node t8+, and the cathode (7) is negative, 7 nodes (8)
Which polarity is positive? with a sinusoidal high voltage (e.g. 6V
At the moment when 1tZEE) is applied, light (9)
Even if the thyristor is projected, this thyristor will not turn on. When the anode-cathode voltage VAK becomes 6 volts or more, the voltage of 6 volts at the 7th node (81
8j, fourth semiconductor region (4j, first semiconductor region +1
1. A path consisting of the sixth semiconductor region (6), the conductor I, and the gate electrode is applied to the gate 'Kametoshi' (in order), and the potential of the second semiconductor region +21 is such that the NP junction is in a forward bias state. Therefore, the potential of the cathode (7) becomes almost equal to that of the cathode (7), and as a result, the potential of the gate electrode (lz and the second semiconductor region 1
The voltage difference between the 7 node and the cathode is vA.
When the voltage becomes close to K, and this potential difference becomes about 5 volts or more, an N channel is formed on the surface portion (2aJ. Therefore, the amplitude of the sinusoidal AC voltage is about 6 volts).In the case of J2J, the third semiconductor The region +31 and the fifth semi-iL body region (51 are connected to the tb, Okiichi VC, and eventually the Pm-based second semiconductor region (2;, the fifth semi-iL body region (51) region (51% surface area (2a) of the hemi-type channel, N-type third semiconductor region (3).

及びカソード[71から成るI「置市回路が形成きれる
and cathode [71.

このため、光(91の照射でホール・エレクトロン対を
発生させ、逆バイアス状態にあるPへ一接合をオンにし
ようとしても、光励起電流が、上記のチャンネルを通る
電気回路で流れ王しまい、オンにすることが不5J能で
ある。
For this reason, even if a hole-electron pair is generated by irradiation with light (91) and an attempt is made to turn on one junction to P in a reverse bias state, the photo-excited current flows in the electrical circuit passing through the above channel and ends up turning on. It is impossible to do 5J.

一方、光(9)の拙射ン継続し、交流電圧の仄の周期で
ゼロボルトライン乞交流電圧が偵切るゼロクロス近傍時
点となって7ノード・カソード間竜圧VAKが6ボルト
Vノ下になると、ゲート−Ht、ft3. +121と
第2の半導体領域(21との間のm位差も5ボルト以下
になり、表面部分(2a)にNチャンネルが形成されな
い。従つ℃、光(91の1((射で生じた光励起電流は
PN−接合乞オン状態にするために汀効に利用され、サ
イリスタは直ちにオンになる。サイリスタが一度オンに
なると、交流電圧の振幅が例え高くなっても、7ノード
・カソード間屯圧VAえは低く保たれるので、MOS 
−FETのチャンネルが形成されることはない。
On the other hand, the light (9) continues to emit light, and when the AC voltage crosses the zero volt line at the second cycle of the AC voltage and reaches the point near zero crossing, the dragon pressure VAK between the 7th node and the cathode becomes below 6 volts V. , gate-Ht, ft3. The m-potential difference between +121 and the second semiconductor region (21 is also less than 5 volts, and no N channel is formed in the surface portion (2a). The photo-excited current is effectively used to turn on the PN-junction, and the thyristor turns on immediately. Once the thyristor is turned on, even if the amplitude of the alternating voltage becomes high, the 7-node cathode width Since the pressure VA is kept low, the MOS
- No FET channel is formed.

第1図の装置では、更に、第6の半導体領域(6)と第
2の半導体領域(21との間隔が小さく設定され、7ノ
ード・カソード曲に高い電圧が印加ざiまた時に空乏層
で埋まるよ5に措成されている。このため、7ノード・
カソード曲11IH:vAKの上昇に追従してゲート電
極U力に加わる電圧が上昇することが制限され、絶縁膜
(111の破壊が防止される。しかしながら、第1図の
光サイ11スタは時としてゼロクロス動作をしない場合
があることが判明した。この原因は7ノード・カソード
曲に印加される電圧のオン・オフの際FCN型の第1の
半導体領域(月とPmの第6の半導体領域t61との間
に形成びれるPN媛合馨通し℃キャリアが移動するため
と推定される。
In the device shown in FIG. 1, the distance between the sixth semiconductor region (6) and the second semiconductor region (21) is further set small, and when a high voltage is applied to the 7-node cathode curve, the depletion layer is formed. It is set to 5 to fill up.For this reason, 7 nodes
Cathode tune 11IH: Following the increase in vAK, the increase in voltage applied to the gate electrode U force is restricted, and destruction of the insulating film (111) is prevented. It was found that the zero-crossing operation may not occur.The reason for this is that when the voltage applied to the 7-node cathode curve is turned on and off, the FCN type first semiconductor region (Moon and Pm sixth semiconductor region t61 This is presumed to be due to the movement of carriers through the PN fin formed between the two.

第1図のセロクロス光サイリスタには上記の間Mの他に
、低い逆電圧で空乏層ン第2の半導体領域(21と第6
の半導体領域(61との間を埋めるためには、両領域を
接近させる必要があり、マスクパターンの精度を高くし
なければならないとい5t+4J’tjDがある。
In addition to the above-mentioned gap M, the cellocross optical thyristor of FIG. 1 has a second semiconductor region (21 and 6
In order to fill the gap with the semiconductor region (61), it is necessary to bring both regions close to each other, and the precision of the mask pattern must be increased, which is 5t+4J'tjD.

今、ゼロクロス光サイリスタについて述べたカ。I just mentioned the zero-cross optical thyristor.

ゲート電極を有するサイリスタ、又はその(tlJのP
N接合素子とM OS −F E’I’との組み合せ装
置に於いても同様な問題がある。
A thyristor with a gate electrode or its (tlJ P
A similar problem exists in a device combining an N-junction element and MOS-F E'I'.

発明の目的 本発明の目的は、安定した切作yal−なjPへ接合を
有する素子と絶縁ゲートF E Tとの組み合せ半導体
装置を提供することKある。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a semiconductor device in which a device having a stable cut-out junction to a jP and an insulated gate FET are combined.

発明の構成 上記目的を達成するための本発明は、理解ビ容易1c”
3−るために実施例を示1′図面の符号馨参)1Gして
説明すると、一方のη1□電型の第1の半導体領域il
+と、前記第1の半導体領域+i+に半導体基板の表面
に至る幅狭部分(1a)が生じるようにAiJ記第1の
半導体領域tl+の中に設けられ且つ前記第1の半導体
領域il+よりも高い不純物Q度に設定されている単−
又は複数の第2の半導体領域+21と、目IJ記幅狭部
分(1a)に接続きれている連係用4極(131と、前
記連係用電極+131 K接続されたゲート′電極f1
3ケ有する絶縁ゲート電界効果トランジスタと馨含み、
且つ前記第1の半導体領域ti+とnjl N(2第2
の半導体領域(21との間に逆電圧が印加された時にi
iJ記ゲート電極σカに加わる電圧が前記幅狭部分+1
aJに生じる空乏層によって制限芒れるよ5に構!戎こ
れτいることを特徴とする牛得体装置に係わるものであ
る。
Structure of the Invention To achieve the above object, the present invention is easy to understand.
3-1G (see reference numerals in drawings) 1G, one first semiconductor region il of η1□ type
+, and is provided in the first semiconductor region tl+ of AiJ so that a narrow portion (1a) reaching the surface of the semiconductor substrate is formed in the first semiconductor region +i+, and is wider than the first semiconductor region il+. A single unit that is set to a high impurity Q degree
Alternatively, the plurality of second semiconductor regions +21, the four linking poles (131) fully connected to the narrow width portion (1a), and the gate' electrode f1 connected to the linking electrode +131
Including three insulated gate field effect transistors,
and the first semiconductor region ti+ and njlN (2 second
When a reverse voltage is applied between the semiconductor region (21) of i
The voltage applied to the iJ gate electrode σ is the narrow part +1
It is limited by the depletion layer that occurs in aJ. The present invention relates to a device that is characterized by the fact that it has an angle of τ.

発明の作用効果 上記発明によれば、第1の半導体領域11+とゲート′
電極UカとをPN接合を]i″さないで接続し、第1の
半導体領域(11の幅狭部分(1a)’g介して接続し
たので、第1の半導体領域(11と第2の半導体領域+
21とのPN接合に印加される逆電圧に安定した関係を
有してFETを制御″g′ることが出来る。
Effects of the Invention According to the above invention, the first semiconductor region 11+ and the gate'
Since the electrode U is connected to the electrode U without making a PN junction, and it is connected through the narrow part (1a)'g of the first semiconductor region (11), the first semiconductor region (11 and the second Semiconductor area+
The FET can be controlled with a stable relationship to the reverse voltage applied to the PN junction with 21.

実施例 次に第2図〜第5図を参1f(IL、 1本発明の実施
例に係わるゼロクロス光サイリスタについて述べる。
Embodiment Next, referring to FIGS. 2 to 5, a zero-cross optical thyristor according to an embodiment of the present invention will be described.

但し、第2図及び第3図に於いて符号(L〜(51、及
び(7)〜115)で示す部分は、第1図で同一符号で
示す部分と実質的に同一に構成芒れn、つ実質的に同一
に動作するので、その説明を省l113−)−る。
However, in FIGS. 2 and 3, the parts indicated by the symbols (L to (51, and (7) to 115) have substantially the same structure as the parts indicated by the same symbols in FIG. 1. , operate substantially the same, so the explanation thereof will be omitted.

この実施例のゼロクロス光サイリスタは、第1図に示し
た第6の半導体領域t6+に相当する部分ン含まず、こ
の代りに5P型の第2の半導体領域(21によって囲ま
れ且つ基板表面flUI K露出するよ5に設けられた
i型の第1の半導体領域+1+の幅狭部分(1aJを含
む。この幅狭部分(1a)には接続用N型半導体領域1
161を介し又連係用電極031が接続σれている。
The zero-cross optical thyristor of this embodiment does not include a portion corresponding to the sixth semiconductor region t6+ shown in FIG. A narrow portion (including 1aJ) of the i-type first semiconductor region +1+ provided in the exposed portion 5. In this narrow portion (1a), a connecting N-type semiconductor region 1 is provided.
The linking electrode 031 is also connected via 161.

各半導体領域の平面パターンは第3図に示す如くである
。即ち、サイリスタの、!+(体部分となるへ型の第1
の半導体領域il+の中に島状にP型の第2の半導体領
域(2)が形成プれ、この紀2の半導体領域+21の中
にN型の第3の半導体領域(X3)が島状に形成きれ、
F E Tのドレインとして動く第5の半導体領域(5
)はソースとして1Φjr < 143の半2y体領域
に31をリング状に囲むように形成芒れ、且つ■】型の
第2の半4体領域(21は輻dのly<狭部分(IR)
’l;ll;l商機表面させるように形成芒れている。
The planar pattern of each semiconductor region is as shown in FIG. In other words, the thyristor! + (the first part of the hemlock that becomes the body part)
A P-type second semiconductor region (2) is formed in the form of an island in the semiconductor region il+, and a third N-type semiconductor region (X3) is formed in the form of an island in the second semiconductor region +21. Completely formed,
A fifth semiconductor region (5
) is formed as a source in the semi-2y body region of 1Φjr < 143 so as to surround 31 in a ring shape, and the second half-4 body region of type ■】 (21 is the ly<narrow part (IR) of the radius d).
'l;ll;l It is shaped like a commercial opportunity.

な分、ゲート電極(121及び蝮絡電極(151は第3
図のパターンに合せてリング状に形成されている。
The gate electrode (121) and the contact electrode (151 are the third
It is formed into a ring shape according to the pattern shown in the figure.

シリコンから成る各領域の不純*t b:>度を例示す
ると・N1yの第1の半導体領域(11の不純物濃度が
約I X 10”7cm”、 P型の第2の半導体領域
(210表面不純物薗度が約5 X I O”7cm”
、第3の半導体領域(3;及び接続用半導体領域ab+
の表面不純物濃度は約I X 107cm 、第4の半
導体領域14+の平均不純物濃度は約5 X 10”/
am”である。また。
To illustrate the degree of impurity in each region made of silicon, the first semiconductor region of N1y (the impurity concentration of 11 is about I x 10"7 cm", the second semiconductor region of P type (210 Sono degree is approx. 5 x I O"7cm"
, the third semiconductor region (3; and the connection semiconductor region ab+
The surface impurity concentration of the fourth semiconductor region 14+ is approximately I x 107cm, and the average impurity concentration of the fourth semiconductor region 14+ is approximately 5 x 10''/
am". Again.

第2の半導体領域+21の拡散の深ざは約20μmとさ
れている。
The depth of diffusion in the second semiconductor region +21 is approximately 20 μm.

第4図は幅狭部分(1a)のl1va dとFETのゲ
ート電圧V。との関係を示し、Ml、5図は幅dと幅狭
部分(1aJ ’7)最大電界強度EMAXとの関係7
示す。第4図の特性線(Al及び第5図の11す性腺(
atは接続用半導体領域囲(ン拡散マスク幅10μmと
して拡散の深さを5μmとした場合を示し、第4図の特
性線(I3)及び第5図の特性線(blは上記拡散マス
ク幅lOμmで拡散の深をンlO/7mとじた場合を示
す。なお。
FIG. 4 shows l1va d in the narrow portion (1a) and the gate voltage V of the FET. Figure 5 shows the relationship between the width d and the maximum electric field strength EMAX in the narrow part (1aJ '7)7.
show. The characteristic line in Figure 4 (Al) and the 11 gonads in Figure 5 (
at indicates the case where the connection semiconductor region surrounding (diffusion mask width is 10 μm and the diffusion depth is 5 μm), and the characteristic line (I3) in FIG. 4 and the characteristic line in FIG. 5 (bl is the diffusion mask width lOμm). This shows the case where the depth of diffusion is reduced to 1O/7m.

このデータは7ノード・カソード間竜圧を1000Vと
し、各領域の不純物濃度ケM+J述の値にした場合のも
のである。第4図から明らかな如く幅狭部分(1aJの
幅dを小8く丁れば、これに応じてゲート電圧V。χ下
げることが出来る。しかし、幅dを極く小さくすると、
最大電界強度EMAXが大きく1よる。このため1幅d
乞4夕端に小ζくすることはできない。
This data is obtained when the pressure between the 7 nodes and the cathode is set to 1000 V, and the impurity concentration in each region is set to the values described above. As is clear from FIG. 4, if the width d of the narrow portion (1aJ) is reduced by 8 times, the gate voltage V.χ can be lowered accordingly. However, if the width d is made extremely small,
The maximum electric field strength EMAX largely depends on 1. Therefore, 1 width d
You can't make it small at the end of the day.

上述の如く構成されたサイリスタのアノード(8)が正
、カソード+71が負の電圧が印加されると、7ノード
(8j、帛4の半導体領域(41、第1の半導体領域)
1)、幅狭部分(1a)、接続用半導体領域(1b1、
連係用@極t131.接続専体041.ゲート電極f1
21の経路でゲート電圧が印加これ5表面部分(2a)
にチャンネルが形成され、サイリスタのゼロクロスJ2
J 外テのオンが阻止される。また、篩いアノード・ゲ
ート間電圧が印加される幅狭部分11aJが空乏層で埋
まり。
When a positive voltage is applied to the anode (8) of the thyristor configured as described above and a negative voltage is applied to the cathode +71, 7 nodes (8j, semiconductor region of block 4 (41, first semiconductor region)
1), narrow portion (1a), connection semiconductor region (1b1,
For coordination @ pole t131. Connection exclusive 041. Gate electrode f1
Gate voltage is applied through path 21. This 5 surface area (2a)
A channel is formed in the thyristor zero cross J2
J Outside Te's on is prevented. Further, the narrow portion 11aJ to which the sieving anode-to-gate voltage is applied is filled with a depletion layer.

ゲート電極Uカに加わる電圧の上昇が制限される。The increase in voltage applied to the gate electrode U is limited.

即ち電圧の上昇分ン空乏層が分担し、ゲート電極(I2
1の下の絶縁膜(+11が分担1−るi’1LIEの上
昇が制限される。このため、絶縁膜αυの破壊が防止さ
れる。
In other words, the increase in voltage is shared by the depletion layer, and the gate electrode (I2
The rise of the insulating film (+11) under the insulating film 1-i'1LIE is limited. Therefore, destruction of the insulating film αυ is prevented.

本実施例では、第1の半導体領域(月とゲート電極u2
との間にPN接合が無いので、ゼロクロスでサイリスタ
がオンになる動作が不安定vcならない。
In this example, the first semiconductor region (the moon and the gate electrode u2
Since there is no PN junction between VC and VC, the operation of turning on the thyristor at zero cross does not become unstable.

また、幅狭部分(]aJの両側が同電位の第2の半導体
領域(2)であるので、空乏層が両側から広がる。
Further, since both sides of the narrow portion (]aJ are the second semiconductor regions (2) having the same potential, the depletion layer spreads from both sides.

従って、低い電圧で幅狭部分(1aJ7空乏層で埋める
ことが可能であり、幅狭部分(1aJの幅を極端に狭く
することが不要になり、マスクパターンの鞘度乞9手別
に晶くする必要がない。
Therefore, it is possible to fill the narrow part (1aJ7) with a depletion layer at a low voltage, making it unnecessary to make the width of the narrow part (1aJ extremely narrow), and to crystallize the mask pattern for each pattern depending on the width of the mask pattern. There's no need.

仄に1本発明の他の実施例に係わるゼロクロス光サイリ
スタについて述べる。但し、第6図〜第10図に於い”
C,41図〜第3図と共通1−石部分には同一の符号を
付してその説明乞省略する。
First, a zero-cross optical thyristor according to another embodiment of the present invention will be briefly described. However, in Figures 6 to 10
C. 1- Stone parts common to those in FIGS. 41 to 3 are given the same reference numerals and explanations thereof will be omitted.

第6図の実施例1では、N型の接続用半導体領域t11
i+Y設けずに、電極(131を低抵抗のSi多結晶で
形成し、ゲート電極u21もSi多結晶で形成している
。この場合vcはN型の半導体領域116)が使いので
、低い電圧で幅狭部分(1aJが空乏層で埋められる。
In Example 1 of FIG. 6, the N-type connection semiconductor region t11
Since i+Y is not provided, the electrodes (131 are formed of low resistance Si polycrystal, and the gate electrode u21 is also formed of Si polycrystal. In this case, VC is the N-type semiconductor region 116) are used, so a low voltage is used. The narrow portion (1aJ) is filled with a depletion layer.

仇7図は+196狭部分(1aJy:!:変形した実施
例を示す。
Figure 7 shows a +196 narrow portion (1aJy:!: modified embodiment).

この実施例ではへ型の接続用半導体領域(1G)馨囲む
幅狭部分(1aJがP型の第2の半導体領域+21によ
って児全に囲まれていない。ごのように形成しても+ へ型接続用半導体領域a(−の周囲が空乏層で埋められ
れば%第2図及び第3図と全く同一の動作となる。
In this embodiment, the narrow portion (1aJ) surrounding the F-type connecting semiconductor region (1G) is not completely surrounded by the P-type second semiconductor region +21. If the periphery of the type connection semiconductor region a(-) is filled with a depletion layer, the operation will be exactly the same as in FIGS. 2 and 3.

第8図は第2の半導体領域f217複数個とした場合の
実施例を示す。P型の右側の第2の半導体領域(2h)
は基板中では左側の第2の半導体領域(2)に非連続で
あり、N−型半導体領域1月の中に島状に独立に設けら
れている。しかし、外部接続導体(171によって電気
的に接続きれている。従って、2つのP型半導体領域1
21(2b)は連続した領域と等価に働き、幅狭部分(
1a)を空乏層で埋めることが出来る。
FIG. 8 shows an embodiment in which a plurality of second semiconductor regions f217 are provided. Second semiconductor region on the right side of P type (2h)
is discontinuous in the second semiconductor region (2) on the left side in the substrate, and is provided independently in the form of an island within the N-type semiconductor region. However, they are electrically connected by the external connection conductor (171). Therefore, the two P-type semiconductor regions 1
21 (2b) works equivalently to a continuous area, and the narrow part (
1a) can be filled with a depletion layer.

第9図は双方自制(ilI+可能なゼロクロス光サイリ
スタ即ちトライアックに適用した実施例を示す。
FIG. 9 shows an embodiment applied to a zero-crossing optical thyristor or triac capable of bilateral self-control (ilI+).

このトライアックは鎖線で分断されている左半分の第1
のサイリスタ部分と右半分の第2のサイリスタとを逆並
列接続した構成になつ工いる。このトライアックの場合
にも単一方向制御のサイリスタと同様Tx、 f’F−
用効果を得ることが出来る。
This triac is the first half of the left half separated by the dashed line.
The thyristor part of the thyristor part and the second thyristor part of the right half are connected in antiparallel. In the case of this triac as well, Tx, f'F-
You can get the effect of using it.

変形例 本発明は上述の実施例に限定されるものでなく、例えば
次の変形例が可能なものである。
Modifications The present invention is not limited to the embodiments described above, and the following modifications are possible, for example.

CAlllO図に示す如(、光ゲート信号の代りに電気
ゲート信号を供給する1こめのゲート電極賭を設けても
よい。このように、1ら気信号でゲート信号を供紹する
場合にも同様な効果が得られる。
As shown in the CAllO diagram, one gate electrode may be provided to supply an electrical gate signal instead of an optical gate signal.In this way, the same applies to the case where a gate signal is provided by one electrical signal. You can get the following effect.

([11第11図に示1如<、N型の絹lの半導体領域
(1;とP型の第2の半導体領域(21とから成るP〜
接合素子に幅狭部分+18)を設け、ここにN型接続用
半導体領域t16+及び連係用′電極u4ン設け、連係
用電極(13Iン導体(141テM、o S −F E
 Tのゲート電極uZに接続してもよい。この第10図
ではM (J S・F E ’l’が基体としてのP型
半導体領域(2CJとソースとしてのN型半導体領域+
3a )とドレインとして+ のN型半導体領域(5)と絶縁肌目)とで構成きれ、P
型半導体領域<2c)がP型半導体領域(21に電気的
に接続されている。
([11 As shown in FIG. 11, P ~ consisting of an N type silk semiconductor region (1;
A narrow portion +18) is provided in the bonding element, a semiconductor region t16+ for N-type connection and an electrode u4 for linkage are provided there, and a linking electrode (13I conductor (141TM, o S -F E
It may be connected to the gate electrode uZ of T. In this FIG. 10, M
3a), a positive N-type semiconductor region (5) as a drain, and an insulating layer), and P
The P-type semiconductor region <2c) is electrically connected to the P-type semiconductor region (21).

(〇 一枚の基板の中に微小サイIJスタン多数設けこ
れ等ン並列接続し又もよい。
(〇 It is also possible to provide a large number of micro-sized IJ stans on one board and connect them in parallel.

【図面の簡単な説明】[Brief explanation of the drawing]

用1図は従来のゼロクロス光サイリスタ?示す断面図、
第2図は本発QIJの実施1鴫に係わるゼロクロス光サ
イリスタを示’i−N’3図のII −II線にa当す
る断σD図、第3図は第2図のゼロクロス光サイリスタ
の平面図、第4−は11@狭州S分の幅dとゲート電圧
との関係を示′1−特性図、第5図は幅狭部分の@dと
最大′IF1.n強度との関係を示j%性図、第6図は
他の実施例のゼロクロス光サイリスタを示す断面図、第
7図及び第8図は更に他の実施例のゼロクロス光サイリ
スタの一部乞夫々示す平面図、第9図は他の実施例のゼ
ロクロス光トライアックを示す断面図、第10図及び第
11図は変形例の半導体装置を夫り示す断面図で;Aる
。 +11・・・第1の半導体領域、(1aJ・・・幅狭部
分、(21・・・W;2の半導体領域、 (2a)・・
・表面部分、(31・・・第3の半導体領域、(4j・
・・第4の半導体領域、(5)・・・第5の半導体領域
、(力・・・カソード、(8j・・・アノード、ull
・・絶縁膜、σZ°・°ゲート電極、u汐・・・連係用
電極、(1舎・・・接続導体、[151・・・短絡電極
、tllil・・・N型接続用半導体領域。 代理人 尚野則仄 d (/’m> 第5図 d (μm) 第11計で
Is Figure 1 a conventional zero-cross optical thyristor? A cross-sectional view showing,
Figure 2 shows the zero-crossing optical thyristor according to the first implementation of the QIJ of this invention, and the cross-section σD diagram corresponding to line II-II in Figure 'i-N'3, and Figure 3 shows the zero-crossing optical thyristor in Figure 2. The plan view, Figure 4, shows the relationship between the width d of the 11@ narrow portion S and the gate voltage; Figure 6 is a sectional view showing a zero-crossing optical thyristor of another embodiment, and Figures 7 and 8 are partial diagrams of a zero-crossing optical thyristor of another embodiment. FIG. 9 is a plan view, FIG. 9 is a sectional view showing a zero-cross optical triac of another embodiment, and FIGS. 10 and 11 are sectional views showing modified semiconductor devices. +11...First semiconductor region, (1aJ...Narrow width portion, (21...W; 2nd semiconductor region, (2a)...
・Surface portion, (31... third semiconductor region, (4j・
...Fourth semiconductor region, (5)...Fifth semiconductor region, (force...cathode, (8j...anode, ul
...Insulating film, σZ°・°gate electrode, ushio...linking electrode, (1 building...connection conductor, [151...short circuit electrode, tllil...semiconductor region for N-type connection. Substitute Person Noritaka Naono d (/'m> Figure 5 d (μm) In the 11th total

Claims (1)

【特許請求の範囲】 II+ 一方の導電型の第1の半導体領域fi+と。 前記第1の半導体領域(11に半導体基板の表面に至る
幅狭部分(1aJが生じるよりに前記第1の半導体領域
fi+の中に設けられ且つ前記第1の半導体領域II+
よりも高い不純物濃度に設定でれている単−又は複数の
第2の半導体領域+21と、前記幅狭部分口a)に接続
されている連係用′EL極u31と、 前記連係用電極Uに接続されたゲート電極(12を有す
る絶縁ゲート電界効果トランジスタとを含み、且つ前記
第1の半導体領域(月と前記@2の半導体領域(21と
の間に逆電圧が印加された時に前記ゲート電極σカに加
わる電圧が前記幅狭部分(la)Ic生じる空乏層によ
って制限されるように構成されていることケ特徴とする
半導体装置。 (2)前記電界効果トランジスタは前記第2の半導体領
域(21の中に形成されたものである特許請求の範囲第
1項記載の半導体装置。 (3)前記第1の半導体領域(IIはサイリスクの基体
部分であり、前記第2の半導体領域(2)は前記サイリ
スタのゲート46号が供給されるベース領域である特許
請求の範囲第1項又は第2項記載の半導体装置。
[Claims] II+ A first semiconductor region fi+ of one conductivity type. The narrow portion (1aJ) reaching the surface of the semiconductor substrate is formed in the first semiconductor region (11), and is provided in the first semiconductor region fi+ and is located in the first semiconductor region II+.
one or more second semiconductor regions +21 whose impurity concentration is set higher than that of the second semiconductor region +21, a linking EL pole u31 connected to the narrow opening a), and a linking electrode U31 connected to the narrow opening a). an insulated gate field effect transistor having a connected gate electrode (12), and when a reverse voltage is applied between the first semiconductor region (moon and the @2 semiconductor region (21) the gate electrode A semiconductor device characterized in that the voltage applied to the σ force is limited by a depletion layer generated in the narrow width portion (la) Ic. (2) The field effect transistor is formed in the second semiconductor region ( 21. The semiconductor device according to claim 1, wherein the semiconductor device is formed in the first semiconductor region (II is a base portion of the cyrisk), and the second semiconductor region (2) 3. The semiconductor device according to claim 1, wherein is a base region to which a gate No. 46 of said thyristor is supplied.
JP14462983A 1983-08-08 1983-08-08 Semiconductor device Granted JPS6035571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14462983A JPS6035571A (en) 1983-08-08 1983-08-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14462983A JPS6035571A (en) 1983-08-08 1983-08-08 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6035571A true JPS6035571A (en) 1985-02-23
JPH029463B2 JPH029463B2 (en) 1990-03-02

Family

ID=15366484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14462983A Granted JPS6035571A (en) 1983-08-08 1983-08-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6035571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943835A (en) * 1985-11-22 1990-07-24 Kabushiki Kaisha Toshiba Semiconductor device including protecting MOS transistor
US5138415A (en) * 1988-11-07 1992-08-11 Kabushiki Kaisha Toshiba Photo-semiconductor device with a zero-cross function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105572A (en) * 1981-12-18 1983-06-23 Sanken Electric Co Ltd Zero cross photo thyristor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105572A (en) * 1981-12-18 1983-06-23 Sanken Electric Co Ltd Zero cross photo thyristor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943835A (en) * 1985-11-22 1990-07-24 Kabushiki Kaisha Toshiba Semiconductor device including protecting MOS transistor
US5138415A (en) * 1988-11-07 1992-08-11 Kabushiki Kaisha Toshiba Photo-semiconductor device with a zero-cross function

Also Published As

Publication number Publication date
JPH029463B2 (en) 1990-03-02

Similar Documents

Publication Publication Date Title
US4414560A (en) Floating guard region and process of manufacture for semiconductor reverse conducting switching device using spaced MOS transistors having a common drain region
JP3467381B2 (en) Silicon carbide diode
JPH0582807A (en) Constant voltage diode and power converter using same, and manufacture of constant voltage diode
JPH02126682A (en) Semiconductor device and manufacture thereof
JPS595674A (en) Split gate efet
US5278443A (en) Composite semiconductor device with Schottky and pn junctions
US4132996A (en) Electric field-controlled semiconductor device
KR850005737A (en) Photonic Relay
US4130827A (en) Integrated circuit switching network using low substrate leakage current thyristor construction
JPS6035571A (en) Semiconductor device
US3564355A (en) Semiconductor device employing a p-n junction between induced p- and n- regions
JPH0347744B2 (en)
JPH0795565B2 (en) Static electricity protection device for complementary MIS integrated circuit
US4761679A (en) Complementary silicon-on-insulator lateral insulated gate rectifiers
JPS637471B2 (en)
US3918083A (en) Bilateral switching integrated circuit
JPS5753944A (en) Semiconductor integrated circuit
EP0272753B1 (en) Complementary silicon-on-insulator lateral insulated gate rectifiers
US3504241A (en) Semiconductor bidirectional switch
JPS6112072A (en) Semiconductor device
JPS6347972A (en) Semiconductor device
JPH05501479A (en) semiconductor switch
KR100510436B1 (en) Horizontal Insulated Gate Bipolar Transistor
US3480802A (en) High power semiconductor control element and associated circuitry
KR19980084002A (en) Power semiconductor device employing field plate and manufacturing method thereof