JPS60148052A - Sealed lead storage battery - Google Patents

Sealed lead storage battery

Info

Publication number
JPS60148052A
JPS60148052A JP59002814A JP281484A JPS60148052A JP S60148052 A JPS60148052 A JP S60148052A JP 59002814 A JP59002814 A JP 59002814A JP 281484 A JP281484 A JP 281484A JP S60148052 A JPS60148052 A JP S60148052A
Authority
JP
Japan
Prior art keywords
active material
separator
side layer
positive
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59002814A
Other languages
Japanese (ja)
Other versions
JPH0512821B2 (en
Inventor
Yoshihisa Yagyu
柳生 芳久
Toshihiro Inoue
利弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59002814A priority Critical patent/JPS60148052A/en
Publication of JPS60148052A publication Critical patent/JPS60148052A/en
Publication of JPH0512821B2 publication Critical patent/JPH0512821B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To prevent any lack of conductivity and any minute short circuits which might be caused by the use of a pulverized positive active material so as to increase the life of a sealed lead storage battery by using a separator having a double structure consisting of a positive-side layer with a given maximum hole diameter and a negative-side layer with a given maximum hole diameter. CONSTITUTION:A separator made of minute glass fiber has a double structure consisting of a positive-side layer and a negative-side layer. The maximum hole diameter of the positive-side layer is adjusted to 5-10mum and that of the negative-side layer is adjusted to 20-40mum. Therefore, even when a pulverized positive active material is used, the decrease in the conductivity of the positive active material can be suppressed by firmly holding it. Additionally, due to the small hole diameter of the separator, any permeation of minute particles of the active material into the separator is prevented. Accordingly it is possible to increase the life of a sealed lead storage battery by preventing any lack of conductivity and any minute short circuits.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池、特に大電流放電形ポータプル
機器用電池の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in sealed lead-acid batteries, particularly large current discharge batteries for portable equipment.

従来例の構成とその問題点 密閉形鉛蓄電池は高い経済性と取シ扱いの手軽さから多
くのポータプル機器の電源として用いられている。特に
最近では電動工具等の60ム〜2oCムの大電流放電形
ポータプル機器用電源として用いられきつつある。
Conventional configurations and their problems Sealed lead-acid batteries are used as power sources for many portable devices because of their high cost efficiency and ease of handling. Particularly recently, it has been used as a power source for large current discharge type portable devices such as electric tools of 60 to 2 oC.

この種の用途において使用された時、次のような問題点
がある。即ち、大電流で放電されると、正極の活物質の
反応における利用のされがたが極板の厚さ方向において
著しい差があり、殆んど表面しか反応に寄与しないとい
うことである。このため充放電を繰シ返すと、正極板表
面活物質の微細化が進み、活物質相互の結合力を失う結
果、導電性を低下させたわ、微細化した活物質がセパレ
ータ内部に浸み込み、負極と微短絡を起こしたりして電
池の早期劣化を起こす欠点がある。
When used in this type of application, there are the following problems. That is, when discharged with a large current, there is a significant difference in how the active material of the positive electrode is utilized in the reaction in the thickness direction of the electrode plate, and almost only the surface contributes to the reaction. For this reason, when charging and discharging are repeated, the active material on the surface of the positive electrode plate becomes finer, and as a result, the active materials lose their bonding strength with each other, resulting in a decrease in conductivity.The finer active material soaks into the inside of the separator. They have the disadvantage of causing short circuits with the negative electrode and premature deterioration of the battery.

発明の目的 本発明は、上記のような従来の欠点を解消し、正極活物
質の微粒子化による導電性の欠如、微短絡を防ぎ、長寿
命の密閉形鉛蓄電池を提供することを目的とする。
Purpose of the Invention The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks, prevent lack of conductivity and micro-short circuits due to fine particles of the positive electrode active material, and provide a long-life sealed lead-acid battery. .

発明の構成 本発明は微細なガラス繊維からなるセパレータを二重構
造にし正極と負極に面する部分の特性をわけ、正極には
孔径の小さい面が、負極には孔径の大きい面が当たるよ
うにしたことを特徴としたものである。
Structure of the Invention The present invention uses a separator made of fine glass fibers in a double structure to separate the characteristics of the parts facing the positive and negative electrodes, so that the surface with smaller pores contacts the positive electrode and the surface with larger pores contacts the negative electrode. It is characterized by what it did.

このような構成によれば、正極活物質の微細化による導
電性欠如に列してはよシ堅固に保持することによシ抑制
することができ、微粒子活物質のセパレータ内部の浸み
込みに対しては孔径が小さいことからその泳動に対して
は抵抗となってこれを防ぐことができる。
With such a configuration, the lack of conductivity due to the fineness of the positive electrode active material can be suppressed by firmly holding it, and the penetration of the fine particle active material into the separator can be suppressed. However, since the pore size is small, it acts as a resistance to migration and can prevent this.

実施例の説明 以下本発明の詳細な説明する。Description of examples The present invention will be explained in detail below.

(実施例1)゛ 正極板としてPb−C’a −8n 合金よシなる格子
に酸化鉛、水、希硫酸等を練シ合わせたペーストを充填
し、化成した厚さ1.8114’、長さ46鮪、高さ5
5鯖のものを用意する。負極板としてPb−Ca−8n
 合金よシなる格子に酸化鉛、硫酸バリウム。
(Example 1) ``As a positive electrode plate, a lattice made of Pb-C'a-8n alloy was filled with a paste made by kneading lead oxide, water, dilute sulfuric acid, etc. Size 46 tuna, height 5
5 Prepare mackerel. Pb-Ca-8n as negative electrode plate
Lead oxide and barium sulfate on an alloy lattice.

有機添加剤、水、希硫酸等を練り合せたペーストを充填
し、化成した厚さ1.51111.長さ45■、高さb
esmraのものを用意し、それぞれ3枚と4枚で組み
合せ、極板間隔を1.5 Alff+とした。極板間に
は微細なガラス繊維よりなるセパレータが挿入されてい
る。このセパレータに使用されているガラス繊維の太さ
は平均0.7μmであるか、抄紙する時の密度を変え、
5 、10 、20 、30 、40μmの5種類とし
た。
Filled with a paste made by kneading organic additives, water, dilute sulfuric acid, etc., and chemically formed to a thickness of 1.51111. Length 45cm, height b
ESMRA products were prepared, and three and four pieces were combined, respectively, and the electrode plate spacing was set to 1.5 Alff+. A separator made of fine glass fiber is inserted between the electrode plates. The average thickness of the glass fibers used in this separator is 0.7 μm, or the density at the time of paper making is changed.
There were five types: 5, 10, 20, 30, and 40 μm.

なお従来例は30μmに該当する。電解液には比重1.
30の希硫酸を用いた。この電池は従来例を基準とした
場合、電圧12V’、10時間率容量3、oAh であ
る。
Note that the conventional example corresponds to 30 μm. The electrolyte has a specific gravity of 1.
30 dilute sulfuric acid was used. This battery has a voltage of 12 V', a 10 hour rate capacity of 3, and oAh when compared to the conventional example.

これらの電池について保液能力、50ム放電時の初期持
続時間、充放電サイクル寿命試験(充電;2・45V7
.、l/定電圧、最大電流は2.4ム、充電時間は3時
間、放電;0・8帖2f抵抗、終止電圧は9.OV、周
囲温変;25℃、寿命終了は容量が初期値の%に達しだ
時)セパレータへの正極活物質浸透の深さおよび充放電
サイクル途中の放置試験(5oサイクルごとに40℃、
3日間放置)を実施したところ第1図、第2図のとおシ
であった。
These batteries were tested for liquid retention capacity, initial duration at 50 m discharge, charge/discharge cycle life test (charging; 2/45V7
.. , l/constant voltage, maximum current is 2.4 μm, charging time is 3 hours, discharge: 0.8 volts 2f resistance, final voltage is 9. OV, ambient temperature change: 25℃, end of life when capacity reaches % of initial value) depth of penetration of positive electrode active material into separator and storage test during charge/discharge cycle (40℃ every 5o cycles,
When the sample was left for 3 days), the results were as shown in Figures 1 and 2.

これらによれは、最大孔径が小さいと、正極活物質の浸
透が抑えられ、充放電サイクル寿命特性の極めて優れた
構成が得られる。しかし一方で、放電持続時間が短いこ
とが判った。
Accordingly, when the maximum pore diameter is small, penetration of the positive electrode active material is suppressed, and a configuration with extremely excellent charge/discharge cycle life characteristics can be obtained. However, on the other hand, it was found that the discharge duration was short.

(実施例2) 実施例1と同様の構成で極板間隔を1.5,1.0゜0
.5111Mとし、最大孔径10 、30μmのセパレ
ータの二重構造で正極側に10μmの面が当るように配
置し、それぞれ1:1の厚み比率になるようにした。比
較として孔径3oμmの一重の構成のセパレータを用い
て電池を作成し、これらについて実施例1と同様の測定
および試験を行った。この結果を第3図、第4図に示す
(Example 2) Same configuration as Example 1 with electrode plate spacing of 1.5 and 1.0°0.
.. 5111M, and had a double structure of separators with maximum pore diameters of 10 and 30 μm, arranged so that the 10 μm surface was in contact with the positive electrode side, so that the thickness ratio was 1:1. As a comparison, a battery was prepared using a separator having a single layer structure with a pore diameter of 3 μm, and the same measurements and tests as in Example 1 were performed on these. The results are shown in FIGS. 3 and 4.

これらによれは、二重構造のセパレータを用いることに
より、充放電サイクル寿命は実験の範囲で1.6〜2.
2倍と著しく改善され、また、実用状態で必要な特性で
あり、微短絡の証処である充放電サイクル途中の放置に
よる容量減も少いことが明らかである。最大孔径の小さ
いセパレータを正極板面に配置したことによる活物質の
保持と、セパレータ内部への微粒子活物質の浸み込みを
抑制することかできだ。
According to these, by using a double-structured separator, the charge/discharge cycle life is 1.6 to 2.
This is a remarkable improvement of 2 times, and it is also clear that there is little capacity loss due to being left in the middle of a charge/discharge cycle, which is a necessary characteristic in practical use and is proof of a slight short circuit. By arranging a separator with a small maximum pore size on the surface of the positive electrode plate, it is possible to retain the active material and suppress the penetration of particulate active material into the separator.

ここで、極板間隔が11r1jl以下の時の効果が著し
く、また電池をコンパクトにするためにも極板間隔を狭
くする必要があることから、本発明の構成は、極板間隔
が11.Tfii以下の場合にとくに有効である。
Here, the effect is remarkable when the electrode plate spacing is 11r1jl or less, and since it is necessary to narrow the electrode plate spacing in order to make the battery compact, the configuration of the present invention is such that the electrode plate spacing is 11. This is particularly effective when Tfii or lower.

また、セパレータの最大孔径について、正極に面した層
は、保液能力と活物質の浸み込みを防止する上から6〜
10μmが適当であシ、負極に面した層は保液能力とセ
パレータの量産性を考慮し、40μmを超えると強度が
減少することから20〜40μmが適当である。
In addition, regarding the maximum pore diameter of the separator, the layer facing the positive electrode is
The thickness of the layer facing the negative electrode is preferably 20 to 40 μm, considering the liquid retention capacity and mass productivity of the separator, since strength decreases if the layer exceeds 40 μm.

発明の効果 以上の実施例からも明らかなように、本発明の電池は、
充放電サイクル寿命の改善及び実用特性であるところの
充放電サイクル途中の放置による容量減が少ないこと等
産業上の利用価値の大きいものである。
Effects of the Invention As is clear from the above examples, the battery of the present invention has the following effects:
It has great industrial utility value, such as improved charge/discharge cycle life and less loss of capacity due to being left unused during a charge/discharge cycle, which is a practical characteristic.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はセパレータの最大孔径別の充放電サイクル寿扁
、初期放電持続時間及び保液能力を示す図、第2図は同
様に正極活物質浸透深さ及び充放電サイクル途中の放置
による容量減の関係を示す図、第3図は一重、二重のセ
パレータについて極板間隔別の充放電サイクル寿命、初
期放電持続時間及び保液能力を示す図、第4図は同様に
正極活物質浸透深さ及び充放電サイクル途中の放置によ
る容量減の関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓、
1図 番 尺コし才蚤(μ町 第2図 第 3 図 種板間曝師側 第 4rIJJ 1,6) 柚核帽市(・〜′
Figure 1 shows the charge/discharge cycle life, initial discharge duration, and liquid retention capacity for each maximum pore diameter of the separator, and Figure 2 similarly shows the penetration depth of the positive electrode active material and the capacity loss due to neglect during the charge/discharge cycle. Figure 3 is a diagram showing the charge/discharge cycle life, initial discharge duration, and liquid holding capacity for single and double separators according to the electrode plate spacing, and Figure 4 is a diagram showing the penetration depth of the positive electrode active material. FIG. 3 is a diagram showing the relationship between battery life and capacity reduction due to being left unused during a charge/discharge cycle. Name of agent: Patent attorney Toshio Nakao and one other name:
Figure No. 1 Shakukoshi Saichi (μ Town Figure 2 Figure 3 Figure Type Itabashi side No. 4rIJJ 1, 6) Yuzuki Hat City (・~'

Claims (1)

【特許請求の範囲】[Claims] 二酸化鉛を活物質とした正極と、海綿状鉛を活物質とし
た負極と、それらの間に微細なガラス繊維よシなるセパ
レータを介在して、これらに電解液を吸蔵させ極板間隔
を1順以下とした密閉形鉛蓄電池であって、正極に面し
た層の最大孔径が6〜10μmであシ、負極に面した層
の最大孔径を20〜40μmとした二重構造のセパレー
タを用いたことを特徴とする密閉形鉛蓄電池。
A positive electrode made of lead dioxide as an active material, a negative electrode made of spongy lead as an active material, and a separator made of fine glass fiber is interposed between them, and the electrolyte is occluded in these, and the electrode plate spacing is set to 1. This is a sealed lead-acid battery with a double-layer structure in which the layer facing the positive electrode has a maximum pore diameter of 6 to 10 μm, and the layer facing the negative electrode has a maximum pore diameter of 20 to 40 μm. A sealed lead-acid battery characterized by:
JP59002814A 1984-01-11 1984-01-11 Sealed lead storage battery Granted JPS60148052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59002814A JPS60148052A (en) 1984-01-11 1984-01-11 Sealed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59002814A JPS60148052A (en) 1984-01-11 1984-01-11 Sealed lead storage battery

Publications (2)

Publication Number Publication Date
JPS60148052A true JPS60148052A (en) 1985-08-05
JPH0512821B2 JPH0512821B2 (en) 1993-02-19

Family

ID=11539861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59002814A Granted JPS60148052A (en) 1984-01-11 1984-01-11 Sealed lead storage battery

Country Status (1)

Country Link
JP (1) JPS60148052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126159A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214835A (en) * 1975-07-14 1977-02-04 Yuasa Battery Co Ltd Maintenanceefree lead battery
JPS5410945A (en) * 1977-06-27 1979-01-26 Yuasa Battery Co Ltd Lead storage battery
JPS5458833A (en) * 1977-10-19 1979-05-11 Yuasa Battery Co Ltd Sepator for lead accumulator
JPS5458832A (en) * 1977-10-19 1979-05-11 Gates Rubber Co Lead acid cell that eliminate need for maintenance
JPS5553065A (en) * 1978-10-13 1980-04-18 Japan Storage Battery Co Ltd Closed-type lead accumulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214835A (en) * 1975-07-14 1977-02-04 Yuasa Battery Co Ltd Maintenanceefree lead battery
JPS5410945A (en) * 1977-06-27 1979-01-26 Yuasa Battery Co Ltd Lead storage battery
JPS5458833A (en) * 1977-10-19 1979-05-11 Yuasa Battery Co Ltd Sepator for lead accumulator
JPS5458832A (en) * 1977-10-19 1979-05-11 Gates Rubber Co Lead acid cell that eliminate need for maintenance
JPS5553065A (en) * 1978-10-13 1980-04-18 Japan Storage Battery Co Ltd Closed-type lead accumulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126159A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell

Also Published As

Publication number Publication date
JPH0512821B2 (en) 1993-02-19

Similar Documents

Publication Publication Date Title
JP2012133958A (en) Composite capacitor negative electrode plate and lead storage battery
US3525640A (en) Method of fabricating iron electrodes for alkaline storage batteries
JPS60148052A (en) Sealed lead storage battery
JPH042060A (en) Sealed type lead acid battery
JPH01128367A (en) Sealed type lead storage battery
JP3261417B2 (en) Sealed lead-acid battery
JPS63152868A (en) Lead-acid battery
JP2855677B2 (en) Sealed lead-acid battery
JPH0536393A (en) Separator for lead-acid battery
JPH01124958A (en) Sealed lead-acid battery
JPH0451943B2 (en)
JPS63148546A (en) Sealed lead acid battery
JPS63190252A (en) Lead storage battery
JPH01149376A (en) Sealed lead-acid battery
JP2768197B2 (en) Sealed storage battery
JPH08203490A (en) Sealed lead-acid battery
JP2004199949A (en) Manufacturing method of electrode plate for lead-acid storage battery
JPS62170173A (en) Sealed lead-acid battery
JP2995780B2 (en) Sealed lead-acid battery
JPH0524626B2 (en)
JPH06295739A (en) Sealed lead-acid battery
JPS63148535A (en) Separator for enclosed lead storage battery
JPH08329921A (en) Sealed lead-acid battery
JPS63148538A (en) Separator for enclosed lead storage battery
JPH02158062A (en) Sealed lead-storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term