JPH0524626B2 - - Google Patents

Info

Publication number
JPH0524626B2
JPH0524626B2 JP59266614A JP26661484A JPH0524626B2 JP H0524626 B2 JPH0524626 B2 JP H0524626B2 JP 59266614 A JP59266614 A JP 59266614A JP 26661484 A JP26661484 A JP 26661484A JP H0524626 B2 JPH0524626 B2 JP H0524626B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
separator
electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59266614A
Other languages
Japanese (ja)
Other versions
JPS61143950A (en
Inventor
Sadao Fukuda
Hiroyuki Jinbo
Akihiko Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59266614A priority Critical patent/JPS61143950A/en
Publication of JPS61143950A publication Critical patent/JPS61143950A/en
Publication of JPH0524626B2 publication Critical patent/JPH0524626B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池、とくに密閉形(以下、シー
ル形という)鉛蓄電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to lead-acid batteries, particularly sealed type (hereinafter referred to as sealed type) lead-acid batteries.

従来の技術 従来この種のシール形鉛蓄電池は、サイクル用
途や過充電用途など使用されている。これらの電
池は、正、負の両極板、セパレータ、電解液およ
び電槽で構成され、電解液は正、負両極板および
セパレータに含液され、遊離の電解液はほとんど
存在しない構成となつている。さらに電池の放電
容量は電池が新しい状態では電解液律則になつて
いる。このように遊離の電解液がない状態の電池
を充電すると、充電中期以降、正極板から酸素ガ
スが発生し、この発生酸素ガスは負極板と接触し
て消失される。この酸素消失機構は一般的には活
性な金属鉛(負極板の充電状態の活物質)と接触
して酸化鉛になり、電解液である硫酸が接触して
いると硫酸鉛になり、水を生成する。この反応は
発熱反応である。
BACKGROUND ART Conventionally, this type of sealed lead-acid battery has been used for cycle applications and overcharge applications. These batteries are composed of positive and negative polar plates, a separator, an electrolyte, and a battery container.The electrolyte is contained in the positive and negative polar plates and the separator, and there is almost no free electrolyte. There is. Furthermore, the discharge capacity of a battery is determined by the electrolyte when the battery is new. When a battery without free electrolyte is charged in this manner, oxygen gas is generated from the positive electrode plate after the middle stage of charging, and this generated oxygen gas is dissipated by contacting the negative electrode plate. This oxygen loss mechanism generally occurs when it comes into contact with active metal lead (the active material in the charged state of the negative electrode plate) and becomes lead oxide, and when it comes into contact with sulfuric acid, which is an electrolytic solution, it becomes lead sulfate, which dissipates water. generate. This reaction is exothermic.

このような酸素消失反応により、発生したガス
の全部が電池内に固定できれば電解液の減少はな
いが、急速充電例えば定電流急速充電などを行う
と酸素吸収反応速度よりも酸素発生速度が大きく
なり、酸素ガスは電池外に流出し、電解液は減少
する。また上記の発熱反応により硫酸比重の低く
なつた電解液の蒸発が促進され、負極板の電解液
量が減少する。負極板中の電解液量の減少が正極
板やセパレータより大きくても、負極板の吸液能
力が正極板やセパレータより大きければ、それら
から電解液が移動して、電池内の電解液分布は均
一化されるが、従来の構成では負極板の吸液能力
の向上対策は何らなされていなかつた。
If all of the generated gas is fixed within the battery due to this oxygen loss reaction, there will be no decrease in the electrolyte, but if rapid charging, such as constant current rapid charging, is performed, the oxygen generation rate will be greater than the oxygen absorption reaction rate. , oxygen gas flows out of the battery, and the electrolyte decreases. Furthermore, the exothermic reaction promotes evaporation of the electrolytic solution whose sulfuric acid specific gravity has become low, and the amount of electrolytic solution on the negative electrode plate decreases. Even if the decrease in the amount of electrolyte in the negative plate is greater than that in the positive plate or separator, if the liquid absorption capacity of the negative plate is greater than that of the positive plate or separator, the electrolyte will move from them and the electrolyte distribution within the battery will change. However, in the conventional configuration, no measures were taken to improve the liquid absorption ability of the negative electrode plate.

発明が解決しようとする問題点 上記のような従来の電池をサイクルサービスや
過充電あるいは過放電した場合に電池内の電解液
量が減少する。特に負極板の電解液量が減少す
る。電解液量が減少すると、内部抵抗が高くなる
とともに電解液と活物質との接触状態が悪くな
り、放電容量が低下する。特に負極板では酸素消
失反応によつても硫酸鉛が生成し、電解液が少な
くなつた状態での充電が困難となり、容量低下が
激しいという問題があつた。
Problems to be Solved by the Invention When a conventional battery as described above is cycle serviced, overcharged, or overdischarged, the amount of electrolyte in the battery decreases. In particular, the amount of electrolyte on the negative electrode plate decreases. When the amount of electrolyte decreases, the internal resistance increases and the contact state between the electrolyte and the active material deteriorates, resulting in a decrease in discharge capacity. Particularly in the negative electrode plate, lead sulfate is generated due to the oxygen loss reaction, making it difficult to charge the battery when the electrolyte is low, resulting in a severe decrease in capacity.

本発明は上記問題点を解決するものである。す
なわちシール形鉛蓄電池のサイクル寿命など電池
特性を向上することを目的とするものである。
The present invention solves the above problems. In other words, the purpose is to improve battery characteristics such as cycle life of sealed lead-acid batteries.

問題点を解決するための手段 上記問題点を解決するために本発明は、セパレ
ータおよび正極板の吸液能力よりも大きな吸液能
力を有する負極板を、遊離の電解液が存在しない
程度に電解液量を制限したシール形鉛蓄電池に使
用したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention aims to electrolyze a negative electrode plate having a liquid absorption capacity larger than that of the separator and the positive electrode plate to such an extent that no free electrolyte exists. This is used in sealed lead-acid batteries with limited fluid volume.

負極板の吸液能力をセパレータおよび正極板よ
りも大にする手段としては、電解液を吸液するセ
パレータおよび正極板の孔径より負極板の孔径を
小さくする方法、あるいは負極板中にセパレータ
や正極板よりも吸液能力が優れた物質を添加含有
させる方法がとられる。また、初期放電容量はや
や低下するが、セパレータに撥水材料あるいは吸
液能力の低い材料を使用しても負極板の相対的吸
液能力を高めることができる。
As a means to make the liquid absorption capacity of the negative electrode plate larger than that of the separator and the positive electrode plate, there is a method of making the pore diameter of the negative electrode plate smaller than the pore diameter of the separator and the positive electrode plate that absorb electrolyte, or a method of making the pore size of the negative electrode plate smaller than the pore diameter of the separator and the positive electrode plate, which absorbs the electrolyte, or a method of making the pore size of the negative electrode plate smaller than the pore diameter of the separator and the positive electrode plate, which absorbs the electrolyte, or A method is used to add and contain a substance that has better liquid absorption ability than the plate. Further, although the initial discharge capacity is slightly reduced, the relative liquid absorption capacity of the negative electrode plate can be increased even if a water-repellent material or a material with low liquid absorption capacity is used for the separator.

作 用 上記の構成により、サイクル用途や過充電、過
放電などを伴う用途に使用された場合、電解液量
の減少した負極板の吸液能力が、セパレータや正
極板よりも高いため、電池内の電解液量分布が均
一になり、充電性の向上や、放電容量の低下が抑
制できる。
Effects Due to the above configuration, when used in cycling applications or applications involving overcharging, overdischarging, etc., the negative electrode plate, which has a reduced amount of electrolyte, has a higher liquid absorption capacity than the separator or positive electrode plate. The electrolyte volume distribution becomes uniform, and charging performance can be improved and a decrease in discharge capacity can be suppressed.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

前述した従来構造の正極板とセパレータを使用
し、負極板のみを変化させた。具体的には平均孔
径約2.5μの正極板と、平均孔径約10μのセパレー
タを使用し負極板の平均孔径を変化させて電池を
構成した。負極板の孔径は鉛粉と硫酸と水を混練
し集電体(格子)に塗着して乾燥し、化成する負
極板の製造法において、硫酸と水と量を変化させ
ることにより調整した。一般的に硫酸分を多くす
ると小孔径が多くなり、水の量を多くすると大孔
径が多くなる。またこの硫酸量と水の量は混練物
の粘度に大きく影響を及ぼすため、集電体への塗
着時の作業性に影響を与えるので、どちらか一方
のみの調整では極板が製造できない場合がある。
The conventional structure of the positive electrode plate and separator described above was used, and only the negative electrode plate was changed. Specifically, a battery was constructed by using a positive electrode plate with an average pore diameter of approximately 2.5 μm and a separator with an average pore diameter of approximately 10 μm, and by varying the average pore diameter of the negative electrode plate. The pore size of the negative electrode plate was adjusted by varying the amounts of sulfuric acid and water in the negative electrode plate manufacturing method, which involves kneading lead powder, sulfuric acid, and water, applying the mixture to a current collector (grid), drying it, and chemically forming it. In general, increasing the sulfuric acid content increases the small pore size, and increasing the water amount increases the large pore size. In addition, the amount of sulfuric acid and the amount of water greatly affect the viscosity of the kneaded product, which affects the workability when applying it to the current collector, so there are cases where it is not possible to manufacture electrode plates by adjusting only one of them. There is.

本実施例では、酸化鉛粉1Kgに対して硫酸比重
と硫酸量および水量を調整し、1.3μ、2.0μ、2.2μ
の平均孔径を有する負極板を作成した。なお平均
孔径1.3μの負極板は比重1.55の硫酸120c.c.と水45
c.c.、2.0μは比重1.40の硫酸120c.c.と水40c.c.、2.2
μは
比重1.35の硫酸150c.c.と水35c.c.を混練して得られ
た例について示す。また吸液能力を向上させるた
めに吸液物質を添加した負極板も作製した。高い
吸液性を有した物質の種類が多いが、鉛蓄電池に
使用する場合は耐酸性を有し、さらに電池特性、
特に自己放電特性などを劣化させない物質でなけ
ればならない。そのような物質の一例として微粉
末シリカ、あるいはアルミナ系物質が好ましい。
本実施例では粒径約2μのケイ酸カルシウムを使
用した例を示す。酸化鉛粉1Kgに比重1.40の硫酸
と水を練合し、これらにさらにケイ酸カルシウム
を酸化鉛1Kgに対して20g添加して混合し、見掛
比重約3.5g/c.c.の練合物を調整し、これを集電
体格子に塗着して負極板とした。
In this example, the specific gravity of sulfuric acid, the amount of sulfuric acid, and the amount of water were adjusted to 1 kg of lead oxide powder, and the results were 1.3 μ, 2.0 μ, and 2.2 μ.
A negative electrode plate having an average pore diameter of The negative electrode plate with an average pore diameter of 1.3μ is made of 120c.c. of sulfuric acid with a specific gravity of 1.55 and 45% of water.
cc, 2.0μ is 120c.c. of sulfuric acid with a specific gravity of 1.40 and 40c.c. of water, 2.2
μ is shown for an example obtained by kneading 150 c.c. of sulfuric acid with a specific gravity of 1.35 and 35 c.c. of water. We also created a negative electrode plate to which a liquid-absorbing substance was added to improve the liquid-absorbing ability. There are many types of substances that have high liquid absorption properties, but when used in lead-acid batteries, they have acid resistance and also have good battery characteristics.
In particular, it must be a material that does not deteriorate self-discharge characteristics. As an example of such a material, finely powdered silica or an alumina-based material is preferable.
This example shows an example in which calcium silicate with a particle size of about 2 μm is used. Mix 1 kg of lead oxide powder with sulfuric acid and water with a specific gravity of 1.40, and then add 20 g of calcium silicate per 1 kg of lead oxide and mix to prepare a mixture with an apparent specific gravity of approximately 3.5 g/cc. This was then applied to a current collector grid to form a negative electrode plate.

これらの負極板2枚と、正極板3枚とを組み合
せ、10時間率放電容量2.0Ahの電池を作製した。
なお電池の電解液は比重1.32の希硫酸を使用し
た。
These two negative electrode plates and three positive electrode plates were combined to produce a battery with a 10 hour rate discharge capacity of 2.0 Ah.
Note that dilute sulfuric acid with a specific gravity of 1.32 was used as the electrolyte for the battery.

これらの電池を10時間率の電流で充電し、7時
間率の電流で放電した初期容量を確認した後、サ
イクル寿命特性を評価した。充電は2.1Aの定電
流で1時間以内とし、充電停止は負極板での酸素
消失反応により負極板電位の上昇を検知し、この
上昇分が約50mVになつた時点で回路的に電流を
遮断する方法で行い、放電は1.7Aの定電流で終
止電圧は1セル当り1.70Vとした。このサイクル
を繰り返えし、初期容量に対する放電容量を測定
した。
These batteries were charged at a current rate of 10 hours and discharged at a current rate of 7 hours to confirm the initial capacity, and then their cycle life characteristics were evaluated. Charging is done within 1 hour with a constant current of 2.1A, and charging is stopped by detecting a rise in the potential of the negative electrode plate due to the oxygen loss reaction on the negative electrode plate, and when this rise reaches approximately 50mV, the current is cut off using a circuit. The discharge was performed at a constant current of 1.7 A, and the final voltage was 1.70 V per cell. This cycle was repeated and the discharge capacity relative to the initial capacity was measured.

評価電池No.1は平均孔径1.3μの負極板、No.2は
2.0μの負極板、No.3は2.2μの負極板、No.4はケイ
酸カルシウム含有負極板を使用した電池である。
なお参考とし従来の電池(No.5)も同時に評価し
た。
Evaluation battery No. 1 had a negative electrode plate with an average pore diameter of 1.3μ, and No. 2 had a negative electrode plate with an average pore diameter of 1.3μ.
Battery No. 3 uses a 2.0 μ negative electrode plate, No. 4 uses a 2.2 μ negative electrode plate, and No. 4 uses a negative electrode plate containing calcium silicate.
For reference, a conventional battery (No. 5) was also evaluated at the same time.

第1図にその結果の一例を示す。同図の曲線No.
は電池No.を示す。第1図から本発明品は従来電池
に比較してサイクル寿命が大きく改善されている
ことが明らかである。
Figure 1 shows an example of the results. Curve No. in the same figure.
indicates the battery number. From FIG. 1, it is clear that the product of the present invention has a significantly improved cycle life compared to the conventional battery.

第2図はNo.1〜5の負極板、正極板およびセパ
レータの吸液能力を比較した結果を示す。評価方
法は被測定物を比重1.32の希硫酸溶液中に直立さ
せ、高さ10cmまでの希硫酸のはい上がり時間を比
較した。なお第2図において負極板のNo.は第1図
に示した電池の負極板No.を示す。第2図から本発
明品の吸液能力は従来構成の負極板およびセパレ
ータや正極板より大きいことがわかる。
FIG. 2 shows the results of comparing the liquid absorption abilities of Nos. 1 to 5 of the negative electrode plates, positive electrode plates, and separators. The evaluation method was to stand the object to be measured upright in a dilute sulfuric acid solution with a specific gravity of 1.32, and compare the time for the dilute sulfuric acid to crawl up to a height of 10 cm. In FIG. 2, the negative electrode plate number indicates the negative electrode plate number of the battery shown in FIG. 1. From FIG. 2, it can be seen that the liquid absorption capacity of the product of the present invention is greater than that of the conventional negative electrode plate, separator, and positive electrode plate.

発明の効果 以上の結果から負極板の吸液能力をセパレータ
および正極板のそれよりも大きくした本発明品は
サイクル寿命、特に急速充電を伴うサイクル寿命
を向上するという効果が得られる。なお実施例に
おいては平均孔径について3種類、吸液能力向上
の添加剤を用いたもの1種類についてのみ示した
が、その他の手段方法などでも同様な効果が得ら
れる。さらに実施例では急速充電を伴うサイクル
寿命特性について示したが、過充電時においても
同様な現象、すなわち充電時に負極板での酸素消
失反応が生じるので、サイクル寿命向上と同時に
過充電特性も向上させることができる。
Effects of the Invention From the above results, the product of the present invention in which the liquid absorption capacity of the negative electrode plate is larger than that of the separator and the positive electrode plate has the effect of improving the cycle life, especially the cycle life associated with rapid charging. In the examples, only three types of average pore diameters and one type using an additive for improving liquid absorption ability were shown, but similar effects can be obtained by other methods. Furthermore, although the cycle life characteristics associated with rapid charging were shown in the example, the same phenomenon occurs during overcharging, that is, an oxygen loss reaction occurs on the negative electrode plate during charging, so the cycle life is improved and the overcharge characteristics are also improved. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における電池のサイク
ル寿命特性を示す図、第2図は本発明の電池の負
極板、正極板およびセパレータの吸液能力を示す
図である。
FIG. 1 is a diagram showing the cycle life characteristics of a battery in an example of the present invention, and FIG. 2 is a diagram showing the liquid absorption capacity of the negative electrode plate, positive electrode plate, and separator of the battery of the present invention.

Claims (1)

【特許請求の範囲】 1 正、負の両極板、およびセパレータに電解液
を保持させ、遊離の電解液が存在しない程度に電
解液量を制限した鉛蓄電池であつて、負極板は正
極板およびセパレータよりも大きな吸液能力を備
えることを特徴とする鉛蓄電池。 2 負極板が、正極板およびセパレータよりも小
さい平均孔径を有する特許請求の範囲第1項記載
の鉛蓄電池。 3 負極板が、正極板およびセパレータよりも吸
液能力の優れた物質を含有する特許請求の範囲第
1項記載の鉛蓄電池。
[Claims] 1. A lead-acid battery in which an electrolyte is held in both positive and negative electrode plates and a separator, and the amount of electrolyte is limited to such an extent that there is no free electrolyte, the negative electrode plate being a positive electrode plate and a separator. A lead-acid battery is characterized by having a larger liquid absorption capacity than a separator. 2. The lead-acid battery according to claim 1, wherein the negative electrode plate has a smaller average pore diameter than the positive electrode plate and the separator. 3. The lead-acid battery according to claim 1, wherein the negative electrode plate contains a substance having a better liquid absorption ability than the positive electrode plate and the separator.
JP59266614A 1984-12-18 1984-12-18 Lead-acid battery Granted JPS61143950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59266614A JPS61143950A (en) 1984-12-18 1984-12-18 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59266614A JPS61143950A (en) 1984-12-18 1984-12-18 Lead-acid battery

Publications (2)

Publication Number Publication Date
JPS61143950A JPS61143950A (en) 1986-07-01
JPH0524626B2 true JPH0524626B2 (en) 1993-04-08

Family

ID=17433260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59266614A Granted JPS61143950A (en) 1984-12-18 1984-12-18 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPS61143950A (en)

Also Published As

Publication number Publication date
JPS61143950A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
JP2000251896A (en) Lead-acid battery and its manufacture
JP2004014283A (en) Valve regulated lead battery
JPH0524626B2 (en)
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JPH01128367A (en) Sealed type lead storage battery
JPS63152868A (en) Lead-acid battery
JP3374462B2 (en) Sealed lead storage battery
JPS59173961A (en) Organic electrolyte secondary battery
JPS5916279A (en) Lead storage battery
JPS61165956A (en) Sealed type lead acid battery
JPH0414760A (en) Lead-acid accumulator
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
JPH04196059A (en) Lead-acid battery
JP2002343412A (en) Seal type lead-acid battery
JPS6322428B2 (en)
JP2855677B2 (en) Sealed lead-acid battery
JPH01122564A (en) Sealed type lead-acid battery
JPH08298133A (en) Sealed lead acid battery
JPS62157673A (en) Lead storage battery
KR20200057465A (en) Composition of lead-carbon electrode paste, and manufacturing method of the paste
JPS58158874A (en) Lead storage battery
JPH10106576A (en) Sealed lead-acid battery
JPH10188964A (en) Sealed lead-acid battery
JPH06267524A (en) Sealed lead-acid battery
JPH06124706A (en) Sealed nickel-zinc storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term