JPH06267524A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH06267524A
JPH06267524A JP5078961A JP7896193A JPH06267524A JP H06267524 A JPH06267524 A JP H06267524A JP 5078961 A JP5078961 A JP 5078961A JP 7896193 A JP7896193 A JP 7896193A JP H06267524 A JPH06267524 A JP H06267524A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
negative electrode
acid
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5078961A
Other languages
Japanese (ja)
Inventor
Shigeharu Osumi
重治 大角
Kazuhiko Onishi
和彦 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP5078961A priority Critical patent/JPH06267524A/en
Publication of JPH06267524A publication Critical patent/JPH06267524A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To realize a high rate discharge charasteristics and a long service life compatibly by making the ratio of the synthetic fiber of a separator which consists of a minute glass fiber and an acid-proof synthetic fiber having minute pores larger at the side contacting to a positive electrode plate than at the side contacting to the negative electrode plate. CONSTITUTION:By an acid-proof synthetic fiber having minute pores composing a separator provided between a positive and a negative electrode, the Sb fusing from the positive electrode is absorbed, and the deposition of the Sb to the negative electrode plate which consists of a lead alloy including no Sb is suppressed so as to prevent the solution and the reduction of an electrolyte owing to the generation of hydrogen gas, even though a Pb-Sb system alloy is used for a positive electrode grid. Furthermore, the ratio of the synthetic fiber at the side contacting to the positive electrode plate is made larger than at the negative electrode plate side, and thereby the Sb is stayed near the positive electrode plate and its transfer to the negative electrode plate is reduced. And since the Pb-Sb system alloy can be used as the positive electrode, the capacity is never reduced in the early period even though a thin electrode plate which can obtain a high rate discharge characteristics is used, and a long service life is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉型鉛蓄電池の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved sealed lead acid battery.

【0002】[0002]

【従来の技術とその課題】鉛蓄電池の充電中に発生する
酸素ガスを負極で還元・吸収させるタイプの密閉型鉛蓄
電池にはゲル式とリテーナ式との二種類がある。
2. Description of the Related Art There are two types of sealed lead-acid batteries, a gel type and a retainer type, in which a negative electrode reduces and absorbs oxygen gas generated during charging of the lead-acid battery.

【0003】ゲル式は希硫酸に二酸化珪素(SiO2
の微粉末を混ぜることによって電解液をゲル状にし、流
動液をなくしたものであり、リテーナ式よりも安価であ
るが、電池性能が液式やリテーナ式に劣るという欠点が
ある。一方、リテーナ式は正極板と負極板との間に直径
1μm前後の微細ガラス繊維を主体とするマット状セパ
レータ(ガラスセパレータ)を挿入し、これによって充
放電に必要な硫酸電解液の保持と両極の隔離を行ってお
り、近年、ポータブル機器やコンピュータのバックアッ
プ電源として広く用いられるようになってきた。
The gel formula is dilute sulfuric acid and silicon dioxide (SiO 2 ).
The electrolytic solution is made into a gel by mixing the fine powder of (1) to eliminate the fluid, which is cheaper than the retainer type, but has a drawback that the battery performance is inferior to the liquid type and the retainer type. On the other hand, in the retainer type, a mat-like separator (glass separator) mainly composed of fine glass fibers having a diameter of about 1 μm is inserted between the positive electrode plate and the negative electrode plate, and thereby the sulfuric acid electrolyte necessary for charging and discharging and the both electrodes are held. Has been widely used as a backup power source for portable devices and computers in recent years.

【0004】このような密閉型鉛蓄電池では、充電中に
発生する酸素ガスを負極で還元・吸収させることによっ
て電解液の分解・減少を防いでいるのであるが、負極格
子や負極板上にアンチモン(Sb)が存在すると、負極
板の水素過電圧が低下し、充電中に負極から水素ガスが
発生しやすくなり、電解液が分解・減少し、電池の容量
が早期に低下する等の問題が発生しやすくなる。また、
正極板に鉛(Pb)ーSb系合金からなる格子を使用す
ると、電池使用中に正極格子の腐食にともなってSbが
溶出し、溶出したSbが負極に移動し、負極板上に析出
する。すると、上述のように負極板の水素過電圧が低下
し、負極板から水素ガスが発生しやすくなり、電解液が
分解・減少し、電池の容量が早期に低下する等の問題が
発生しやすくなる。このため、従来から密閉型鉛蓄電池
では正および負極板ともSbを含まない合金、主にPb
−カルシウム(Ca)系合金からなる格子を使用してい
る。
In such a sealed lead-acid battery, oxygen gas generated during charging is reduced and absorbed by the negative electrode to prevent decomposition and reduction of the electrolytic solution. However, antimony is deposited on the negative electrode grid and the negative electrode plate. When (Sb) is present, the hydrogen overvoltage of the negative electrode plate is lowered, hydrogen gas is likely to be generated from the negative electrode during charging, the electrolyte is decomposed and reduced, and the battery capacity is reduced early. Easier to do. Also,
When a grid made of a lead (Pb) -Sb alloy is used for the positive electrode plate, Sb is eluted due to corrosion of the positive electrode grid during use of the battery, and the eluted Sb moves to the negative electrode and is deposited on the negative electrode plate. Then, as described above, the hydrogen overvoltage of the negative electrode plate is lowered, hydrogen gas is easily generated from the negative electrode plate, the electrolyte is decomposed / reduced, and the problem that the capacity of the battery is lowered early is likely to occur. . For this reason, in the conventional sealed lead-acid battery, both positive and negative plates are alloys containing no Sb, mainly Pb.
-A lattice made of calcium (Ca) -based alloy is used.

【0005】また、最近は、密閉型鉛蓄電池の高率放電
特性の改善がより一層求められているが、そのためには
正極板と負極板との間隔を狭くする必要があるが、正極
板および負極板を薄くすることも必要である。
Recently, there has been a demand for further improvement in the high rate discharge characteristics of sealed lead-acid batteries. For that purpose, it is necessary to narrow the gap between the positive electrode plate and the negative electrode plate. It is also necessary to make the negative electrode plate thin.

【0006】しかし、極板、特にPb−Ca系合金のよ
うに、Sbを含まない合金からなる正極板を薄くする
と、電解液が十分あるにもかかわらず、深い充放電サイ
クル時に早期に容量が低下するという問題があった。正
極格子にPbーSb系合金を使用すればこのような早期
容量低下を防ぐことはできるが、上述の理由で正極には
PbーSb系合金は使用できず、優れた高率放電特性と
長寿命とを合わせ持つ密閉型鉛蓄電池を得ることは困難
であった。
However, when a positive electrode plate, particularly a positive electrode plate made of an alloy not containing Sb such as a Pb-Ca-based alloy, is thinned, the capacity of the positive electrode plate is reduced early during a deep charge / discharge cycle, although the electrolytic solution is sufficient. There was a problem of lowering. If a Pb-Sb alloy is used for the positive electrode grid, it is possible to prevent such an early capacity decrease, but for the above reason, the Pb-Sb alloy cannot be used for the positive electrode, and it has excellent high rate discharge characteristics and long-term discharge characteristics. It has been difficult to obtain a sealed lead-acid battery that has a long life.

【0007】[0007]

【課題を解決するための手段】本発明は、正極格子がP
bーSb系合金からなり、負極格子がSbを含まない鉛
合金からなり、セパレータが微細ガラス繊維と微細孔を
有する耐酸性合成繊維とからなる電池において、正極板
に当接する側の該セパレータ中の微細孔を有する耐酸性
合成繊維の割合が、負極板に当接する側の該セパレータ
中の微細孔を有する耐酸性合成繊維の割合よりも多いこ
とを特徴とするものである。なお、合成繊維は電解液と
のなじみがあまりよくないため、合成繊維にはスルホン
化処理、プラズマ処理等の親水化処理をほどこすことが
好ましい。
According to the present invention, the positive electrode grid is P
In a battery made of a b-Sb-based alloy, a negative electrode grid made of a lead alloy containing no Sb, and a separator made of fine glass fibers and acid-resistant synthetic fibers having fine pores, in the separator on the side in contact with the positive electrode plate. The ratio of the acid-resistant synthetic fiber having fine pores is higher than the ratio of the acid-resistant synthetic fiber having fine pores in the separator on the side contacting the negative electrode plate. Since the synthetic fibers are not so well compatible with the electrolytic solution, it is preferable to subject the synthetic fibers to a hydrophilic treatment such as a sulfonation treatment or a plasma treatment.

【0008】[0008]

【作用】本発明は正極格子にPbーSb系合金を使用し
ても、正極板と負極板との間に配置されたセパレータを
構成する微細孔を有する耐酸性合成繊維によって、正極
から溶出したSbが吸着され、これによって負極板への
Sbの析出が抑えられ、水素ガスの発生による電解液の
分解・減少を防ぐ。さらに、この際、正極板に当接する
側の該セパレータ中の微細孔を有する耐酸性合成繊維の
割合を、負極板に当接する側の該セパレータ中の微細孔
を有する耐酸性合成繊維の割合よりも多くすることによ
って、Sbを正極板の近傍に止め、負極板へのSbの移
行をより少なくする。また、正極にPbーSb系合金を
使用できるため、薄い極板を使用しても容量が早期に低
下することもなく、その上、極板を薄くできるため高率
放電特性も優れたものとなる。
According to the present invention, even if a Pb-Sb-based alloy is used for the positive electrode grid, it is eluted from the positive electrode by the acid-resistant synthetic fiber having fine pores constituting the separator disposed between the positive electrode plate and the negative electrode plate. Sb is adsorbed, which suppresses the deposition of Sb on the negative electrode plate and prevents decomposition and reduction of the electrolytic solution due to generation of hydrogen gas. Furthermore, in this case, the proportion of the acid-resistant synthetic fibers having fine pores in the separator on the side contacting the positive electrode plate is more than the proportion of the acid-resistant synthetic fiber having fine pores in the separator on the side contacting the negative electrode plate. By increasing the amount of Sb as well, Sb is stopped near the positive electrode plate, and migration of Sb to the negative electrode plate is further reduced. In addition, since the Pb-Sb alloy can be used for the positive electrode, the capacity will not be reduced early even if a thin electrode plate is used, and the electrode plate can be made thin, so that high rate discharge characteristics are excellent. Become.

【0009】[0009]

【実施例】まず、表1に示す電池を作製した。EXAMPLES First, the batteries shown in Table 1 were produced.

【0010】[0010]

【表1】 [Table 1]

【0011】正および負極格子は、いずれも重力鋳造法
によって作製し、鋳造後、常法によって正および負極ペ
ーストをそれぞれ練合・充填したのち、熟成・乾燥し
た。次に、これらの正および負極板を希硫酸中で化成
し、化成完了後、水洗・乾燥した。その後、常法によっ
て電池を組み立て、所定の濃度の希硫酸を注入し、補充
電を行い、2V,約6Ahの容量(10hR)を有する
密閉型鉛蓄電池を完成させた。
The positive and negative electrode grids were both manufactured by gravity casting, and after casting, the positive and negative electrode pastes were kneaded and filled by a conventional method, and then aged and dried. Next, these positive and negative electrode plates were formed in dilute sulfuric acid, washed with water and dried after the formation was completed. After that, a battery was assembled by an ordinary method, diluted sulfuric acid having a predetermined concentration was injected, and supplementary charging was performed to complete a sealed lead acid battery having a capacity (10 hR) of 2 V and about 6 Ah.

【0012】正極のPb−Sb系合金およびPb−Ca
系合金にはそれぞれPb−1.5重量%Sb−0.15
重量%砒素(As)−0.01重量%セレン(Se)合
金およびPb−0.08重量%Ca−1.5重量%錫
(Sn)−0.01重量%アルミニウム(Al)合金
を、負極のPb−Ca系合金にはPb−0.09重量%
Ca−0.01重量%Al合金を用いた。
Pb-Sb type alloy and Pb-Ca for the positive electrode
Pb-1.5 wt% Sb-0.15 for each type alloy
% By weight arsenic (As) -0.01% by weight selenium (Se) alloy and Pb-0.08% by weight Ca-1.5% by weight tin (Sn) -0.01% by weight aluminum (Al) alloy Pb-Ca based alloy of Pb-0.09% by weight
A Ca-0.01 wt% Al alloy was used.

【0013】微細ガラス繊維には従来の直径0.8ミク
ロンのガラス繊維を使用した。また、微細ガラス繊維と
微細孔を有する耐酸性合成繊維との混抄セパレータに
は、従来の直径0.8ミクロンのガラス繊維に、親水化
処理した微細孔を有する直径約25ミクロンのポリエチ
レン繊維を20重量%混抄したものを用いた。このポリ
エチレン繊維は0.03〜1ミクロン程度の微細な空孔
を有し、この繊維の空孔率は約45%、比表面積は約4
0m2 /gであった。さらに抄紙方法によってポリエチ
レン繊維の遍在割合を調整し、電池No.1に使用した
セパレータではポリエチレン繊維の60%以上が正極に
当接する側の1/3の厚さに含まれていた。電池No.
2に用いたセパレータではポリエチレン繊維が均一に混
ざるようにした。
Conventional glass fibers having a diameter of 0.8 micron were used as the fine glass fibers. Further, as a mixed paper separator of fine glass fibers and acid-resistant synthetic fibers having fine pores, conventional glass fibers having a diameter of 0.8 μm and polyethylene fibers having a diameter of about 25 μm having hydrophilic fine pores are used. A mixture obtained by mixing by weight was used. This polyethylene fiber has fine pores of about 0.03 to 1 micron, the porosity of this fiber is about 45%, and the specific surface area is about 4
It was 0 m 2 / g. Furthermore, the ubiquitous proportion of polyethylene fibers was adjusted by the papermaking method, and the battery No. In the separator used in Example 1, 60% or more of the polyethylene fiber was contained in the thickness of 1/3 of the side in contact with the positive electrode. Battery No.
In the separator used in 2, the polyethylene fibers were mixed uniformly.

【0014】なお、No.1〜4の電池には正極板6
枚、負極板7枚を、No.5の電池には正極板3枚、負
極板4枚を使用した。初期容量試験の結果を表2に示
す。
No. Positive electrode plate 6 for batteries 1-4
No. 7 and negative electrode plate 7 For the battery No. 5, three positive electrode plates and four negative electrode plates were used. The results of the initial capacity test are shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】なお、容量は従来の電池No.5の容量を
100として相対値で示した。
The capacity of the conventional battery No. The capacity of 5 was set as 100 and shown as a relative value.

【0017】0.1C程度の低率放電では、No.1〜
4の電池は従来の電池No.5より5%程度容量が増加
しただけであった。これは、極板が薄いことや極板面積
が約2倍になったことによる電流密度の低下によって活
物質の利用率が向上したものの、電解液量が制限されて
いることによるものと考えられる。5Cの高率放電にな
ると、薄い極板を多数使用した電池No.1〜4の容量
は、従来の厚い極板を使用したNo.5のそれの約2.
6倍もの大きなものとなった。これは、高率放電時には
主に極板表面部が反応するため、全電解液量よりも極板
が薄いことや極板面積が約2倍になったことによる電流
密度の低下によって活物質の利用率が向上したことによ
る効果が大きいものと考えられる。
With a low rate discharge of about 0.1 C, No. 1 to
The battery No. 4 is a conventional battery No. The capacity was only increased by 5% from 5. It is considered that this is because although the utilization factor of the active material was improved due to the reduction of the current density due to the thin electrode plate and the doubling of the electrode plate area, the amount of the electrolytic solution was limited. . At high rate discharge of 5C, battery No. 1 using a large number of thin plates. The capacities of 1 to 4 are No. 1 using the conventional thick electrode plate. About that of 2.
It's six times bigger. This is because the surface of the electrode plate mainly reacts at the time of high-rate discharge, so that the electrode plate is thinner than the total amount of the electrolyte solution and the current density is reduced due to the electrode plate area being doubled. It is considered that the effect of the improved utilization rate is great.

【0018】次に、これらの電池を次の寿命試験に供し
た。
Next, these batteries were subjected to the following life test.

【0019】放電 0.3CAで1.7Vまで 充電 2.5V(最大電流 1CA)で5時間 寿命試験中の容量試験 5Cで1.0Vまで(50サイ
クルごと) 温度 25℃ 寿命試験中の容量推移を図1に示す。
Discharge 0.3CA to 1.7V Charge 2.5V (maximum current 1CA) for 5 hours Capacity test during life test Up to 1.0V at 5C (every 50 cycles) Temperature 25 ° C Capacity transition during life test Is shown in FIG.

【0020】No.5の従来の厚い極板およびセパレー
タを用いた電池は300サイクル目でも初期容量の約8
0%を有していたが、初期容量そのものがNo.1の約
40%しかなく、良好な高率放電特性が求められる用途
には不適切である。
No. The battery using the conventional thick electrode plate and separator of No. 5 had an initial capacity of about 8 even at the 300th cycle.
Although it had 0%, the initial capacity itself was no. It is only about 40% of 1, which is unsuitable for applications requiring good high rate discharge characteristics.

【0021】正極に薄いPb−Sb系合金格子を用い、
セパレータに従来の微細ガラス繊維を用いたNo.3の
電池は150サイクル目にはNo.5の初期容量の約4
0%と急激に容量が低下した。これは、寿命試験中に正
極格子から溶出したSbが負極板上に析出し、水素過電
圧が低下して、電解液が分解・減少したためと考えられ
る。
A thin Pb-Sb alloy grid is used for the positive electrode,
No. using a conventional fine glass fiber for the separator. The battery of No. 3 was No. 3 at the 150th cycle. About 4 of the initial capacity of 5
The capacity rapidly decreased to 0%. This is probably because Sb eluted from the positive electrode grid during the life test was deposited on the negative electrode plate, the hydrogen overvoltage was lowered, and the electrolytic solution was decomposed and reduced.

【0022】正極に薄いPb−Ca系合金格子を用い、
セパレータに従来の微細ガラス繊維を用いたNo.4の
電池は100サイクル目にはNo.5の初期容量の約6
0%とN0.3の電池より急激に容量が低下した。これ
は、正極格子が薄く、また正極格子にSbが含まれてい
ないため、このような深い放電を含むサイクル試験で
は、正極格子の周囲が優先的に放電され、その結果、格
子の周囲に絶縁性の硫酸鉛の層が形成され、未反応の活
物質が残っているにもかかわらず、放電できなかったも
のと考えられる。
A thin Pb-Ca alloy grid is used for the positive electrode,
No. using a conventional fine glass fiber for the separator. The battery of No. 4 was No. 4 at the 100th cycle. About 6 of the initial capacity of 5
The capacity dropped sharply from 0% and N0.3 batteries. This is because the positive electrode grid is thin and Sb is not contained in the positive electrode grid. Therefore, in the cycle test including such deep discharge, the periphery of the positive electrode grid is preferentially discharged, and as a result, insulation around the grid is performed. It is probable that the discharge could not be performed even though a layer of conductive lead sulfate was formed and the unreacted active material remained.

【0023】一方、正極に薄いPb−Sb系合金格子を
用い、セパレータには従来の微細ガラス繊維に親水化処
理した微細孔を有する直径約25ミクロンのポリエチレ
ン繊維を20重量%ほぼ均一に混抄したものを用いた電
池No.2は、300サイクル後でもNo.5の約15
0%もの容量を有していた。これは、正極格子にPbー
Sb系合金を使用しても、正極板と負極板との間に配置
されたセパレータを構成する微細孔を有するポリエチレ
ン繊維の比表面積が約40m2 /gと大きいため、これ
によって、正極から溶出したSbが吸着され、このこと
によって負極板へのSbの析出が抑えられ、負極板の水
素過電圧の低下およびこれに伴う水素ガスの発生による
電解液の分解・減少を防ぐことができたものと思われ
る。また、正極にPbーSb系合金を使用しているた
め、薄い極板を使用しても容量が早期に低下することも
なく、さらに、極板が薄いため高率放電特性も優れたも
のとなったものと考えられる。
On the other hand, a thin Pb-Sb alloy grid was used for the positive electrode, and for the separator, 20% by weight of polyethylene fibers having a diameter of about 25 microns having fine pores hydrophilized to the conventional fine glass fibers were mixed almost uniformly. Battery No. No. 2 was No. 2 even after 300 cycles. About 15 of 5
It had a capacity of 0%. This is because even if a Pb-Sb-based alloy is used for the positive electrode grid, the specific surface area of the polyethylene fiber having fine pores that constitutes the separator disposed between the positive electrode plate and the negative electrode plate is as large as about 40 m 2 / g. As a result, Sb eluted from the positive electrode is adsorbed, which suppresses the deposition of Sb on the negative electrode plate, lowers the hydrogen overvoltage of the negative electrode plate, and decomposes / reduces the electrolyte due to the generation of hydrogen gas. It seems that I was able to prevent. Further, since the Pb-Sb alloy is used for the positive electrode, the capacity does not decrease early even if a thin electrode plate is used, and further, the high-rate discharge characteristics are excellent due to the thin electrode plate. It is thought that it has become.

【0024】しかし、ここでセパレータ中のポリエチレ
ン繊維を遍在させ、正極板にポリエチレンを多く含む側
を押し当てた本発明の電池No.1では、No.2の電
池より、一層優れた容量推移が観察された。これは、正
極板に当接する側のセパレータ中のポリエチレン繊維の
割合を、負極板に当接する側のセパレータ中のポリエチ
レン繊維の割合よりも多くすることによって、Sbが正
極板の近傍に止められ、負極板へのSbの移行がより少
なくなったことによるものと考えられる。
However, here, the battery No. of the present invention in which the polyethylene fibers in the separator were made ubiquitous and the side containing much polyethylene was pressed against the positive electrode plate. In No. 1, No. 1 An even better capacity transition was observed with the No. 2 battery. This is because Sb is stopped in the vicinity of the positive electrode plate by making the proportion of polyethylene fibers in the separator on the side contacting the positive electrode plate larger than the proportion of polyethylene fibers in the separator on the side contacting the negative electrode plate, It is considered that this is because the transfer of Sb to the negative electrode plate was less.

【0025】今回の実施例で使用したポリエチレン繊維
は、直径が約25μmであったが、過放電される可能性
のある用途には、直径が10μm程度のより細い繊維を
用いる方が性能が安定する。また、セパレータ全体での
ガラス繊維と耐酸性合成繊維との混合割合は、5〜70
%の範囲でその効果が顕著であった。
The polyethylene fiber used in this example had a diameter of about 25 μm. However, in applications where there is a possibility of over-discharging, it is better to use a thinner fiber with a diameter of about 10 μm for more stable performance. To do. The mixing ratio of the glass fiber and the acid-resistant synthetic fiber in the whole separator is 5 to 70.
The effect was remarkable in the range of%.

【0026】[0026]

【発明の効果】以上詳述したように、本発明による電池
では、正極格子にPbーSb系合金を使用しても、正極
板と負極板との間に配置されたセパレータを構成する微
細孔を有する耐酸性合成繊維によって、正極から溶出し
たSbが吸着され、吸着されたSbが正極板近傍に止め
られ、これによって負極板へのSbの析出がより一層抑
えられ、負極板の水素過電圧の低下およびこれに伴う水
素ガスの発生による電解液の分解・減少を防ぐことがで
き、また、正極にPbーSb系合金を使用できるため、
薄い極板を使用しても容量が早期に低下することもな
く、さらに、極板を薄くできるため高率放電特性も優れ
たものとなる。このように、本発明は、優れた高率放電
特性と長寿命とをかね備える密閉型鉛蓄電池を提供する
ことが可能となり、その工業的価値は非常に大きい。
As described in detail above, in the battery according to the present invention, even if the Pb-Sb alloy is used for the positive electrode grid, the fine pores constituting the separator arranged between the positive electrode plate and the negative electrode plate are formed. The acid-resistant synthetic fiber having S adsorbs Sb eluted from the positive electrode and stops the adsorbed Sb in the vicinity of the positive electrode plate, which further suppresses the deposition of Sb on the negative electrode plate, thereby reducing the hydrogen overvoltage of the negative electrode plate. It is possible to prevent decomposition and reduction of the electrolytic solution due to the decrease and generation of hydrogen gas accompanying it, and since a Pb-Sb alloy can be used for the positive electrode,
Even if a thin electrode plate is used, the capacity does not decrease at an early stage, and since the electrode plate can be made thin, the high rate discharge characteristics are also excellent. As described above, the present invention makes it possible to provide a sealed lead-acid battery having excellent high rate discharge characteristics and long life, and its industrial value is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】寿命試験中の5CA放電容量の推移を示した図FIG. 1 is a diagram showing the transition of 5 CA discharge capacity during a life test.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極格子が鉛ーアンチモン系合金から、
負極格子がアンチモンを含まない鉛合金から、セパレー
タが微細ガラス繊維と微細孔を有する耐酸性合成繊維と
からなる密閉型鉛蓄電池において、 正極板に当接する側の該セパレータ中の微細孔を有する
耐酸性合成繊維の割合が、負極板に当接する側の該セパ
レータ中の微細孔を有する耐酸性合成繊維の割合よりも
多いことを特徴とする密閉型鉛蓄電池。
1. The positive electrode grid is made of a lead-antimony alloy,
In a sealed lead-acid battery in which the negative electrode grid is made of a lead alloy containing no antimony, the separator is made of fine glass fibers and acid-resistant synthetic fibers having fine holes, and the acid resistance having fine holes in the separator on the side in contact with the positive electrode plate. A sealed lead-acid battery characterized in that the proportion of the functional synthetic fibers is higher than the proportion of the acid-resistant synthetic fibers having fine pores in the separator on the side contacting the negative electrode plate.
【請求項2】 微細孔を有する耐酸性合成繊維が親水化
処理されていることを特徴とする請求項1に記載の密閉
型鉛蓄電池。
2. The sealed lead-acid battery according to claim 1, wherein the acid-resistant synthetic fiber having fine pores is hydrophilized.
JP5078961A 1993-03-12 1993-03-12 Sealed lead-acid battery Pending JPH06267524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5078961A JPH06267524A (en) 1993-03-12 1993-03-12 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5078961A JPH06267524A (en) 1993-03-12 1993-03-12 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH06267524A true JPH06267524A (en) 1994-09-22

Family

ID=13676496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5078961A Pending JPH06267524A (en) 1993-03-12 1993-03-12 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH06267524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678513A (en) * 2022-03-26 2022-06-28 天能集团(河南)能源科技有限公司 Negative plate alloy and preparation process thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678513A (en) * 2022-03-26 2022-06-28 天能集团(河南)能源科技有限公司 Negative plate alloy and preparation process thereof
CN114678513B (en) * 2022-03-26 2024-02-09 天能集团(河南)能源科技有限公司 Negative plate alloy and configuration process thereof

Similar Documents

Publication Publication Date Title
JPH06267524A (en) Sealed lead-acid battery
JPH06267582A (en) Sealed lead-acid battery
JP2536082B2 (en) Lead acid battery
JPH01128367A (en) Sealed type lead storage battery
JP2720689B2 (en) Lead storage battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JPS61165956A (en) Sealed type lead acid battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture
JPH0793135B2 (en) Lead acid battery and manufacturing method thereof
JP2002343359A (en) Sealed type lead storage battery
JP3013623B2 (en) Sealed lead-acid battery
JPH01122564A (en) Sealed type lead-acid battery
JP2002343412A (en) Seal type lead-acid battery
JPH0246653A (en) Lead-acid battery
JPS63152871A (en) Sealed lead-acid battery
JP2002343413A (en) Seal type lead-acid battery
JPS6322428B2 (en)
JPH06140042A (en) Sealed lead-acid battery
JPH10188964A (en) Sealed lead-acid battery
JPS63148535A (en) Separator for enclosed lead storage battery
JPH06223863A (en) Sealed lead-acid battery
JPS62188169A (en) Sealed lead-acid battery
JPH1040922A (en) Pole plate for lead-acid battery and manufacture thereof
JPH0513081A (en) Lead-acid battery