JPS60145407A - Reheating type steam turbine plant - Google Patents
Reheating type steam turbine plantInfo
- Publication number
- JPS60145407A JPS60145407A JP85584A JP85584A JPS60145407A JP S60145407 A JPS60145407 A JP S60145407A JP 85584 A JP85584 A JP 85584A JP 85584 A JP85584 A JP 85584A JP S60145407 A JPS60145407 A JP S60145407A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- pressure
- temperature
- steam
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K19/00—Regenerating or otherwise treating steam exhausted from steam engine plant
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
〔発明の技術的背景とその問題点〕
従来の再熱式蒸気タービン設備の構成を第1図によシ説
明する。ボイラ1を出た主蒸気は、主蒸気管2、主塞止
弁3、蒸気加減弁4を経て高圧タービ15に入シ、仕事
をしたのち低温再熱逆止弁7、低温再熱蒸気管6を経て
再熱@8に入シ、再熱された後高温再熱蒸気管9、再熱
蒸気止め弁10およびインタセプト弁11を経て低圧タ
ービン12に入シ、仕事をした後復水器13に排出され
る。[Detailed Description of the Invention] [Technical Field of the Invention] [Technical Background of the Invention and Problems Therewith] The configuration of a conventional reheat steam turbine facility will be explained with reference to FIG. Main steam leaving the boiler 1 enters the high pressure turbine 15 via the main steam pipe 2, main stop valve 3, and steam control valve 4, and after doing work, passes through the low temperature reheat check valve 7 and the low temperature reheat steam pipe. After being reheated, it enters the low pressure turbine 12 via the high temperature reheat steam pipe 9, reheat steam stop valve 10 and intercept valve 11, and after doing work, it enters the condenser 13. is discharged.
このような蒸気タービン設備において起動時のボイラ安
定燃焼とタービン熱応力@瓢の為にタービンバイパス装
置を設置することが最近の傾向となっている。すなわち
第1図において起動時はボイラから発生した主蒸気は、
高圧タービンバイパス管14を介して高圧タービンバイ
パス弁15にて減圧減温された後高温再熱蒸気管9に入
シ、さらに低圧バイパス管16、低圧バイパス弁17に
て減圧減温されたのち復水器13に排出される。A recent trend in such steam turbine equipment is to install a turbine bypass device to ensure stable boiler combustion and reduce turbine thermal stress during startup. In other words, in Figure 1, at startup, the main steam generated from the boiler is
After passing through the high-pressure turbine bypass pipe 14 and being depressurized and temperature-reduced at the high-pressure turbine bypass valve 15, it enters the high-temperature reheat steam pipe 9, further depressurized and temperature-reduced by the low-pressure bypass pipe 16 and low-pressure bypass valve 17, and then returned to the high-pressure turbine bypass pipe 14. It is discharged into the water container 13.
この際再熱蒸気管内圧力は低圧バイパス弁の口径と経済
性を考慮して約8 kg/an2程度に保持されること
が通例となっている。すなわち再熱蒸気圧力は低圧バイ
パス弁によって制御されるが、その方法を第2図により
説明する。高圧タービン第1段落出口圧力は通常運転に
おいてはタービン負荷に比例するのでこれを圧力ドラン
スミッタ20で検出し加算器21で低圧バイパス弁17
の設定圧が通常運転中の再熱圧力より若干高い圧力、即
ち第3図のムPだけ高い圧力となるようにする。At this time, the internal pressure of the reheat steam pipe is usually maintained at about 8 kg/an2 in consideration of the diameter of the low-pressure bypass valve and economic efficiency. That is, the reheat steam pressure is controlled by a low pressure bypass valve, and the method will be explained with reference to FIG. Since the high pressure turbine first stage outlet pressure is proportional to the turbine load in normal operation, this is detected by the pressure transmitter 20 and the adder 21 uses the low pressure bypass valve 17 to detect the high pressure turbine first stage outlet pressure.
The set pressure is set to be slightly higher than the reheat pressure during normal operation, that is, the pressure is higher by P in FIG.
これにより負荷変動の際の再熱圧力を制御するが低負荷
時例えばタービン2トリツプ時にボイラ負荷が高い時に
は余しよう蒸気量が多く、これを低圧バイパス弁17で
復水器13に流す必要がある。この時低圧バイパス弁1
70ロ径を適正な大きさとする為にバイパス運転中の再
熱器の最低圧力(第3・図のPm1n )を設定して高
値ゲート22に入力し結果的に第3図のような低圧バイ
パス弁設定圧とする。この設定圧を高温再熱管圧力と比
較して加算器24の出力信号をバイパス弁設定圧力とし
て低圧バイパス弁のアクチュエータ25を操作する。This controls the reheating pressure during load fluctuations, but when the load is low, for example when the boiler load is high during turbine 2 trip, there is a large amount of surplus steam, and it is necessary to flow this to the condenser 13 using the low pressure bypass valve 17. . At this time, low pressure bypass valve 1
In order to set the 70mm diameter to an appropriate size, the minimum pressure of the reheater during bypass operation (Pm1n in Figure 3) is set and input to the high value gate 22, resulting in a low pressure bypass as shown in Figure 3. Set the valve setting pressure. This set pressure is compared with the high temperature reheat pipe pressure, and the output signal of the adder 24 is used as the bypass valve set pressure to operate the actuator 25 of the low pressure bypass valve.
再熱器の最低圧力Pm inは下記伯仲を考慮して決定
される。すなわち最低圧力Pm1nは高いほど低圧バイ
パス弁17の口径を小さくすることができ経済的でらる
が、Pm1nはタービン起動時の高圧タービン排気温度
を考慮するとむやみに高くすることはできない理由があ
る。The minimum pressure Pmin of the reheater is determined by considering the following equation. That is, the higher the minimum pressure Pm1n is, the smaller the diameter of the low-pressure bypass valve 17 is, which is more economical, but there is a reason why Pm1n cannot be made unnecessarily high, considering the high-pressure turbine exhaust temperature at the time of turbine startup.
通常高圧バイパス弁15や低圧バイパス弁17を使用し
ないでタービンを起動する際には再熱蒸気圧力弁10、
およびインタセプト弁11は全開しているので主塞止弁
3以降のタービン器内は復水器13と同様真空となって
いる。この状態でタービンを起動する時には主塞止弁3
に内蔵の幅弁を使用して蒸気流量を制御するがタービン
が無負荷または低負荷の時にはタービン器内の圧力は貞
空域にあジタービン翼は真空中で回転している。Normally, when starting the turbine without using the high pressure bypass valve 15 or the low pressure bypass valve 17, the reheat steam pressure valve 10,
Since the intercept valve 11 is fully open, the inside of the turbine unit after the main blocking valve 3 is in a vacuum like the condenser 13. When starting the turbine in this state, the main stop valve 3
A built-in width valve is used to control the steam flow rate, but when the turbine is under no load or low load, the pressure inside the turbine remains in a clean air area, and the turbine blades rotate in a vacuum.
一方高圧バイパスgt5や低圧バイパス弁17を使用中
にタービン起動する際には再熱圧力は最低圧力Pm1n
となっているので主塞市弁3に内蔵の副弁と再熱弁10
又は11に内蔵の副弁を使用して蒸気流量を制御する。On the other hand, when starting the turbine while using the high pressure bypass gt5 or the low pressure bypass valve 17, the reheat pressure is the lowest pressure Pm1n.
Therefore, the sub valve and reheat valve 10 built into the main city valve 3
Alternatively, the steam flow rate is controlled using the sub-valve built in 11.
この時はタービン器内圧力特に高圧タービン器内圧力は
再熱管最低圧力Pm1n以上の圧力となり、高圧タービ
ンの翼は高圧力、すなわち高密度の蒸気中で回転するこ
とになる。At this time, the pressure inside the turbine, particularly the pressure inside the high-pressure turbine, becomes a pressure higher than the reheat pipe minimum pressure Pm1n, and the blades of the high-pressure turbine rotate in high pressure, that is, high-density steam.
一方タービン無負荷または低負荷の際に蒸気流量カ少な
いのでタービン翼の風損により高圧タービン排気温度が
高くなるという現象が発生する。On the other hand, when the turbine is under no load or under low load, the steam flow rate is small, so a phenomenon occurs in which the high pressure turbine exhaust temperature increases due to windage loss of the turbine blades.
タービン翼の風損は翼の高さ、周速、回転半径、蒸気密
度が増加すると増加し蒸気流量即ち冷却蒸気量が増加す
ると減少する。従って高圧タービン排気温度はタービン
負荷が上昇すると低くなるが例えば無負荷で連続運転し
た場合定格最大負荷時の温度よりも約100°Cも高く
なるという現象が発生する。この為に熱応力によジター
ビン寿命消費が増加したシタ−ピノ出口の低温再熱蒸気
管や逆止弁7の設計温度が高くなるので従来はこのよう
な状態でのタービン排気温度を経験や計算によってめ前
述のように低圧バイパス弁の適正な口径を考慮して再熱
最低圧力P m i nを設定してきた。The windage loss of a turbine blade increases as the blade height, circumferential speed, radius of rotation, and steam density increase, and decreases as the steam flow rate, that is, the amount of cooling steam increases. Therefore, although the high-pressure turbine exhaust temperature decreases as the turbine load increases, a phenomenon occurs in which, for example, when the turbine is operated continuously without load, the temperature becomes about 100° C. higher than the temperature at the rated maximum load. For this reason, the design temperature of the low-temperature reheat steam pipe and check valve 7 at the exit of the sitapino, which increases the turbine life consumption due to thermal stress, becomes high. Conventionally, the turbine exhaust temperature under such conditions was determined by experience or calculation. As mentioned above, the minimum reheat pressure P min has been set in consideration of the appropriate diameter of the low-pressure bypass valve.
かかる従来の方法においては過去の経験や計算によって
再熱最低圧力P m f nを設定していた為実際にタ
ービ/を運転した場合には低圧バイパス弁17の開度に
まだ余裕があるにもかかわらす再熱圧力が高すぎる為に
タービン排気温度が上昇し熱応力によジタービン寿命が
不必要に消費された夛逆止弁7の設計温度を超えたシす
る不都合があった。In this conventional method, the minimum reheating pressure P m f n was set based on past experience and calculations, so when the turbine was actually operated, there was still room for the opening degree of the low pressure bypass valve 17. However, since the reheating pressure is too high, the turbine exhaust temperature rises and the turbine life is unnecessarily consumed due to thermal stress, which causes the inconvenience of exceeding the design temperature of the check valve 7.
することを目的とする。 The purpose is to
温度を検出して排気温度が予め定められた温度よシも高
くなった時に低圧バイパス弁の開度を開方向に操作する
ことにより再熱蒸気圧力を下げ高圧タービン排気温度を
下げることを特徴とする。The system detects the temperature and when the exhaust temperature becomes higher than a predetermined temperature, the low pressure bypass valve is opened in the opening direction to lower the reheat steam pressure and lower the high pressure turbine exhaust temperature. do.
以下本発明を第4図に示す実施例について説明する。 The present invention will be described below with reference to an embodiment shown in FIG.
第4図中、第2図に示した部分と同一部分には同一符号
を付しその説明は省略する。高圧タービ15の出口に設
けられた温度検出する温度トランスミッタ26からの信
号は加算器27ヘフイ一ドバツク信号として供給される
。加算器27にはまた高圧排気温度の所定値T1が設定
されておシ、加算器27の出力は低値ゲート28の一方
へ供給される。ゲート28の他方には再熱最低圧力P
m i nの信号が供給され、そのゲート28の出力は
P m i nとして高値ゲート22の一方へ出力され
る。このゲート22の出力は加算器24に供給される。In FIG. 4, the same parts as those shown in FIG. 2 are designated by the same reference numerals, and their explanation will be omitted. A signal from a temperature transmitter 26 provided at the outlet of the high pressure turbine 15 for detecting temperature is supplied to an adder 27 as a back signal. The adder 27 is also set with a predetermined value T1 of the high pressure exhaust temperature, and the output of the adder 27 is supplied to one of the low value gates 28. The other side of the gate 28 has a reheat minimum pressure P
A signal of min is supplied, and the output of the gate 28 is outputted as P min to one of the high gates 22. The output of this gate 22 is supplied to an adder 24.
高圧タービン排気温度が萬くなった時には温度トランス
ミッタ26の出力が増加して加算器27の出力は低下す
る。そして高圧排気温度が予め定められた値T、を超え
ると従来使用されてきた再熱最低圧力Pm1nの信号よ
シ加算器27の信号が低くなシ低値ゲート28の出力は
加算器27の出力を出すようになる。この出力が高値ゲ
ート22を経て高温再熱蒸気圧力信号23と比較され、
加算@24、アクチュエータ25によ多低圧バイパス弁
17の開度は開方向に操作される。When the high pressure turbine exhaust temperature reaches 10,000 yen, the output of the temperature transmitter 26 increases and the output of the adder 27 decreases. When the high pressure exhaust temperature exceeds a predetermined value T, the signal from the adder 27 is lower than the conventionally used minimum reheating pressure Pm1n signal. will begin to produce. This output is passed through a high value gate 22 and compared with a high temperature reheat steam pressure signal 23;
The opening degree of the multi-low pressure bypass valve 17 is operated in the opening direction by the addition@24 and the actuator 25.
この方法によシ再熱蒸気管の圧力が低値ゲート28の出
力に相当する圧力P m I nに下がシ、高圧タービ
ン羽根における蒸気密度が下り高圧タービン排気温度を
下げることができる。By this method, the pressure in the reheat steam pipe is lowered to the pressure P m I n corresponding to the output of the low value gate 28, and the steam density in the high pressure turbine blades is lowered, making it possible to lower the high pressure turbine exhaust temperature.
以上によシ本発明によれば低圧バイパス弁の能力を有効
に利用して起動時の温度変化を下げター(力
26・・・温度トランスミッタ 27・・・加算器In view of the above, according to the present invention, the ability of the low pressure bypass valve is effectively utilized to reduce the temperature change at startup.
第1図は従来の再熱式蒸気タービンプラントの配管系統
図、第2囚は従来の低圧バイパス弁制御装置を示す構成
図、第3図は従来の低圧バイパス弁の設定圧特性を示す
グラフ、第4図は本発明に係る再熱式蒸気タービンプラ
ントの低圧バイパス弁制御装置を示す構成図、第5図は
本発明の低圧バイパス弁設定田特性を示すグラフである
。
1・・・ボイ′:) 5・・高圧タービン8・・・再熱
器 9・・・高温再熱蒸気管12・・・低圧タービン
13・・・復水器14・・・高圧タービンバイパス管
15・・・高圧タービンバイパス弁
16・・・低圧タービンバイパス管
17・・・低圧タービンバイパス弁
20・・・圧力ドランスミッタ 21・・・加算器22
・・・高値ゲート 23・・・圧力ドランスミッタ24
・・・加算器25・・・アクチュエータ(8)Figure 1 is a piping system diagram of a conventional reheat steam turbine plant, Figure 2 is a configuration diagram showing a conventional low-pressure bypass valve control device, and Figure 3 is a graph showing the set pressure characteristics of a conventional low-pressure bypass valve. FIG. 4 is a configuration diagram showing a low-pressure bypass valve control device for a reheat steam turbine plant according to the present invention, and FIG. 5 is a graph showing the low-pressure bypass valve setting characteristics of the present invention. 1...Boi':) 5...High pressure turbine 8...Reheater 9...High temperature reheat steam pipe 12...Low pressure turbine
13...Condenser 14...High pressure turbine bypass pipe 15...High pressure turbine bypass valve 16...Low pressure turbine bypass pipe 17...Low pressure turbine bypass valve 20...Pressure transmitter 21...Addition Vessel 22
...High price gate 23...Pressure transmitter 24
... Adder 25 ... Actuator (8)
Claims (1)
バイパス系統を備えたものにおいて、高圧タービンの排
気温度を検出する温度検出器を設け、高圧タービン排気
・温度がらる定められた温度以上になった時に、低圧タ
ービンバイパス弁を開方向に操作することを特徴とする
再熱式蒸気タービンプラント。In reheat steam turbine plants equipped with a high-pressure bypass system and a low-pressure bypass system, a temperature detector is installed to detect the exhaust temperature of the high-pressure turbine, and when the high-pressure turbine exhaust temperature exceeds a specified temperature, , a reheat steam turbine plant characterized by operating a low-pressure turbine bypass valve in the opening direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP85584A JPS60145407A (en) | 1984-01-09 | 1984-01-09 | Reheating type steam turbine plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP85584A JPS60145407A (en) | 1984-01-09 | 1984-01-09 | Reheating type steam turbine plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60145407A true JPS60145407A (en) | 1985-07-31 |
Family
ID=11485260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP85584A Pending JPS60145407A (en) | 1984-01-09 | 1984-01-09 | Reheating type steam turbine plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60145407A (en) |
-
1984
- 1984-01-09 JP JP85584A patent/JPS60145407A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1068492A (en) | Combined gas turbine and steam turbine power plant | |
CA1138657A (en) | Control system for steam turbine plants including turbine bypass systems | |
US4069660A (en) | Chemical reaction furnace system | |
JPS60145407A (en) | Reheating type steam turbine plant | |
JPS6239656B2 (en) | ||
JPS61145305A (en) | Control device for turbine plant using hot water | |
JP2872739B2 (en) | Steam turbine start-up method and apparatus | |
JPH0932508A (en) | Combined cycle plant | |
CA1057065A (en) | Control systems for steam turbine plants including turbine bypass systems | |
JPH0674407A (en) | Steam temperature control device for variable pressure once-through boiler | |
JPS6239657B2 (en) | ||
JPS5812445B2 (en) | Steam turbine control device | |
JPH0330687B2 (en) | ||
JPS6135441B2 (en) | ||
JPH0475363B2 (en) | ||
JPS6211283Y2 (en) | ||
JPS6116210A (en) | Method and device of operating steam turbine | |
JPS61116184A (en) | Control device of by-pass valve | |
JPH01277606A (en) | Reheated steam stop valve operation test controller for steam turbine plant | |
JPS63100203A (en) | Steam flow control method for steam turbine | |
JPS6159296A (en) | Nuclear power plant | |
JP2557930B2 (en) | Circulating water pump blade opening control device for steam turbine exhaust cooling | |
JPS6033965B2 (en) | Seal steam temperature control method and device in steam turbine | |
JPS61276601A (en) | Exhaust-heat recovery boiler | |
JPH01248098A (en) | Operating device for small and short ranged load following of boiling water nuclear reactor |