JPS6159296A - Nuclear power plant - Google Patents

Nuclear power plant

Info

Publication number
JPS6159296A
JPS6159296A JP59182037A JP18203784A JPS6159296A JP S6159296 A JPS6159296 A JP S6159296A JP 59182037 A JP59182037 A JP 59182037A JP 18203784 A JP18203784 A JP 18203784A JP S6159296 A JPS6159296 A JP S6159296A
Authority
JP
Japan
Prior art keywords
main steam
steam
turbine
reactor
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59182037A
Other languages
Japanese (ja)
Inventor
福冨 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Atomic Industry Group Co Ltd filed Critical Nippon Atomic Industry Group Co Ltd
Priority to JP59182037A priority Critical patent/JPS6159296A/en
Publication of JPS6159296A publication Critical patent/JPS6159296A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Steroid Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子力発電プラントに係り、特に、比較的小幅
でかつ速い周期の負荷変動にタービン発Ti様出力を追
従させる原子力発電プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a nuclear power plant, and more particularly to a nuclear power plant in which the Ti-like output from a turbine follows load fluctuations of relatively small width and rapid period.

(発明の技術的背景とその間外点) 一般に、原子ノコ発電プラントは火力発電プラントに比
して、建設費に対して燃料費等の運転費が相対的に安価
であるために、電力の基底負荷として定格出力周辺で一
定出力運転されることが多い。
(Technical background of the invention and other points) In general, compared to thermal power plants, atomic saw power plants have relatively low operating costs such as fuel costs compared to construction costs. As a load, it is often operated at a constant output around the rated output.

しかし、近年、発電容量全体に占める原子力発電の割合
の増加に伴って、原子力発電プラントに対しても負荷変
動に追従してその発電■を制御ざぜる必要が生じてきた
。このような負荷変動には比較的変動幅が大幅で、かつ
その周期が艮いものと、小幅で短かい周期のものとがあ
り、原子力発電プラントの特性から負荷変動の各状態に
応じた負荷追従運転方法が要請される。一般に、沸漉水
型原子力発電プラントでは系統の圧力変化が出力へ及ぼ
ず影響に対して正帰還となるので、系統の圧力制御が重
要となり、従来の原子力発電プラントでは圧力制御系が
主要な制御系をなしている。
However, in recent years, as the proportion of nuclear power generation in the total power generation capacity has increased, it has become necessary to control the power generation of nuclear power plants in accordance with load fluctuations. There are two types of load fluctuations: those with relatively large fluctuation ranges and variable periods, and those with small fluctuations and short periods. A follow-up driving method is required. In general, in boiling water nuclear power plants, pressure changes in the system do not affect the output and have positive feedback, so system pressure control is important, and in conventional nuclear power plants, the pressure control system is the main control system. It forms a system.

また、比較的遅い負荷変動にタービン発電機出力を追従
させる場合は、この従来の圧力制御系による追従能力で
十分であった。すなわち、負荷変動幅が比較的大幅で、
例えば数分以上の遅い周期の負荷変動については、系統
周波数(タービン回転数)の変化の検出から負荷変動を
検出し、この負荷変動に応じて、主蒸気加減弁を適宜1
78閑し、タービンへの主蒸気流入量を制御することに
より、タービン発電機出力を追従させていた。しかし、
例えば、タービンへの主蒸気流入aを増加せると、沸騰
水型原子炉では圧力の減少となってボイドmが減少して
、炉出力が低下してしまう。したが7て、タービンへの
主蒸気流入mをj(!lすためには、事前に原子炉にお
ける発生蒸気m(炉出力)の増加を図らねばならないが
、そのためには炉水流mの増加と制御棒操作が必要とな
り、短時間に制御することができない。すなわち、いわ
ゆるガバナフリー運転といわれる数十秒以下の比較的速
い周期で変動する負荷変動に対して、タービン発電機出
力を追従させるためには、沸騰水型原子炉出力の動特性
的時定数の大きざを考慮する必要がある。
Further, when the turbine generator output is made to follow relatively slow load fluctuations, the following ability of this conventional pressure control system is sufficient. In other words, the load fluctuation range is relatively large,
For example, for load fluctuations with slow cycles of several minutes or more, the load fluctuations are detected by detecting changes in the system frequency (turbine rotation speed), and the main steam control valve is adjusted as appropriate according to this load fluctuation.
By controlling the amount of main steam flowing into the turbine, the turbine generator output was made to follow. but,
For example, if the main steam inflow a into the turbine is increased, the pressure in a boiling water reactor decreases, the void m decreases, and the reactor output decreases. Therefore, in order to reduce the main steam inflow m to the turbine (!l), it is necessary to increase the steam generated in the reactor (reactor output) in advance; This requires manual control rod operations and cannot be controlled in a short period of time.In other words, the turbine generator output is made to follow load fluctuations that fluctuate at relatively fast cycles of several tens of seconds or less, which is called governor-free operation. In order to achieve this, it is necessary to consider the magnitude of the dynamic time constant of the boiling water reactor output.

そこで、負荷変動幅が比較的小幅で、かつ変動周期が速
い負荷変動に対しては、タービンへの主蒸気流人聞が変
動しても原子炉の圧力が変動しないように一定にするこ
とが必要であり、主蒸気消費側において対策を検討する
必要がある。
Therefore, for load fluctuations that have a relatively small width and a fast fluctuation period, it is necessary to keep the reactor pressure constant so that it does not fluctuate even if the main steam flow to the turbine fluctuates. This is necessary, and countermeasures must be considered on the main steam consumption side.

〔発明の目的〕[Purpose of the invention]

本発明は上述した事情に鑑みてなされたもので、負荷変
動幅が比較的小幅で、かつ速い周期で変動づる負荷変動
については原子炉出力を変化させずにタービン発電機出
ノjを追従させる原子力発電プラントを提供することを
目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to follow the turbine generator output without changing the reactor output when the load fluctuation width is relatively small and the load fluctuation fluctuates at a fast cycle. The purpose is to provide nuclear power plants.

〔発明の概要〕[Summary of the invention]

上述した目的を達成するために本発明は次のように構成
される。
In order to achieve the above-mentioned object, the present invention is configured as follows.

原子炉にて発生した主蒸気を主蒸気加減弁が介装された
主蒸気流路を介してタービンへ導入するようにした原子
力発電プラントにおいて、上記主蒸気加減弁の上流側の
主蒸気流路の途中を熱利用系バイパス路を介して上記タ
ービンの復水器に連通させ、この熱利用系バイパス路の
途中に少なくとも熱利用系交換器と、この熱利用系交換
器の上流側に蒸気調節弁とをそれぞれ介装し、この蒸気
調節弁の開度調「により上記熱利用系バイパス路を介し
て上記復水器へバイパスさせる主蒸気のバイパス数組を
)δ宜制御して、上記タービンへ導入する主蒸気の流向
を制御するように構成される。
In a nuclear power plant in which main steam generated in a nuclear reactor is introduced to a turbine via a main steam flow path in which a main steam control valve is installed, a main steam flow path upstream of the main steam control valve is provided. is connected to the condenser of the turbine through a heat utilization system bypass passage, and at least a heat utilization system exchanger is provided in the middle of this heat utilization system bypass passage, and a steam control system is installed on the upstream side of this heat utilization system exchanger. The steam control valves are provided with valves, and the number of bypasses for the main steam to be bypassed to the condenser via the heat utilization system bypass path is controlled according to the opening degree of the steam control valves. The main steam flow direction is configured to control the flow direction of main steam introduced into the main steam.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る原子力発電プラントの一実施例につ
いて第1図およびm2図を参照して説明する。
Hereinafter, an embodiment of a nuclear power plant according to the present invention will be described with reference to FIG. 1 and FIG.

第1図は本発明の一実施例の全体構成図であり、沸臣水
型の原子炉1内には炉心2が収容されている。この炉心
2は全体が炉水3により冠水され、炉心2による炉水3
の加熱により蒸気を発生ずるようになっている。炉水3
は再循環ポンプ4により原子炉1内を強制循環される。
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, in which a reactor core 2 is housed in a boiling water type nuclear reactor 1. This reactor core 2 is entirely submerged with reactor water 3.
It is designed to generate steam when heated. Reactor water 3
is forcibly circulated within the reactor 1 by the recirculation pump 4.

これにより蒸気発生を有効に行なうと共に、炉水流mを
変化ざぜることにより炉熱出力(発生蒸気ff1)が制
御される。原子炉1は主蒸気管5を介してタービン6に
接続され、原子炉1にて発生した主蒸気がタービン6へ
導入されて仕事をし、タービン6に直結された発電機7
を駆!ilJ ′!l−るようになっている。タービン
6の復水器8は復水配管9を介して原子炉1に接続され
、この復水配管9の途中には給水ポンプ10、給水加熱
器11がそれぞれ介装されており、復水68にて冷却凝
縮された復水は給水として再び原子p1内に戻される。
As a result, steam is effectively generated, and the furnace heat output (generated steam ff1) is controlled by varying the furnace water flow m. The reactor 1 is connected to a turbine 6 via a main steam pipe 5, and the main steam generated in the reactor 1 is introduced into the turbine 6 to do work, and a generator 7 is directly connected to the turbine 6.
Drive! ilJ′! It's designed to look like this. The condenser 8 of the turbine 6 is connected to the reactor 1 via a condensate pipe 9, and a feed water pump 10 and a feed water heater 11 are respectively installed in the middle of the condensate pipe 9. The condensed water cooled and condensed in is returned to the atom p1 as feed water.

主蒸気管5にはタービン6の主蒸気入口近傍に主蒸気加
減弁12が介装され、タービン6へ導入される流入蒸気
母を調整するようになっている。
A main steam control valve 12 is interposed in the main steam pipe 5 near the main steam inlet of the turbine 6 to adjust the amount of steam introduced into the turbine 6.

この主蒸気加減弁12の上流側の主蒸気管5の途中には
タービンバイパス?213の一端が接続され、その他端
は復水器8に接続されている。タービンバイパス管13
の途中にはタービンバイパス弁14が介装されている。
Is there a turbine bypass in the middle of the main steam pipe 5 on the upstream side of the main steam control valve 12? 213 is connected to one end, and the other end is connected to the condenser 8. Turbine bypass pipe 13
A turbine bypass valve 14 is interposed in the middle.

このタービンバイパス弁14は負荷が大幅に減少した際
に開弁して、夕一ビン6への主蒸気流入量減少分を直接
復水器8ヘバイパスさせて原子炉1内の圧力急上昇を抑
制する。
This turbine bypass valve 14 opens when the load decreases significantly, and bypasses the reduced amount of main steam flowing into the steam bin 6 directly to the condenser 8, thereby suppressing a sudden rise in pressure within the reactor 1. .

そして、主蒸気管5は熱利用系配管15の一端を接続し
ている。熱利用系配管15の他端は途中、蒸気調節弁1
6、熱交換器17をそれぞれ介装してから復水器8に接
続されて閉ループを形成している。熱交換器17の2次
側は、その1次側と熱交換をして得られた蒸気をプロセ
ス蒸気として工業用や暖房用に利用する熱利用系Aに接
続される。
The main steam pipe 5 is connected to one end of the heat utilization system piping 15. The other end of the heat utilization system piping 15 is connected to the steam control valve 1 midway.
6. After each heat exchanger 17 is interposed, it is connected to the condenser 8 to form a closed loop. The secondary side of the heat exchanger 17 is connected to a heat utilization system A that uses the steam obtained by exchanging heat with the primary side as process steam for industrial or heating purposes.

この熱利用系Aは、さらに第2の熱交換器(図示せず)
を介在させて利用度の高い蒸気や温水を作るようにして
もよい。
This heat utilization system A further includes a second heat exchanger (not shown).
It is also possible to create steam or hot water with high utilization by intervening.

第2図は主蒸気加減弁12、タービンバイパス弁14、
蒸気調節弁16の各弁開度を制御する各制御系を示して
おり、主蒸気加減弁12はタービン蒸気制御系20によ
り制御される。タービン蒸気制御系20は圧力制御系2
1と周波数制御系22とからそれぞれ出力される各信号
を適宜加算して制御信号を主蒸気加減弁12に出力し、
その弁開度を制御してタービン6へ導入される主蒸気流
入mを調整するものである。周波数制御系22は発雷孜
7の回転数T1またはタービン6の回転数下を検出し、
この検出回転数丁を回転?11設定値Toと比較して回
l1171数Tの変化を検出し、これにより、負荷変動
を検出し、その負荷変動幅に応じて主蒸気加減弁12の
弁1;口度を制御するものである。すなわち、周波数制
御系22は発電機7等の回転数丁の変動に対応して予め
設定された割合の主蒸気流入mを変化させるものであり
、回転数丁が上昇した場合はタービン6への主蒸気流入
mを減少さVlこれと逆に回転数丁が減少した場合は主
蒸気流入量を増大させる。一方、圧力制御系21は主蒸
気管5に設置した圧力検出器21aに主蒸気の圧力を検
出させ、この検出された圧力から圧力変動を検出して、
その圧力変動に対応して予め設定された割合のタービン
6への主蒸気流入mを調整する。この圧力制御系21か
ら出力される圧力制御信号はタービンバイパス弁14の
弁170度を制御するタービンバイパス制御系23にも
入力され、負荷の大幅減少があった特等原子炉1内の圧
力が急上昇したときに、タービンバイパス弁14を開弁
させて主蒸気の一部を復水器8へ逃がして、原子P1内
の過圧を防止する。この復水器8へ排出された蒸気は熱
利用されることなく、単に冷却凝縮され、この排出蒸気
の熱エネルギーは全て損失となり最終的には海水へ捨て
られる。
Figure 2 shows the main steam control valve 12, the turbine bypass valve 14,
Each control system that controls the opening degree of each steam control valve 16 is shown, and the main steam control valve 12 is controlled by a turbine steam control system 20. Turbine steam control system 20 is pressure control system 2
1 and the frequency control system 22, and output a control signal to the main steam control valve 12,
The main steam inflow m introduced into the turbine 6 is adjusted by controlling the opening degree of the valve. The frequency control system 22 detects the rotation speed T1 of the lightning generator 7 or the rotation speed of the turbine 6,
Rotate this detected rotation number? 11 detects a change in the number of times T by comparing it with a set value To, thereby detects a load fluctuation, and controls the valve 1 of the main steam control valve 12 according to the width of the load fluctuation. be. That is, the frequency control system 22 changes the main steam inflow m at a preset rate in response to fluctuations in the rotational speed of the generator 7, etc., and when the rotational speed increases, the frequency control system 22 changes the main steam inflow m to the turbine 6 when the rotational speed increases. Conversely, when the main steam inflow m is decreased, the main steam inflow is increased. On the other hand, the pressure control system 21 causes a pressure detector 21a installed in the main steam pipe 5 to detect the pressure of the main steam, detects pressure fluctuations from the detected pressure,
The main steam inflow m to the turbine 6 is adjusted at a preset ratio in response to the pressure fluctuation. The pressure control signal output from the pressure control system 21 is also input to the turbine bypass control system 23 that controls the valve 170 degrees of the turbine bypass valve 14, and the pressure in the special reactor 1, where the load has been significantly reduced, suddenly increases. When this occurs, the turbine bypass valve 14 is opened to allow a portion of the main steam to escape to the condenser 8, thereby preventing overpressure within the atom P1. The steam discharged to the condenser 8 is simply cooled and condensed without being utilized for heat, and all the thermal energy of this discharged steam becomes a loss and is finally discarded into seawater.

蒸気調節弁16は周波数制御系22からの周波数制御信
号を入力する熱交換器蒸気制御系24により回度制御さ
れる。蒸気WAgfJ弁16は原子炉1の通常運転時に
は常時量弁しており、主蒸気の一部は常時、熱交換器1
7へ分流され工、この熱交換器17の2次側で蒸気また
は渇水を発生させ、この蒸気をプロセス蒸気として熱利
用系Aにて有効な熱利用が図られ、タービン6と熱交換
器17への主蒸気流入組の和が通常運転時には、常に一
定になるように調整される。熱交換器蒸気制御系24は
周波数制御系22より出力される周波数制御信号を受け
て、電力需要の変動、すなわち、発′rFil17の負
荷変動を検出して、この負荷変動の変動幅が比較的小幅
で、かつ速い周期の、いわゆるガバナフリー運転に相当
する場合に、蒸気調節弁16の弁開度を制御して、熱交
換器17へ分流される主蒸気の分配量を制御して、ター
ビン6への主蒸気流入りを制御し、この蒸気調節弁16
の弁開度制御方向が主蒸気加減弁12の弁開度制御方向
とは逆方向になるように溝底されている。すなわら、主
蒸気加減弁12が弁開度を増す方向に制御されるときは
、蒸気調節弁16は弁開度を減少させる方向に制御され
、タービン6と熱交換器17とに分流される主蒸気流入
mの和が常に一定になるように制御され、原子fj51
の炉出力(発生蒸気m)は常に一定に保持される。した
がって、蒸気調節弁16の弁開度制御により、熱交換器
17へ分流される主蒸気の流入mを制御することにより
、原子炉1の炉出力を一定にした状態でタービン6への
流入蒸気mを1ilj御して、負荷変動に発電BM7の
出力を迅速に追従させることができる。
The steam control valve 16 is controlled by a heat exchanger steam control system 24 which receives a frequency control signal from a frequency control system 22 . The steam WAgfJ valve 16 is always in operation during normal operation of the reactor 1, and a portion of the main steam is always supplied to the heat exchanger 1.
Steam or dry water is generated on the secondary side of the heat exchanger 17, and this steam is used as process steam for effective heat utilization in the heat utilization system A. During normal operation, the sum of the main steam inflow groups is adjusted so that it is always constant. The heat exchanger steam control system 24 receives the frequency control signal output from the frequency control system 22, detects fluctuations in power demand, that is, fluctuations in the load of the generating filter 17, and detects fluctuations in the load fluctuation range. In a case corresponding to so-called governor-free operation with a small width and a fast cycle, the valve opening degree of the steam control valve 16 is controlled to control the amount of main steam distributed to the heat exchanger 17, and the turbine This steam control valve 16 controls the inflow of main steam to
The groove bottom is formed such that the valve opening control direction of the main steam control valve 12 is opposite to the valve opening control direction of the main steam control valve 12. That is, when the main steam control valve 12 is controlled to increase the valve opening, the steam control valve 16 is controlled to decrease the valve opening, and the steam is divided into the turbine 6 and the heat exchanger 17. The sum of the main steam inflows m is always constant, and the atoms fj51
The furnace output (generated steam m) is always kept constant. Therefore, by controlling the opening degree of the steam control valve 16 to control the inflow m of the main steam to be diverted to the heat exchanger 17, the inflow steam to the turbine 6 can be maintained while the reactor output of the reactor 1 is kept constant. By controlling m by 1ilj, the output of the power generation BM 7 can be made to quickly follow the load fluctuation.

上記タービン6および熱交換器17へ流入させる流入蒸
気迅の調整幅(調整可能幅ンは原子力発電プラントの特
性によって左右されるが、ガバナフリー運転に相当する
場合は数%以内に制限される。
The adjustable width of the inflow steam flowing into the turbine 6 and the heat exchanger 17 (the adjustable width depends on the characteristics of the nuclear power plant, but is limited to within a few percent when it corresponds to governor-free operation).

一方、負荷変動の変動幅が比較的大幅で、かつ変動周期
が長い場合には、従来例と同様に圧力制御系21により
原子炉1の炉出力を変化させて、発電機7出力を負荷変
動に追従させる。すなわち、このような負荷変動があっ
たときは、再循環ポンプ4の運転制御によ−、り炉心流
mを変化させ、炉出力(発生蒸気m)を制御する。これ
により原子炉1内圧力が変化するから、圧力制御系21
により主蒸気加減弁12の弁開度を適宜制御して原子炉
1内を所定値に保持する。
On the other hand, if the fluctuation range of load fluctuation is relatively large and the fluctuation period is long, the pressure control system 21 changes the reactor output of the reactor 1 as in the conventional example, and the output of the generator 7 is adjusted to the load fluctuation. to follow. That is, when such a load fluctuation occurs, the core flow m is changed by controlling the operation of the recirculation pump 4, and the reactor output (generated steam m) is controlled. This changes the pressure inside the reactor 1, so the pressure control system 21
The opening degree of the main steam control valve 12 is appropriately controlled to maintain the inside of the reactor 1 at a predetermined value.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、原子炉にて発生した主蒸
気を主蒸気加減弁が介装された主蒸気流路を介してター
ビンへ導入するようにした原子力発電プラントにおいて
、上記主蒸気加減弁の上流側の主蒸気流路の途中を熱利
用系バイパス路を介して上記タービンの復水器に連通さ
せ、この熱利用系バイパス路の途中に少なくとも熱利用
系交換器と、この熱利用系交換器の上流側に蒸気調節弁
とをそれぞれ介装し、この蒸気調節弁の開度制御により
上記熱利用系バイパス路を介して上記復水。
As explained above, the present invention provides a nuclear power plant in which main steam generated in a nuclear reactor is introduced into a turbine through a main steam flow path in which a main steam control valve is installed. The main steam flow path on the upstream side of the valve is communicated with the condenser of the turbine via a heat utilization system bypass passage, and at least a heat utilization system exchanger and a heat utilization system A steam control valve is installed on the upstream side of the system exchanger, and the opening of the steam control valve is controlled to cause the condensate to flow through the heat utilization system bypass path.

器へバイパスざUる主蒸気のバイパス流1品を適宜調節
して、上記タービンへ導入する主蒸気流口を制御するよ
うにした。
The bypass flow of the main steam that is bypassed to the turbine is adjusted appropriately to control the main steam flow port that is introduced into the turbine.

したがって、本発明によればタービンと熱利用系熱交換
器とへそれぞれ流入される蒸気流mの和が常に一定に保
持されるので、原子炉側へ影響を与えることがなく、ブ
ラントを安定して運転することができる。しかも、熱利
用系熱交換器の2次側にて発生した蒸気はプロセス蒸気
として工業用等に有効利用を図ることができる。
Therefore, according to the present invention, the sum of the steam flows m flowing into the turbine and the heat exchanger of the heat utilization system is always kept constant, so that the blunt is stabilized without affecting the reactor side. can be driven. Furthermore, the steam generated on the secondary side of the heat exchanger of the heat utilization system can be effectively used for industrial purposes as process steam.

また、負荷変動に対しては主蒸気加減弁、蒸気調節弁、
7.−ピンバイパス弁の弁17iIrfIIIIIJ御
により発電機出力を追従させており、これら弁の開開は
非常に迅速に行なわれるので、負荷変動に対しては極め
て応答の速い制御を達成づ°ることができる。
In addition, in response to load fluctuations, the main steam control valve, steam control valve,
7. - The generator output is controlled by the pin bypass valve 17iIrfIIIJ, and these valves open and open very quickly, making it possible to achieve control with extremely quick response to load fluctuations. can.

すなわち、ガバナフリー運転に相当する小幅の速い負荷
変動に対しては主蒸気加減弁と蒸気調節弁との弁開度制
御により、発電機出力を追従させるので、負荷変動の追
従を迅速に達成することができる。また、負荷変動が比
較的遅く、かつ変動幅が比較的大きい場合には、従来例
とほぼ同様に圧力制御系により炉出力を制御して発電機
出力を負荷変動に追従させることができる。
In other words, for small and fast load fluctuations that correspond to governor-free operation, the generator output is made to follow the valve opening control of the main steam control valve and the steam control valve, so it is possible to quickly follow the load fluctuations. be able to. Further, when the load fluctuation is relatively slow and the fluctuation width is relatively large, the furnace output can be controlled by the pressure control system to make the generator output follow the load fluctuation, almost in the same way as in the conventional example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る原子力発電プラントの一実施例の
全体構成図、第2図は第1図で示す実施例の制御系の要
部を示す要部系統図である。 1・・・原子炉、2・・・炉心、3・・・炉水、4・・
・再循環ポンプ、5・・・主蒸気管、6・・・タービン
、7・・・発電機、8・・・復水器、9・・・復水管、
1o・・・給水ポンプ、11・・・給水加熱器、12・
・・主蒸気加減弁、13・・・タービンバイパス管、1
4・・・タービンバイパス弁、15・・・熱利用系配管
、16・・・蒸気調節弁、17・・・熱交換器、20・
・・タービン蒸気制御系、21・・・圧力制御系、21
a・・・圧力検出器、22・・・周波数制御系、23・
・・タービンバイパス制御系、24・・・熱交換器蒸気
制御系、A・・・熱利用系。
FIG. 1 is an overall configuration diagram of an embodiment of a nuclear power plant according to the present invention, and FIG. 2 is a main part system diagram showing the main parts of the control system of the embodiment shown in FIG. 1... Nuclear reactor, 2... Reactor core, 3... Reactor water, 4...
・Recirculation pump, 5... Main steam pipe, 6... Turbine, 7... Generator, 8... Condenser, 9... Condensate pipe,
1o... Water supply pump, 11... Water supply heater, 12.
...Main steam control valve, 13...Turbine bypass pipe, 1
4... Turbine bypass valve, 15... Heat utilization system piping, 16... Steam control valve, 17... Heat exchanger, 20...
... Turbine steam control system, 21 ... Pressure control system, 21
a...Pressure detector, 22...Frequency control system, 23.
... Turbine bypass control system, 24... Heat exchanger steam control system, A... Heat utilization system.

Claims (1)

【特許請求の範囲】[Claims] 原子炉にて発生した主蒸気を主蒸気加減弁が介装された
主蒸気流路を介してタービンに導入するようにした原子
力発電プラントにおいて、上記主蒸気加減弁の上流側の
主蒸気流路の途中を熱利用系バイパス路を介して上記タ
ービンの復水器に連通させ、この熱利用系バイパス路の
途中に少なくとも熱利用系交換器と、この熱利用系交換
器の上流側に蒸気調節弁とをそれぞれ介装し、この蒸気
調節弁の開度制御により上記熱利用系バイパス路を介し
て上記復水器へバイパスさせる主蒸気のバイパス流量を
適宜調節して、上記タービンへ導入する主蒸気の流量を
制御するようにしことを特徴とする原子力発電プラント
In a nuclear power plant in which main steam generated in a nuclear reactor is introduced into a turbine through a main steam flow path in which a main steam control valve is installed, a main steam flow path upstream of the main steam control valve is provided. is connected to the condenser of the turbine through a heat utilization system bypass passage, and at least a heat utilization system exchanger is provided in the middle of this heat utilization system bypass passage, and a steam control system is installed on the upstream side of this heat utilization system exchanger. The bypass flow rate of the main steam to be bypassed to the condenser via the heat utilization system bypass path is appropriately adjusted by controlling the opening of the steam control valve, and the main steam to be introduced into the turbine is A nuclear power plant characterized by controlling the flow rate of steam.
JP59182037A 1984-08-31 1984-08-31 Nuclear power plant Pending JPS6159296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59182037A JPS6159296A (en) 1984-08-31 1984-08-31 Nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59182037A JPS6159296A (en) 1984-08-31 1984-08-31 Nuclear power plant

Publications (1)

Publication Number Publication Date
JPS6159296A true JPS6159296A (en) 1986-03-26

Family

ID=16111230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59182037A Pending JPS6159296A (en) 1984-08-31 1984-08-31 Nuclear power plant

Country Status (1)

Country Link
JP (1) JPS6159296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165300A (en) * 1986-12-26 1988-07-08 株式会社レンタルのニツケン Operating device for hydraulic controller in hydraulic working machine
KR20230020864A (en) * 2021-08-04 2023-02-13 주식회사 수공종합건설 Struture for combining filter module and flow module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165300A (en) * 1986-12-26 1988-07-08 株式会社レンタルのニツケン Operating device for hydraulic controller in hydraulic working machine
JPH0729760B2 (en) * 1986-12-26 1995-04-05 株式会社レンタルのニツケン Operating device of hydraulic control device in hydraulic working machine
KR20230020864A (en) * 2021-08-04 2023-02-13 주식회사 수공종합건설 Struture for combining filter module and flow module

Similar Documents

Publication Publication Date Title
CA1068492A (en) Combined gas turbine and steam turbine power plant
US4665706A (en) Control system for variable pressure once-through boilers
JPS6159296A (en) Nuclear power plant
CA1138657A (en) Control system for steam turbine plants including turbine bypass systems
JPS61145305A (en) Control device for turbine plant using hot water
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
GB778941A (en) Improvements relating to power plant including a nuclear reactor
JPS59138705A (en) Controller for temperature of supplied water
JPH03267509A (en) Control method of reheating steam turbine
JPS6124559B2 (en)
JPS63184098A (en) Generating output control method of boiling water type nuclear power plant
JP2535740B2 (en) Speed control method of underwater vehicle
US3175366A (en) Steam turbine with regulated bleeding of steam
JPS6032082B2 (en) Feed water temperature control device
JPH0241720B2 (en)
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation
JPH02149705A (en) Operation method of multi-spindle type combined plant
JPH0128202B2 (en)
JPS60145407A (en) Reheating type steam turbine plant
JPS60101407A (en) Feedwater controller
JPS63279199A (en) Load follow-up control of boiling water type nuclear power generation plant
JPH01212803A (en) Drain level control device for feed water heater
JPH03241206A (en) Water supplying control device
JPH03179108A (en) Load limiter follow-up mechanism and control method therefor