JPH02149705A - Operation method of multi-spindle type combined plant - Google Patents

Operation method of multi-spindle type combined plant

Info

Publication number
JPH02149705A
JPH02149705A JP30055088A JP30055088A JPH02149705A JP H02149705 A JPH02149705 A JP H02149705A JP 30055088 A JP30055088 A JP 30055088A JP 30055088 A JP30055088 A JP 30055088A JP H02149705 A JPH02149705 A JP H02149705A
Authority
JP
Japan
Prior art keywords
steam
gas turbines
heat recovery
steam turbine
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30055088A
Other languages
Japanese (ja)
Inventor
Masanori Konuma
小沼 正範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30055088A priority Critical patent/JPH02149705A/en
Publication of JPH02149705A publication Critical patent/JPH02149705A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To suppress generation of piping erosion even in a partial load in the case of switching application of the number of gas turbines by regulating the opening of a steam turbine adjusting valve so that it matches the number of gas turbines in operation. CONSTITUTION:In a combined plant consisting of two gas turbines 1, two exhaust heat recovery boilers 2 and the main body of a steam turbine 3, a steam pressure being introduced from an exhaust heat recovery boiler 2 to the steam turbine 3 through a main steam pipe 6 is adjusted by a steam turbine regulator valve 7. The opening of the steam turbine regulator valve 7 is controlled in response to the number of gas turbines 1 in operation and the load per turbine based on the detecting signal of a pressure detector 9. Thus, as the drop down of the main steam pressure can be suppressed and the increase of a specific volume can be prevented, the increase of flow speed in the tube of an exhaust heat recovery boiler 2 and the main steam pipe 6 can be prevented. Therefore, generation of pipe erosion can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、多軸型コンバインドプラントの蒸気タービン
に好適な運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an operating method suitable for a steam turbine of a multi-shaft combined plant.

〔従来の技術〕[Conventional technology]

従来の多軸形コンバインドプラントの蒸気タービンでは
、部分負荷時に蒸気タービン加減弁は全開運用としてい
る。このため、部分負荷時に蒸気比容積が増加し配管流
速の増大による配管エロージョン発生の可能性があった
In the conventional steam turbine of a multi-shaft combined plant, the steam turbine control valve is operated fully open during partial load. For this reason, there was a possibility that pipe erosion would occur due to an increase in steam specific volume and an increase in pipe flow velocity during partial load.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

多軸形コンバインドプラントでは、複数台のガスタービ
ン、及び、同数の排熱回収ボイラ及び−台の蒸気タービ
ンから構成され、ベース負荷運転では全てのガスタービ
ンが運転され、全ての排熱回収ボイラの発生蒸気が蒸気
タービンへ導入される。
A multi-shaft combined plant is composed of multiple gas turbines, the same number of heat recovery boilers, and -1 steam turbine. During base load operation, all gas turbines are operated and all heat recovery boilers are operated. The generated steam is introduced into a steam turbine.

ここで、多軸形コンバインドの部分負荷運転はガスター
ビン効率、及び、ガスタービン排ガス温度に係る蒸気サ
イクル効率から、ガスタービン均等部分負荷運転よりも
、ガスタービン台数切替運転が採用されるのが一般的で
ある。
Here, for partial load operation of a multi-shaft combined, gas turbine number switching operation is generally adopted rather than gas turbine uniform partial load operation due to gas turbine efficiency and steam cycle efficiency related to gas turbine exhaust gas temperature. It is true.

例えば、ガスタービン二重十蒸気タービンー台の多軸形
コンバインドプラントで、ガスタービン台数を一台から
一台へ減らす場合、蒸気を発生している排熱回収ボイラ
も一台となる。これは蒸気タービンにとっては定格の半
分の蒸気量が流入していることになるため、蒸気タービ
ン加減弁開度が同じく全開であれば、蒸気圧力も半分と
なる。
For example, in a multi-shaft combined plant with double gas turbines and ten steam turbines, when the number of gas turbines is reduced from one to one, the exhaust heat recovery boiler that generates steam will also be reduced to one. This means that half the rated amount of steam is flowing into the steam turbine, so if the steam turbine regulating valve opening is fully open, the steam pressure will also be half.

すなわち、運転している排熱回収ボイラは、蒸発器は1
00%流量、蒸気圧力は50%圧力となるため、排熱回
収ボイラの蒸発管、あるいは、主蒸気管内の流速は約二
倍(蒸気圧力が半分となるため、蒸気比容積が約二倍と
なる。)となり、配管エロージョン発生の可能性があっ
た。又、流速増大に伴う各部の騒音増大という問題も発
生するので、環境上からも対策が必要であった。本発明
の目的はこれらの不具合を解消することにある。
In other words, the operating exhaust heat recovery boiler has one evaporator.
Since the flow rate is 00% and the steam pressure is 50%, the flow rate in the evaporation pipe or main steam pipe of the waste heat recovery boiler is approximately doubled (as the steam pressure is halved, the steam specific volume is approximately doubled). ), and there was a possibility of piping erosion occurring. Additionally, there is a problem of increased noise from various parts as the flow velocity increases, so countermeasures have been required from an environmental standpoint. An object of the present invention is to eliminate these problems.

〔課題を解決するための手段〕[Means to solve the problem]

多軸形コンバインドプラントの部分負荷運用がガスター
ビン台数切替運転で実施されることを考慮すれば、ガス
タービン運転台数に合わせた、蒸気タービン加減弁の開
度に調節することにより上記目的は達成される。
Considering that partial load operation of a multi-shaft combined plant is carried out by switching the number of gas turbines, the above objective can be achieved by adjusting the opening of the steam turbine control valve according to the number of gas turbines in operation. Ru.

〔作用〕[Effect]

蒸気タービン加減弁はガスタービン運転台数、及び、ガ
スタービン−台当りの負荷に応じた、つまり、排熱回収
ボイラの蒸発量に対応した開度とする。
The opening degree of the steam turbine control valve is set in accordance with the number of operating gas turbines and the load per gas turbine, that is, in accordance with the amount of evaporation of the exhaust heat recovery boiler.

これにより、ガスタービン台数の切替運用時の部分負荷
でも、配管エロージョンの発生を押えることが出来る。
This makes it possible to suppress the occurrence of piping erosion even under partial load when the number of gas turbines is switched.

〔実施例〕〔Example〕

第1図に本発明に於ける多軸形コンバインドブ・ランド
の構成を示す。
FIG. 1 shows the configuration of a multi-axial combined blade land according to the present invention.

本図はガスタービン1が二重、排熱回収ボイラ2が一台
、蒸気タービン3が一台の主機から構成されるコンバイ
ンドプランであり、発電機4で、それぞれ、電気出力を
発生する。
This figure shows a combined plan consisting of a double gas turbine 1, one exhaust heat recovery boiler 2, and one steam turbine 3, each of which generates electrical output with a generator 4.

ガスタービン2の高温排ガス5は、排熱回収ボイラ2へ
導入され、排熱回収ボイラ2で蒸気を発生する。この蒸
気は排熱回収ボイラ2から主蒸気管6を通って蒸気ター
ビン3へ導かれる。ここで蒸気タービンには、蒸気圧力
を調節するための蒸気加減弁7が設置しである。図中8
は復水器、9は圧力検出器である。
High-temperature exhaust gas 5 from the gas turbine 2 is introduced into the exhaust heat recovery boiler 2, and the exhaust heat recovery boiler 2 generates steam. This steam is guided from the exhaust heat recovery boiler 2 to the steam turbine 3 through the main steam pipe 6. Here, the steam turbine is equipped with a steam control valve 7 for regulating steam pressure. 8 in the diagram
is a condenser, and 9 is a pressure detector.

本実施例では、ガスタービン台数が一台の場合を例にし
て説明したが、ガスタービン台数については複数台なら
ばいずれの場合でも同じであることはいうまでもない。
In this embodiment, the case where the number of gas turbines is one is explained as an example, but it goes without saying that the number of gas turbines is the same in any case as long as there are a plurality of gas turbines.

第2図に、本発明における蒸気タービン加減弁制御を行
なった時の主蒸気圧力特性を示す。
FIG. 2 shows the main steam pressure characteristics when the steam turbine control valve control according to the present invention is performed.

実線で本発明の場合の主蒸気圧力を、破線で従来技術に
おける主蒸気圧力特性を示す。
The solid line shows the main steam pressure in the case of the present invention, and the broken line shows the main steam pressure characteristics in the prior art.

従来技術では主蒸気圧力がプラント負荷に比例して低負
荷時には低圧力になり、比容積が増加した。
In the conventional technology, the main steam pressure was proportional to the plant load and became low pressure at low loads, resulting in an increase in specific volume.

これを、本発明では、−台当りのガスタービン負荷に対
して主蒸気圧力を調節するものとし、ガスタービン負荷
100%で定格蒸気圧力、また。
In the present invention, the main steam pressure is adjusted according to the gas turbine load per unit, and the rated steam pressure is set at 100% gas turbine load.

主蒸気最低圧力以下は蒸気タービン加減弁を絞り、最低
圧力を確保するものとした。
When the main steam pressure is below the minimum pressure, the steam turbine control valve is throttled to ensure the minimum pressure.

第4図に、本発明における蒸気タービン加減弁の開度特
性を示す。
FIG. 4 shows the opening characteristic of the steam turbine control valve in the present invention.

実線で本発明の場合の蒸気タービン加減弁の開度を、破
線で従来技術における蒸気タービン加減弁開度特性をそ
れぞれ示す。
The solid line indicates the opening degree of the steam turbine regulating valve in the case of the present invention, and the broken line indicates the opening characteristic of the steam turbine regulating valve in the prior art.

第4図は、第3図の様な主蒸気圧力特性にすべく制御す
るための蒸気タービン加減弁開度特性を示す。
FIG. 4 shows the steam turbine control valve opening characteristic for controlling the main steam pressure characteristic as shown in FIG. 3.

本図に示す様に、従来技術では負荷に係わらず蒸気ター
ビン加減弁開度は全開としていた。本発明ではガスター
ビン運転台数に応じた蒸気タービン加減弁開度とした。
As shown in this figure, in the conventional technology, the steam turbine control valve opening degree was kept fully open regardless of the load. In the present invention, the opening degree of the steam turbine control valve is determined according to the number of gas turbines in operation.

本実施例によれば、常に同一の蒸気タービン運転状態を
保つことができる。
According to this embodiment, the same steam turbine operating state can always be maintained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、主蒸気圧力の低下を押え、比容積が増
加することを防ぐことができるので、排熱回収ボイラチ
ューブ、及び、主蒸気管内流速の増加を防ぎ、配管エロ
ージョンの発生を防ぐことができる。
According to the present invention, it is possible to suppress a decrease in main steam pressure and prevent an increase in specific volume, thereby preventing an increase in the flow velocity in the exhaust heat recovery boiler tube and the main steam pipe, thereby preventing the occurrence of piping erosion. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の多軸形コンバインドプラン
トの系統図、第2図は従来の多軸コンバインドプラント
の系統図、第3図は本発明における主蒸気圧力特性図、
第4図は本発明における蒸気タービン加減弁開度特性図
を示す。 1・・・ガスタービン、2・・・排熱回収ボイラ、3・
・・蒸気タービン、4・・・発電機、5・・・高温排ガ
ス、6・・・主蒸気管、7・・・蒸気タービン加減弁、
8・・・復水器、9・・・圧力検出器。
Fig. 1 is a system diagram of a multi-shaft combined plant according to an embodiment of the present invention, Fig. 2 is a system diagram of a conventional multi-shaft combined plant, and Fig. 3 is a main steam pressure characteristic diagram in the present invention.
FIG. 4 shows a steam turbine control valve opening characteristic diagram in the present invention. 1... Gas turbine, 2... Exhaust heat recovery boiler, 3.
...Steam turbine, 4... Generator, 5... High temperature exhaust gas, 6... Main steam pipe, 7... Steam turbine control valve,
8... Condenser, 9... Pressure detector.

Claims (1)

【特許請求の範囲】 1、複数台のガスタービンと、前記ガスタービンの各々
の排ガスを熱源とする同数台の排熱回収ボイラと、前記
排熱回収ボイラで発生する蒸気を作動蒸気とする一台の
蒸気タービンとを設けた多軸型コンバインドプラントに
おいて、 前記蒸気タービンに加減弁を設け、前記ガスタービンの
中の一部の台数を運転する場合に、前記加減圧の開度を
調節することを特徴とするコンバインドプラントの運転
方法。 2、前記ガスタービンの台数を変更して操作する場合に
、前記排熱回収ボイラで発生する作動蒸気圧力を一定に
保つように制御することを特徴とする特許請求の範囲第
1項に記載のコンバインドプラントの運転方法。 3、特許請求の範囲第2項において、 作動蒸気圧力を定格出力を含む高負荷域で一定として、
中間負荷域は変圧とすることを特徴とするコンバインド
プラントの運転方法。
[Scope of Claims] 1. A plurality of gas turbines, the same number of exhaust heat recovery boilers that use the exhaust gas of each of the gas turbines as a heat source, and one that uses steam generated by the exhaust heat recovery boilers as working steam. In a multi-shaft combined plant equipped with a number of steam turbines, the steam turbine is provided with a regulating valve, and when operating a part of the gas turbines, the degree of opening of the regulating pressure is adjusted. A method of operating a combined plant characterized by: 2. When operating the gas turbine by changing the number of the gas turbines, the system is controlled to keep the working steam pressure generated in the exhaust heat recovery boiler constant. How to operate a combined plant. 3. In claim 2, the working steam pressure is constant in the high load range including the rated output,
A method of operating a combined plant characterized by using a transformer pressure in the intermediate load range.
JP30055088A 1988-11-30 1988-11-30 Operation method of multi-spindle type combined plant Pending JPH02149705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30055088A JPH02149705A (en) 1988-11-30 1988-11-30 Operation method of multi-spindle type combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30055088A JPH02149705A (en) 1988-11-30 1988-11-30 Operation method of multi-spindle type combined plant

Publications (1)

Publication Number Publication Date
JPH02149705A true JPH02149705A (en) 1990-06-08

Family

ID=17886181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30055088A Pending JPH02149705A (en) 1988-11-30 1988-11-30 Operation method of multi-spindle type combined plant

Country Status (1)

Country Link
JP (1) JPH02149705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696940A (en) * 2015-02-15 2015-06-10 华北电力科学研究院有限责任公司 High-pressure steam system for two-pull-one unit of fuel gas thermal power plant and start-stop control method of high-pressure steam system
CN104696939A (en) * 2015-02-15 2015-06-10 华北电力科学研究院有限责任公司 Medium-pressure steam system for two-pull-one unit of fuel gas thermal power plant and start-stop control method of medium-pressure steam system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696940A (en) * 2015-02-15 2015-06-10 华北电力科学研究院有限责任公司 High-pressure steam system for two-pull-one unit of fuel gas thermal power plant and start-stop control method of high-pressure steam system
CN104696939A (en) * 2015-02-15 2015-06-10 华北电力科学研究院有限责任公司 Medium-pressure steam system for two-pull-one unit of fuel gas thermal power plant and start-stop control method of medium-pressure steam system

Similar Documents

Publication Publication Date Title
CA2743425C (en) Method for operating a waste heat steam generator
US8511093B2 (en) Power generation plant and control method thereof
EP0933505B1 (en) Steam cooled system in combined cycle power plant
US4870823A (en) Low load operation of steam turbines
JPH0370804A (en) Starting of steam cycle in combined cycle plant
CN209978005U (en) Primary frequency modulation control system for secondary reheating unit
JPH02149705A (en) Operation method of multi-spindle type combined plant
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
GB2176248A (en) Turbine control
JPS6291703A (en) Steaming preventive device for fuel economizer
JPH0275802A (en) Waste heat recovery boiler
JPH01163406A (en) Method for operating combined plant and its equipment
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP2656352B2 (en) Coal gasification power plant
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPH0814012A (en) Control device for composite plant
JPH0751883B2 (en) Turbine controller
JPS5938505A (en) Controller for water level of drum of waste-heat recovery boiler
JPH01116205A (en) Output control device for compound power plant
JPS61252806A (en) Turbine pressure controller
JPS623287B2 (en)
JPH0388904A (en) Method for starting combined cycle plant
JPS60108509A (en) Steam turbine protecting device in combined cycle plant
JPS59113216A (en) Steam-turbine plant
JPS6269090A (en) Method of controlling operation of movable vane pump