JPH0388904A - Method for starting combined cycle plant - Google Patents

Method for starting combined cycle plant

Info

Publication number
JPH0388904A
JPH0388904A JP22482589A JP22482589A JPH0388904A JP H0388904 A JPH0388904 A JP H0388904A JP 22482589 A JP22482589 A JP 22482589A JP 22482589 A JP22482589 A JP 22482589A JP H0388904 A JPH0388904 A JP H0388904A
Authority
JP
Japan
Prior art keywords
temperature
main steam
steam
plant
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22482589A
Other languages
Japanese (ja)
Other versions
JP2692978B2 (en
Inventor
Toshiki Furukawa
俊樹 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1224825A priority Critical patent/JP2692978B2/en
Publication of JPH0388904A publication Critical patent/JPH0388904A/en
Application granted granted Critical
Publication of JP2692978B2 publication Critical patent/JP2692978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To reduce life reduction of a high pressure stage rotor due to thermal stress by controlling temperature at an inlet port of a steam turbine through spraying by means of a desuperheater, which starts spraying when temperature of main steam has reached a set value in the case of starting of a plant. CONSTITUTION:A superheater of an exhaust heat recovery boiler 6 is divided into two parts 9a and 9b. A desuperheater 20 is arranged between them. When temperature of main steam measured by a main steam thermometer 27 has reached a set value in the case of starting of a plant, spraying is started by the desuperheater 20. In addition, a set value of main steam temperature is obtained from starting time of spraying and a rate of temperature rise in a main steam temperature controlling device 28. On the basis of the deviation between the set value and the measured value of the main steam temperature, the main steam temperature is controlled by regulating spray flow by means of a spray regulating valve 22. In this constitution, because steam temperature at an outlet port of an exhaust heat recovery boiler 6 rises gradually even if exhaust gas temperature of a gas turbine 1 has risen suddenly in the case of starting of the plant, life reduction of a high pressure stage rotor of a steam turbine 11 due to thermal stress can be reduced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ガスタービン、排熱回収ボイラおよび蒸気タ
ービンを組合わせたコンバインドサイクルプラント、特
にガスタービンに低NOx燃焼器を採用したコンバイン
ドサイクルプラントにおける起動運転方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a combined cycle plant that combines a gas turbine, an exhaust heat recovery boiler, and a steam turbine, and particularly to a combined cycle plant that combines a gas turbine with a low NOx combustor. This article relates to the start-up operation method for the adopted combined cycle plant.

(従来の技術) 最近の発電プラントとしては、エネルギーの有効利用を
図る目的で、ガスタービンから放出される排ガスを排熱
回収ボイラに導いて蒸気を発生させ、この蒸気で蒸気タ
ービンを回転させるコンバインドサイクルプラントが多
用される傾向にある。
(Conventional technology) In order to effectively utilize energy, recent power generation plants use a combined system in which exhaust gas emitted from a gas turbine is guided to an exhaust heat recovery boiler to generate steam, and this steam is used to rotate a steam turbine. There is a tendency for cycle plants to be used frequently.

第4図はコンバインドサイクルプラントの構成例を示す
もので、ガスタービン1は圧縮器2、燃焼器3およびガ
スタービン本体4から構成されるおり、圧縮器2の入口
には吸込空気流単を調節するための入口可変静翼5が取
付けられている。排熱回収ボイラ6は節炭器7、蒸発4
8、過熱器9および蒸気ドラム10から構成されている
。燃焼器4と蒸気タービン11は発電機12に直結され
ている。蒸気タービン11の排気側には復水器13が接
続され、この復水器と排熱回収ボイラ6との間を結ぶ給
水配管14には給水ポンプ15が介挿されている。
Figure 4 shows an example of the configuration of a combined cycle plant. A gas turbine 1 is composed of a compressor 2, a combustor 3, and a gas turbine main body 4. A variable inlet stator vane 5 is attached for the purpose of The exhaust heat recovery boiler 6 has a carbon saver 7 and an evaporator 4.
8, a superheater 9 and a steam drum 10. The combustor 4 and steam turbine 11 are directly connected to a generator 12. A condenser 13 is connected to the exhaust side of the steam turbine 11, and a water supply pump 15 is inserted into a water supply pipe 14 connecting the condenser and the exhaust heat recovery boiler 6.

このような構成のコンバインドサイクルプラントにおい
て、圧縮器2で圧縮された空気は燃焼器3に導かれて燃
料を燃焼させ、得られた高圧・高圧のガスはガスタービ
ン本体4に導入されてこれを回転させた・後、排熱回収
ボイラ6に導かれ、節炭器7、蒸発器8、過熱器9内を
流れる水および蒸気と熱交換を行う。排熱回収ボイラ6
の過熱器9で発生した高圧の過熱蒸気は蒸気タービン1
1に導かれてこれを回転させ、熱エネルギーを放出した
後、復水器13に導入されて凝縮し、復水となる。復水
器13の下部に溜まった復水は給水配管14の途中に介
押した給水ポンプ15や給水昇圧ポンプ(図示せず)な
どによって加圧され、排熱回収ボイラ6に戻る。
In a combined cycle plant with such a configuration, the air compressed by the compressor 2 is guided to the combustor 3 to burn fuel, and the resulting high-pressure gas is introduced to the gas turbine body 4 to burn it. After being rotated, it is led to the exhaust heat recovery boiler 6, where it exchanges heat with water and steam flowing through the economizer 7, evaporator 8, and superheater 9. Exhaust heat recovery boiler 6
The high-pressure superheated steam generated in the superheater 9 is transferred to the steam turbine 1.
After being guided into the condenser 13 and rotated to release thermal energy, it is introduced into the condenser 13 and condensed to become condensed water. The condensate accumulated in the lower part of the condenser 13 is pressurized by a water supply pump 15 or a water pressure boosting pump (not shown) inserted in the water supply pipe 14, and then returns to the exhaust heat recovery boiler 6.

第5図は上記構成のコンバインドサイクルプラントにお
ける負荷の大きさと、ガスタービン本体4の人口温度と
出口温度および吸込み空気流量の関係を示すもので、通
常の負荷運転時には、同図中の点線の関係を保って運転
されている。
Figure 5 shows the relationship between the load size, the population temperature and outlet temperature of the gas turbine main body 4, and the intake air flow rate in the combined cycle plant with the above configuration.During normal load operation, the relationship shown by the dotted line in the figure is The vehicle is operated while maintaining the following conditions.

すなわち、負荷が100%負荷の状態から威少する場合
、圧縮器2の入口可変静翼5閉めることにより吸込空気
量を減少させタービン人口温度の低下を防ぐことにより
、コンバインドサイクルプラントの熱効率を高く保持す
ることができる。また、入口可変静翼5が最少開度にな
ると、それ以下の負荷状態では入口可変静翼をその状態
に保ったまま燃料の流量を減少させることになるが、そ
の場合はガスタービン本体4の人口温度は低下する。
In other words, when the load decreases from 100% load, the variable inlet vanes 5 of the compressor 2 are closed to reduce the intake air amount and prevent the turbine population temperature from decreasing, thereby increasing the thermal efficiency of the combined cycle plant. can be retained. In addition, when the variable inlet stator vanes 5 reach the minimum opening degree, in load conditions below that, the flow rate of fuel will be reduced while the variable inlet stator vanes remain in that state; Population temperature decreases.

このようなコンバインドサイクルプラントを、仮に第5
図点線の通常負荷運転ラインで起動すると、100%負
荷になる前に、ガスタービン本体4の出口ガス温度が1
00%負荷時の温度よりも高い最高温度になり、しかも
その温度上昇率も非常に大きなものとなる。この場合、
排熱回収ボイラ6の過熱器7から出てくる蒸気温度はガ
スタービン本体4の出口ガス温度の温度上昇傾向に似て
おり、ガスタービンの出口ガス温度が急激に上昇すると
、過熱器7から出てくる過熱蒸気温度も急激に上昇する
If such a combined cycle plant were to be built as a fifth plant,
When starting with the normal load operation line shown by the dotted line in the figure, the outlet gas temperature of the gas turbine main body 4 will rise to 1% before the load reaches 100%.
The maximum temperature is higher than the temperature at 00% load, and the rate of temperature increase is also very large. in this case,
The temperature of the steam coming out of the superheater 7 of the exhaust heat recovery boiler 6 is similar to the temperature rising trend of the outlet gas temperature of the gas turbine main body 4, and when the outlet gas temperature of the gas turbine increases rapidly, the temperature of the steam coming out of the superheater 7 increases. The temperature of the superheated steam also rises rapidly.

このような過熱蒸気を蒸気タービン11に導入してプラ
ントの起動を行うと、蒸気タービンの高圧ロータの熱応
力が過大になり、ロータ材料の寿命消費が著しくなる。
If such superheated steam is introduced into the steam turbine 11 to start up the plant, the thermal stress of the high-pressure rotor of the steam turbine becomes excessive, and the life of the rotor material is significantly reduced.

そのため、従来のコンバインドサイクルプラントでは、
第5図の実線で示すように、プラントの起動運転の途中
の負荷で、ガスタービン排ガス温度が予め設定した温度
になると、入口可変静m5を開き、排ガス温度の上昇を
抑えていた。このようにすることによって、排熱回収ボ
イラ6の発生蒸気の急激な温度上昇を抑えることができ
、プラントの起動運転時の蒸気タービンの高圧ロータの
熱応力による寿命消費を小さく抑えることができる。
Therefore, in conventional combined cycle plants,
As shown by the solid line in FIG. 5, when the gas turbine exhaust gas temperature reaches a preset temperature under load during plant start-up operation, the inlet variable static valve m5 is opened to suppress the rise in exhaust gas temperature. By doing so, it is possible to suppress a rapid temperature rise of the steam generated by the exhaust heat recovery boiler 6, and it is possible to suppress the life consumption of the high-pressure rotor of the steam turbine due to thermal stress during startup operation of the plant.

ところで、最近では、NOx対策としてガスタービンに
低NOx燃焼器を採用することが多くなってきた。この
低NOx化の原理は、燃料を空気中に薄く予混合して燃
焼器に噴射し、燃焼域の燃焼ガスの温度を下げてNOx
の発生を抑制するものである。この場合、ベース負荷に
おいて、燃空比を小さく予混合するので、部分負荷に移
行する際に、空気流量を変えずに燃料流量のみを減少さ
せていくと、予混合部での燃空比が更に小さくなり、・
−酸化炭素の発生が多くなる。このため、低NOx燃焼
器を採用する場合、部分負荷時においては、空気流量を
絞って運転する必要があった。
Incidentally, recently, low NOx combustors have been increasingly used in gas turbines as a countermeasure against NOx. The principle behind this reduction in NOx is to premix a thin amount of fuel in the air and inject it into the combustor, lowering the temperature of the combustion gas in the combustion zone and reducing NOx.
This is to suppress the occurrence of In this case, at base load, the fuel-air ratio is premixed to a small value, so when moving to partial load, if only the fuel flow rate is decreased without changing the air flow rate, the fuel-air ratio at the premixing section will be reduced. Even smaller,・
-Generation of carbon oxide increases. For this reason, when a low NOx combustor is employed, it is necessary to operate with a reduced air flow rate during partial load.

(発明が解決しようとする課題) 以上説明したように、低NOx燃焼器を採用したコンバ
インドサイクルプラントにおいては、起動時に、従来採
用されていた先行的に入口可変静翼を開く方法を採用す
ることができなくなり、ガスタービンの排ガス温度およ
び主蒸気温度は第6図の点fi61’   63’で示
すルートで起動せざるを得なくなる。なお、第6図中の
実線61.62.63は、先行的に人口可変静翼を開く
方法を採用した場合におけるガスタービンの排ガス温度
、排ガス流量および主蒸気温度を示す。
(Problems to be Solved by the Invention) As explained above, in a combined cycle plant that employs a low NOx combustor, it is necessary to adopt the conventional method of opening variable inlet stator vanes in advance at startup. As a result, the exhaust gas temperature and main steam temperature of the gas turbine must be started along the route shown by points fi61' to 63' in FIG. Note that solid lines 61, 62, and 63 in FIG. 6 indicate the exhaust gas temperature, exhaust gas flow rate, and main steam temperature of the gas turbine when the method of opening the variable population stator blades in advance is adopted.

その結果、排熱回収ボイラで発生する蒸気温度の急激な
上昇による蒸気タービンの高圧ロータの寿命消費の増加
を避けることができないという欠点があった。
As a result, there has been a drawback in that it is impossible to avoid an increase in the service life of the high-pressure rotor of the steam turbine due to the rapid rise in steam temperature generated in the waste heat recovery boiler.

本発明はこのような課題を解決するためになされたもの
で、低NOx燃焼器を採用したガスタービンを使用する
コンバインドサイクルプラントにおいて、プラントの起
動時に、排ガス中に一酸化炭素が発生することを抑制で
きるコンバインドサイクルプラントの起動運転方法を堤
供することを目的とするものである。
The present invention has been made to solve these problems, and is designed to prevent carbon monoxide from being generated in the exhaust gas at the time of plant startup in a combined cycle plant that uses a gas turbine with a low NOx combustor. The purpose of this project is to provide a method for starting up and operating a combined cycle plant that can reduce costs.

[発明の構成] (課題を解決するための手段) 本発明のコンバインドサイクルプラントの起動運転方法
は、ガスタービンと、このガスタービンからの排ガスが
持っている熱エネルギーを回収する排熱回収ボイラと、
この排熱回収ボイラで発生した蒸気によって駆動される
蒸気タービンと、前記ガスタービンおよび蒸気タービン
によって駆動される発電機とからなるコンバインドサイ
クルプラントにおいて、前記排熱回収ボイラの過熱器を
2分割としてそれらの間に減温器を設置し、プラント起
動時に、主蒸気温度を計測し、それが設定値に達した際
に、前記減温器でスプレーを開始し、このスプレー開始
時点からの時間と温度上昇率から主蒸気温度設定値を求
め、この主蒸気温度設定値と前記主蒸気計測温度との差
に基づいてスプレー流量を:iJ節して主蒸気温度を制
御し、前記ガスタービンの排ガスの温度と流量の微分値
を制御信号として使用することを特徴とするものである
[Structure of the Invention] (Means for Solving the Problems) The method for starting up and operating a combined cycle plant of the present invention includes a gas turbine, an exhaust heat recovery boiler that recovers thermal energy contained in exhaust gas from the gas turbine, and a gas turbine. ,
In a combined cycle plant consisting of a steam turbine driven by steam generated in the exhaust heat recovery boiler, and a generator driven by the gas turbine and the steam turbine, the superheater of the exhaust heat recovery boiler is divided into two parts. A desuperheater is installed between the two, and when the plant starts up, the main steam temperature is measured, and when it reaches the set value, the desuperheater starts spraying, and the time and temperature from the point of spray start are measured. The main steam temperature set value is determined from the rise rate, and the spray flow rate is controlled by iJ based on the difference between the main steam temperature set value and the main steam measured temperature, and the main steam temperature is controlled by This method is characterized by using differential values of temperature and flow rate as control signals.

(作用) 上述のよろに構成し本発明のコンバインドサイクルプラ
ントの起動運転方法によれば、蒸気タービン入口の蒸気
温度がスプレーによって制御され、高圧ロータの熱応力
による寿命短縮が低減される。
(Function) According to the start-up operation method of a combined cycle plant of the present invention configured as described above, the steam temperature at the steam turbine inlet is controlled by spraying, and shortening of the life of the high-pressure rotor due to thermal stress is reduced.

(実施1!p11 ’) 次に、図面を参照しながら本発明の詳細な説明する。な
お、第1図において、第4図におけると同一部分には同
一符号を付し、同一部分の説明は、必要ある場合を除き
、省略する。
(Execution 1! p11') Next, the present invention will be explained in detail with reference to the drawings. In FIG. 1, the same parts as in FIG. 4 are given the same reference numerals, and the description of the same parts will be omitted unless necessary.

第1図は本発明が適用されるコンバインドサイクルプラ
ントの系統構成の一例を示すもので、過熱器は第一過熱
器9aと第二過熱器9bとの2つに分割されており、そ
れらの接続点にはスプレー機構(図示せず)を備えた減
温器20が介t1Fされている。この減温器と給水配管
14との間はスプレー配管21で連結されており、この
スプレー配管の途中にはスプレー調節弁22が介挿され
ている。
FIG. 1 shows an example of the system configuration of a combined cycle plant to which the present invention is applied, in which the superheater is divided into two, a first superheater 9a and a second superheater 9b, and their connections. A desuperheater 20 equipped with a spray mechanism (not shown) is installed at the point t1F. The attemperator and the water supply pipe 14 are connected by a spray pipe 21, and a spray regulating valve 22 is inserted in the middle of the spray pipe.

ガスタービン1のυFガス配管23にはガスタービン排
ガス温度計24と排ガス流量計25が介挿されており、
また排熱回収ボイラ6と蒸気タービン11とを連結する
主蒸気管26には主蒸気温度計27が接続されている。
A gas turbine exhaust gas thermometer 24 and an exhaust gas flow meter 25 are inserted into the υF gas pipe 23 of the gas turbine 1.
Further, a main steam temperature gauge 27 is connected to a main steam pipe 26 that connects the exhaust heat recovery boiler 6 and the steam turbine 11.

これらのガスタービン排ガス温度計24、排ガス流量計
25および主蒸気温度計27の出力は主蒸気温度制御装
置28に入力され、またこの主蒸気温度制御装置からは
スプレー調節弁22に向けてスプレー流量制御信号が出
力される。
The outputs of the gas turbine exhaust gas thermometer 24, exhaust gas flow meter 25, and main steam thermometer 27 are input to the main steam temperature control device 28, and from this main steam temperature control device the spray flow rate is directed to the spray control valve 22. A control signal is output.

第2図は主蒸気温度温度制御装置28の具体的構成例を
示すもので、演算器30には、温度設定器27からの信
号が直接人力されるとともに、ガスタービン排ガス温度
計24の出力が排ガス温度微分器31を介して人力され
、また排ガス流量計25の出力が排ガス流量微分器32
を介して入力される。
FIG. 2 shows a specific example of the configuration of the main steam temperature control device 28, in which the signal from the temperature setting device 27 is directly input to the computing unit 30, and the output of the gas turbine exhaust gas thermometer 24 is input directly to the computing unit 30. The output of the exhaust gas flow meter 25 is input manually through the exhaust gas temperature differentiator 31, and the output of the exhaust gas flow meter 25 is input to the exhaust gas flow differentiator 32.
Input via .

温度設定器27からの信号は、スプレーを開始してから
の時間を求めるタイマー33を介して、温度変化率設定
器34からの信号とともに乗算器35に入力され、その
結果は主蒸気温度温度設定値として加算器36に入力さ
れる。
The signal from the temperature setting device 27 is inputted to the multiplier 35 along with the signal from the temperature change rate setting device 34 via a timer 33 that determines the time since spraying starts, and the result is used as the main steam temperature setting. It is input to the adder 36 as a value.

主蒸気温度計27によって検出されたスプレー開始時の
主蒸気温度信号37は前記タイマー33および加算器3
6に入力される。
The main steam temperature signal 37 at the start of spraying detected by the main steam thermometer 27 is transmitted to the timer 33 and the adder 3.
6 is input.

主蒸気温度上限値設定?538からの上限値設定信号と
加算器36の出力信号は低値優先回路39に入力され、
この低値優先回路によって選択された信号は、演算器3
0からの信号とともに差分器40に入力される。この差
分器の出力はスプレー調節弁側gII器41を介してス
プレー調節弁22に人力され、その開度を調節する。
Main steam temperature upper limit setting? The upper limit setting signal from 538 and the output signal of adder 36 are input to low value priority circuit 39,
The signal selected by this low value priority circuit is
The signal is input to the subtractor 40 together with the signal from 0. The output of this differentiator is manually applied to the spray control valve 22 via the spray control valve side gII device 41 to adjust its opening degree.

ところで、第1図に示すコンバインドサイクルプラント
においては、減温器20と、制御対象の主蒸気温度計2
7との間には、第二過熱器9bが設置されているので、
減温器20でスプレー水の流量を変化させても、主蒸気
温度の変化として検知できるのは数秒後である。そこで
、本発明においては、ガスタービン1の排ガス、即ち排
熱回収ボイラ6の入口ガスの変化特性(温度と流量)を
検知すると、それらの微分値をそれぞれ排ガス温度微分
器31および排ガス流量微分器32によって求め、それ
らの値を演算器30に入力することによって制御信号を
先行的に補正するようにしている。
By the way, in the combined cycle plant shown in FIG.
Since the second superheater 9b is installed between the
Even if the flow rate of spray water is changed in the attemperator 20, the change in main steam temperature can only be detected after several seconds. Therefore, in the present invention, when the change characteristics (temperature and flow rate) of the exhaust gas of the gas turbine 1, that is, the inlet gas of the exhaust heat recovery boiler 6, are detected, the differential values thereof are transferred to the exhaust gas temperature differentiator 31 and the exhaust gas flow rate differentiator, respectively. 32 and input these values to the arithmetic unit 30 to correct the control signal in advance.

次に、本発明方法の作用を説明する。Next, the operation of the method of the present invention will be explained.

低NOx燃焼器を採用したコンバインドサイクルプラン
トにおいて、プラント起動時のガスタービンの排ガス温
度と流量の関係は第3図(a)に示すようになる。同図
中、曲線51は回転数、52はガスタービン出力であり
、これに蒸気タービン出力を加えたプラント出力は■線
53に示すようになる。また、ガスタービンの圧縮器2
の人口可変静翼5を絞って起動させていくので、ガスタ
ービンの排ガス温度と排ガス流量および主蒸気温度は、
それぞれ第3図(b)中の曲線61.62.63のよう
に変化する。
In a combined cycle plant employing a low NOx combustor, the relationship between the exhaust gas temperature of the gas turbine and the flow rate at the time of plant startup is shown in FIG. 3(a). In the figure, a curve 51 is the rotational speed, 52 is the gas turbine output, and the plant output obtained by adding the steam turbine output to this is shown by the ■ line 53. In addition, the compressor 2 of the gas turbine
Since the variable population stator blades 5 are throttled and started, the exhaust gas temperature, exhaust gas flow rate, and main steam temperature of the gas turbine are as follows.
The curves change as shown by curves 61, 62, and 63 in FIG. 3(b), respectively.

プラント起動時に排ガスが排熱回収ボイラに入ってくる
と、発電機を併入した後、ある出力において主蒸気温度
63が設定値に達するので、その時点A点からスプレー
を開始する。
When exhaust gas enters the exhaust heat recovery boiler at the time of plant startup, the main steam temperature 63 reaches the set value at a certain output after the generator is connected, so spraying is started from point A at that point.

この場合、第二過熱器9bによる時間遅れがあるので、
主蒸気温度63は第3図に示すように少し低下するが、
時間がたてば加算器36の出力信号である主蒸気温度設
定値が高くなるので、主蒸気温度63も次第に高くなる
In this case, there is a time delay due to the second superheater 9b, so
Although the main steam temperature 63 decreases slightly as shown in Figure 3,
As time passes, the main steam temperature setting value, which is the output signal of the adder 36, increases, so the main steam temperature 63 also gradually increases.

出力上昇に応じて、主蒸気流量が増加すると共にスプレ
ー水による温度降下量も増加するので、スプレー流量は
増加してゆく。
As the output increases, the main steam flow rate increases and the amount of temperature drop due to spray water also increases, so the spray flow rate increases.

第3図(b)に示すように排ガス温度がB点に達すると
、入口可変静翼を開き始める。これにより排ガス流量は
増加してゆくので、排ガス温度は同図に示すようにB点
以降、不連続に変化し始める。その結果、スプレー水に
よる主蒸気温度63の降下量が減少するので、これを検
知してスプレー流量の増加割合いを変化させ、その後、
スプレー流量を減少させてゆく。
As shown in FIG. 3(b), when the exhaust gas temperature reaches point B, the inlet variable stator vanes begin to open. As a result, the exhaust gas flow rate increases, and the exhaust gas temperature begins to change discontinuously after point B, as shown in the figure. As a result, the amount of drop in the main steam temperature 63 due to the spray water decreases, so this is detected and the increase rate of the spray flow rate is changed, and then,
Reduce spray flow rate.

上述のコンバインドサイクルプラントの起動運転方法に
おいて、排ガス温度の微分値を使うことにより、その値
がプラスかマイナスに変化するので制御は容易である。
In the method for starting up a combined cycle plant described above, by using the differential value of the exhaust gas temperature, the value changes to either positive or negative, so control is easy.

また、運転中の大気圧力と大気温度によりガスタービン
排ガスの温度と流量の変化特性が異なるので、それらの
微分値を使うことにより、全ての運転条件において、制
御性のよい運転が可能となる。
Furthermore, since the change characteristics of the temperature and flow rate of the gas turbine exhaust gas differ depending on the atmospheric pressure and temperature during operation, by using their differential values, it is possible to operate with good controllability under all operating conditions.

[発明の効果コ 本発明に係るコンバインドサイクルプラントの起動運転
方法によれば、プラント起動時にガスタービンの排ガス
温度が急激に上昇しても排熱回収ボイラの出口蒸気温度
を徐々に上昇させることができ、蒸気タービンの高圧ロ
ータの熱応力による寿命消費を低減させることができる
[Effects of the Invention] According to the combined cycle plant start-up operation method according to the present invention, even if the exhaust gas temperature of the gas turbine suddenly increases at the time of plant start-up, it is possible to gradually increase the outlet steam temperature of the exhaust heat recovery boiler. This makes it possible to reduce the life consumption of the high-pressure rotor of the steam turbine due to thermal stress.

また、出力上昇時の制限であった蒸気タービンロータの
寿命消費がクリティカルな制限とならなくなるので、プ
ラントの出力上昇率を高めることができ、コンバインド
サイクルプラントの起動時間を短縮できるという効果が
ある。
Furthermore, since the life consumption of the steam turbine rotor, which was a limitation when increasing the output, no longer becomes a critical limitation, the rate of increase in the output of the plant can be increased, and the start-up time of the combined cycle plant can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法が適用されるコンバインドサイクル
プラントを例示する構成図、第2図は本発明方法におい
て使用される主蒸気温度制御システムの構成例を示す系
統図、第3図は(a)、(b)は本発明方法の作用を説
明するグラフ、第4図は従来の排熱回収式コンバインド
サイクルブラントを例示する措成図、第5図はガスター
ビンの部分付加時の特性曲線図、第6図は従来の従来の
プラント起動カーブを示すグラフである。 1・・・・・・・・・ガスタービン 2・・・・・・・・・圧縮器 3・・・・・・・・・燃焼器 4・・・・・・・・・ガスタービン本体5・・・・・・
・・・人口可変静翼 6・・・・・・・・・排熱回収ボイラ 7・・・・・・・・・節炭器 8・・・・・・・・・蒸発器 9・・・・・・・・・過熱器 9a・・・・・・第一過熱器 9b・・・・・・第二過熱器 10・・・・・・・・・蒸気ドラム 11・・・・・・・・・蒸気タービン 12・・・・・・・・・発電機 13・・・・・・・・・復水器 14・・・・・・・・・給水配管 15・・・・・・・・・給水ポンプ 20・・・・・・・・・減温器 21・・・・・・・・・スプレー配管 22・・・・・・・・・スプレー調節弁23・・・・・
・・・・排ガス配管 24・・・・・・・・・排ガス温度計 25・・・・・・・・・排ガス流量計 26・・・・・・・・・主蒸気管 27・・・・・・・・・主蒸気温度計 28・・・・・・・・・主蒸気温度制御装置30・・・
・・・・・・演算器 31・・・・・・・・・排ガス温度微分器32・・・・
・・・・・排ガス流量微分器33・・・・・・・・・タ
イマー 34・・・・・・・・・温度変化率設定値35・・・・
・・・・・乗算器 36・・・・・・・・・加算器 37・・・・・・・・・主蒸気温度信号38・・・・・
・・・・主蒸気温度上限値設定器39・・・・・・・・
・低値優先回路 40・・・・・・・・・差分器 41・・・・・・・・・スプレー調節弁制御器51・・
・・・・・・・回転数 52・・・・・・・・・ガスタービン出力53・・・・
・・・・・プラント出力 55.56.61・・・排ガス温度 59.62・・・排ガス流量 57.58.63・・・主蒸気温度
FIG. 1 is a block diagram illustrating a combined cycle plant to which the method of the present invention is applied, FIG. 2 is a system diagram showing a configuration example of a main steam temperature control system used in the method of the present invention, and FIG. ), (b) are graphs explaining the action of the method of the present invention, FIG. 4 is a diagram illustrating a conventional combined cycle blunt with exhaust heat recovery, and FIG. 5 is a characteristic curve diagram when a gas turbine is partially added. , FIG. 6 is a graph showing a conventional conventional plant start-up curve. 1... Gas turbine 2... Compressor 3... Combustor 4... Gas turbine body 5・・・・・・
...Variable population stationary blade 6...Exhaust heat recovery boiler 7...Coal economizer 8...Evaporator 9... ...Superheater 9a...First superheater 9b...Second superheater 10...Steam drum 11... ...Steam turbine 12 ...... Generator 13 ...... Condenser 14 ... Water supply piping 15 ......・Water supply pump 20... Desuperheater 21... Spray piping 22... Spray control valve 23...
...Exhaust gas pipe 24...Exhaust gas thermometer 25...Exhaust gas flow meter 26...Main steam pipe 27... ...Main steam temperature gauge 28...Main steam temperature control device 30...
......Calculator 31...Exhaust gas temperature differentiator 32...
...Exhaust gas flow rate differentiator 33...Timer 34...Temperature change rate set value 35...
...Multiplier 36...Adder 37...Main steam temperature signal 38...
...Main steam temperature upper limit value setting device 39...
・Low value priority circuit 40...Differentiator 41...Spray control valve controller 51...
......Rotation speed 52... Gas turbine output 53...
...Plant output 55.56.61...Exhaust gas temperature 59.62...Exhaust gas flow rate 57.58.63...Main steam temperature

Claims (1)

【特許請求の範囲】[Claims] ガスタービンと、このガスタービンからの排ガスが持っ
ている熱エネルギーを回収する排熱回収ボイラと、この
排熱回収ボイラで発生した蒸気によって駆動される蒸気
タービンと、前記ガスタービンおよび蒸気タービンによ
って駆動される発電機とからなるコンバインドサイクル
プラントにおいて、前記排熱回収ボイラの過熱器を2分
割としてそれらの間に減温器を設置し、プラント起動時
に、主蒸気温度を計測し、それが設定値に達した際、前
記減温器でスプレーを開始し、このスプレー開始時点か
らの時間と温度上昇率から主蒸気温度設定値を求め、こ
の主蒸気温度設定値と前記主蒸気計測温度との差に基づ
いてスプレー流量を調節して主蒸気温度を制御し、前記
ガスタービンの排ガスの温度と流量の微分値を制御信号
として使用することを特徴とするコンバインドサイクル
プラントの起動運転方法。
A gas turbine, an exhaust heat recovery boiler that recovers thermal energy contained in exhaust gas from the gas turbine, a steam turbine driven by the steam generated in the exhaust heat recovery boiler, and a steam turbine driven by the gas turbine and the steam turbine. In a combined cycle plant, the superheater of the waste heat recovery boiler is divided into two parts and a desuperheater is installed between them, and when the plant is started, the main steam temperature is measured and the set value is determined. When the temperature reaches the maximum temperature, the desuperheater starts spraying, calculates the main steam temperature set value from the time and temperature increase rate from the start of spraying, and calculates the difference between this main steam temperature set value and the main steam measured temperature. A method for starting up and operating a combined cycle plant, the method comprising controlling the main steam temperature by adjusting the spray flow rate based on the above, and using a differential value of the temperature and flow rate of the exhaust gas of the gas turbine as a control signal.
JP1224825A 1989-08-31 1989-08-31 Start-up operation method of combined cycle plant Expired - Lifetime JP2692978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224825A JP2692978B2 (en) 1989-08-31 1989-08-31 Start-up operation method of combined cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224825A JP2692978B2 (en) 1989-08-31 1989-08-31 Start-up operation method of combined cycle plant

Publications (2)

Publication Number Publication Date
JPH0388904A true JPH0388904A (en) 1991-04-15
JP2692978B2 JP2692978B2 (en) 1997-12-17

Family

ID=16819787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224825A Expired - Lifetime JP2692978B2 (en) 1989-08-31 1989-08-31 Start-up operation method of combined cycle plant

Country Status (1)

Country Link
JP (1) JP2692978B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543574A (en) * 2010-10-05 2013-12-05 シーメンス アクチエンゲゼルシヤフト Method for adjusting the short-term power increase of a steam turbine
JP2016145652A (en) * 2015-02-06 2016-08-12 株式会社神鋼環境ソリューション Steam temperature control device and steam temperature control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543574A (en) * 2010-10-05 2013-12-05 シーメンス アクチエンゲゼルシヤフト Method for adjusting the short-term power increase of a steam turbine
US9080465B2 (en) 2010-10-05 2015-07-14 Siemens Aktiengesellschaft Method for controlling a short-term increase in power of a steam turbine
JP2016145652A (en) * 2015-02-06 2016-08-12 株式会社神鋼環境ソリューション Steam temperature control device and steam temperature control method

Also Published As

Publication number Publication date
JP2692978B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US6226974B1 (en) Method of operation of industrial gas turbine for optimal performance
JP3222127B2 (en) Uniaxial pressurized fluidized bed combined plant and operation method thereof
JP3062207B2 (en) Integrated boost compressor / gas turbine controller
JPH04159402A (en) Combined cycle generating plant
JP2954754B2 (en) Operation control device for gas turbine system and pressurized fluidized bed boiler power plant
JPH07310505A (en) Staring method and device for uni-axis type combined cycle plant
JP4208397B2 (en) Start-up control device for combined cycle power plant
JPH0388904A (en) Method for starting combined cycle plant
JPH0996227A (en) Pressure controller of gasification plant
JP3491967B2 (en) Gas turbine exhaust gas temperature control device
JP3537835B2 (en) Gas turbine control method
JP2908884B2 (en) Pressurized fluidized bed combined plant and its partial load operation control method and control device
JPH0932508A (en) Combined cycle plant
JP3065773B2 (en) Pressurized fluidized bed boiler combined cycle power plant
JPH09125984A (en) Steam-injected gas turbine and its controlling method
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JPS58124010A (en) Controller for gas turbine
JPH08270407A (en) Control of gas turbine in uniaxial composite plant
JPH10331608A (en) Closed steam cooling gas turbine combined plant
JP2019218867A (en) Combined cycle power generation plant
JPS58107805A (en) Control of turbine for combined cycle power generation
JP2003254011A (en) Operating method for multi-shaft type combined cycle power generating plant
JPS6239657B2 (en)
CN118625643A (en) Control system and method for low-pressure bypass temperature reduction water regulating valve in thermal power plant

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

EXPY Cancellation because of completion of term