JP2872739B2 - Steam turbine start-up method and apparatus - Google Patents

Steam turbine start-up method and apparatus

Info

Publication number
JP2872739B2
JP2872739B2 JP8113890A JP8113890A JP2872739B2 JP 2872739 B2 JP2872739 B2 JP 2872739B2 JP 8113890 A JP8113890 A JP 8113890A JP 8113890 A JP8113890 A JP 8113890A JP 2872739 B2 JP2872739 B2 JP 2872739B2
Authority
JP
Japan
Prior art keywords
valve
steam
main steam
main
steam stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8113890A
Other languages
Japanese (ja)
Other versions
JPH03281904A (en
Inventor
正樹 竹友
功 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8113890A priority Critical patent/JP2872739B2/en
Publication of JPH03281904A publication Critical patent/JPH03281904A/en
Application granted granted Critical
Publication of JP2872739B2 publication Critical patent/JP2872739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主蒸気止め弁バイパス起動を用いるタービン
起動方法に係り、特にプラントの効率低下を抑え主蒸気
止め弁に生じる熱応力の低減に好適な蒸気タービン起動
方法およびその装置に関する。
Description: TECHNICAL FIELD The present invention relates to a turbine starting method using a main steam stop valve bypass start, and is particularly suitable for suppressing thermal stress generated in a main steam stop valve while suppressing a decrease in plant efficiency. The present invention relates to a method and an apparatus for starting a steam turbine.

〔従来の技術〕[Conventional technology]

従来の蒸気タービンプラントの構成系統の一例を第5
図に示す。第5図において、ボイラ1で発生した蒸気は
スーパーヒータ2aで加熱され、主蒸気止め弁3と蒸気加
減弁4を通って高圧タービン5に導かれ、この高圧ター
ビン5で熱エネルギーを回転エネルギーに変換される。
高圧タービン5を出た蒸気は逆止弁12を通って再熱器2b
で再熱され、再熱蒸気止め弁10とインタセプト弁11を通
って中圧タービン6と低圧タービン7に導かれ、この中
圧タービン6と低圧タービン7でそれぞれ熱エネルギー
を回転エネルギーに変換される。低圧タービンからの排
気は復水器8で復水されたのち、給水ポンプ9でボイラ
1に戻される。
An example of a conventional steam turbine plant is shown in FIG.
Shown in the figure. In FIG. 5, the steam generated in the boiler 1 is heated by a super heater 2a and guided to a high-pressure turbine 5 through a main steam stop valve 3 and a steam control valve 4, and the high-pressure turbine 5 converts heat energy into rotational energy. Is converted.
The steam exiting the high-pressure turbine 5 passes through the check valve 12 and reheats 2b
Through the reheat steam stop valve 10 and the intercept valve 11 to the intermediate-pressure turbine 6 and the low-pressure turbine 7, and the intermediate-pressure turbine 6 and the low-pressure turbine 7 convert heat energy into rotational energy, respectively. . The exhaust gas from the low-pressure turbine is condensed by a condenser 8 and then returned to the boiler 1 by a water supply pump 9.

これらの蒸気タービンの起動方法は次の2つに大別さ
れる。その1つはタービン起動と昇速から低負荷帯まで
は蒸気加減弁4を全開して主蒸気止め弁3内に設けたバ
イパス弁で制御し、ある負荷帯で主蒸気止め弁(MSV)
バイパス弁から蒸気加減弁4の制御に移す主蒸気止め弁
バイパス起動方式であり、他の1つはタービン起動当初
から主蒸気止め弁(MSV)3を全開して蒸気加減弁4で
制御する起動方式である。さらに後者の蒸気加減4によ
る起動方式には、全周噴射起動と順次開起動の2方式
と、その両者の長所をいかしたコンバインド起動方式と
がある。その全周噴射起動方式はタービン起動時にター
ビン全周から蒸気が流入するため熱応力が小さいという
長所と、定格負荷運転時に絞りによる効率の低下という
短所を有しており、その順次開起動方式の長所と短所は
上記全周噴射起動の逆となる。そこでコンバインド起動
方式が生れる以前には、タービン起動時には全周噴射で
中間負荷帯から定格負荷運転時には順次開となるような
主蒸気止め弁バイパス弁起動方式が採用されてきた。
The starting methods of these steam turbines are roughly classified into the following two. One of them is to fully open the steam control valve 4 from the start-up and acceleration of the turbine to the low load zone and control the steam control valve 4 by a bypass valve provided in the main steam stop valve 3, and to control the main steam stop valve (MSV) in a certain load zone.
The main steam stop valve is a bypass start-up system in which the control is shifted from the bypass valve to the control of the steam control valve 4. It is a method. Further, the latter two types of starting methods by steam control 4 include a full-circulation injection starting method and a sequential opening starting method, and a combined starting method utilizing the advantages of both. The full-circle injection startup method has the advantage of low thermal stress due to steam flowing from the entire circumference of the turbine when the turbine is started, and the disadvantage of reduced efficiency due to throttling during rated load operation. The advantages and disadvantages are opposite to the above-described full-circle injection activation. Therefore, before the combined start-up system was born, a main steam stop valve bypass valve start-up system was adopted in which the turbine was started up and the whole load was sequentially opened from the intermediate load zone to the rated load operation during the rated load operation.

ここで従来の主蒸気止め弁バイパス弁起動方式に使用
されてきた主蒸気止め3と蒸気加減弁4は第6図および
第7図に示すように複数系列の主蒸気止め弁3a,3bに対
し、1チェストに複数個の弁を有する蒸気加減弁4から
構成されている。また主蒸気止め弁3aには主弁13aの内
部にバイパス弁15が設けられているのに対して、主蒸気
止め弁3bにはバイパス弁がなく主弁13bのみである。さ
らに主蒸気止め弁3a,3bではタービン起動時に冷機状態
の主蒸気止め弁3a,3bと蒸気加減弁4により蒸気がドレ
ン化するので、これらのドレンを排出するためのドレン
弁18a,18b,19a,19bがそれぞれ主蒸気止め弁上部室16a,1
6bと下部室17a,17bに設けられている。
Here, the main steam stop 3 and the steam control valve 4 which have been used in the conventional main steam stop valve bypass valve activation system are different from the main steam stop valves 3a and 3b of a plurality of systems as shown in FIGS. 6 and 7. And a steam control valve 4 having a plurality of valves in one chest. The main steam stop valve 3a is provided with a bypass valve 15 inside the main valve 13a, whereas the main steam stop valve 3b has no bypass valve and has only the main valve 13b. Furthermore, in the main steam stop valves 3a and 3b, when the turbine is started, the steam is drained by the main steam stop valves 3a and 3b and the steam control valve 4 in a cold state. Therefore, drain valves 18a, 18b and 19a for discharging these drains are provided. , 19b are the main steam stop valve upper chambers 16a, 1 respectively.
6b and the lower chambers 17a, 17b.

つぎにタービン起動から昇速および負荷上昇の過程に
おける主蒸気止め弁3a,3bと蒸気加減弁4の動作を第8
図により説明する。まずタービン起動から昇速と切換負
荷までは蒸気加減弁4は全開であって、主蒸気止め弁バ
イパス弁15が微開して蒸気流量を制御する。ついで切換
負荷帯で主蒸気止め弁3aの前後の差圧が約15%程度にな
るように蒸気加減弁4を絞り込み、その後に主蒸気止め
弁3aを全開して蒸気加減弁4によりタービンの負荷を制
御する。一方の主蒸気止め弁3a,3bのドレン弁18a,18b,1
9a,19bは初負荷併入から切換点直後の間のタイミングで
両弁全閉操作している(タイミング,〜′,
′)。
Next, the operation of the main steam stop valves 3a, 3b and the steam control valve 4 in the process of increasing the speed and increasing the load from the start of the turbine is described in the eighth.
This will be described with reference to the drawings. First, the steam control valve 4 is fully opened from the start of the turbine to the speed increase and the switching load, and the main steam stop valve bypass valve 15 is slightly opened to control the steam flow. Next, in the switching load zone, the steam control valve 4 is narrowed down so that the differential pressure before and after the main steam stop valve 3a is about 15%, and then the main steam stop valve 3a is fully opened and the load of the turbine is controlled by the steam control valve 4. Control. Drain valves 18a, 18b, 1 of one main steam stop valve 3a, 3b
In 9a and 19b, both valves are fully closed at the timing immediately after the initial load is added and immediately after the switching point (timing, ~ ',
').

なおこの種の装置として関連するものには、例えば特
公昭58−33363号および実開昭57−3805号公報が挙げら
れる。
Related devices of this type include, for example, JP-B-58-33363 and JP-A-57-3805.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術はプラント効率を考慮して主蒸気止め弁
3a,3bのドレン弁19a,19bより流出する蒸気を早期に止め
るように負荷併入または弁切換前にドレン弁19a,19bを
全閉した場合に、バイパス弁15を有する主蒸気止め弁3a
の下部室17aはバイパス弁15から蒸気が蒸気加減弁4へ
の蒸気流により暖機される。ところがバイパス弁のない
主蒸気止め弁3bの下部室17bはドレン弁19bの全閉により
蒸気流れが止まるため温度が降下し、これによりバイパ
ス弁15のない主蒸気止め弁3bの上部室16bと下部室17bの
間の温度差が増大する。この状態で弁切換時にバイパス
弁のない主蒸気止め弁3bの主弁13bを開くと、これに伴
い上部室16bから下部室17bに高温蒸気が流入し、下部室
17bは急激に温度が変化して熱応力が発生する。
The above prior art uses a main steam stop valve in consideration of plant efficiency.
The main steam stop valve 3a having the bypass valve 15 when the drain valves 19a, 19b are fully closed before load-in or load switching so as to stop steam flowing out from the drain valves 19a, 19b of the 3a, 3b at an early stage.
The lower chamber 17a is warmed up by the steam flowing from the bypass valve 15 to the steam control valve 4. However, the temperature of the lower chamber 17b of the main steam stop valve 3b without the bypass valve is lowered due to the stoppage of the steam flow due to the full closure of the drain valve 19b. The temperature difference between the chambers 17b increases. In this state, when the main valve 13b of the main steam stop valve 3b without a bypass valve is opened at the time of valve switching, high-temperature steam flows from the upper chamber 16b into the lower chamber 17b, and the lower chamber
In 17b, the temperature changes rapidly and thermal stress is generated.

この現象は、近年の火力プラントでは一般に毎日また
は毎週に起動停止運転が行なわれており、これらの起動
回数の増加とあいまって第9図に示すようにバイパス弁
のない主蒸気止め弁3bのケーシングのコーナ部などにク
ラック22を発生させ、これが進展すると最悪の事態とし
て蒸気洩れし破損にいたる。一方で弁切換後に主蒸気止
め弁3a,3bのドレン弁19a,19bを閉じる場合には、切換前
までの負荷(通常に約15%負荷)帯でタービンによって
回転エネルギーに変換されずにドレンとして排出される
不要の蒸気が増加するためプラント効率が低下する。こ
のようにタービン起動時にバイパス弁のない主蒸気止め
弁に発生する熱応力およびプラント効率の低下の点につ
いて配慮がされておらず、蒸気弁の寿命消費およびプラ
ント効率の低下などの問題があった。
This phenomenon is caused by the fact that in recent thermal power plants, start-stop operations are generally performed daily or weekly, and together with the increase in the number of starts, the casing of the main steam stop valve 3b without a bypass valve as shown in FIG. Cracks 22 are generated in the corners and the like, and if this progresses, the worst case is steam leakage and damage. On the other hand, when the drain valves 19a, 19b of the main steam stop valves 3a, 3b are closed after the valve is switched, the turbine is not converted into rotational energy by the turbine in a load (normally about 15% load) band before the switching, and is used as drain. The efficiency of the plant decreases due to an increase in unnecessary steam discharged. As described above, no consideration was given to the thermal stress generated in the main steam stop valve without the bypass valve at the time of starting the turbine and the reduction in plant efficiency, and there were problems such as the life consumption of the steam valve and the reduction in plant efficiency. .

本発明の目的はタービン起動時のプラント効率の低下
を最小限に抑えつつ、蒸気弁の寿命消費を低減可能とす
る蒸気タービン起動方法およびその装置を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a steam turbine starting method and a steam turbine starting method capable of reducing the life consumption of a steam valve while minimizing a decrease in plant efficiency at the time of starting the turbine.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明による蒸気タービ
ン起動方法およびその装置は、バイパス弁を有する主蒸
気止め弁の下部室ドレン弁をバイパス制御運転中でほぼ
負荷併入時に閉じ、バイパス弁のない主蒸気止め弁の下
部室ドレン弁を蒸気加減弁制御運転への切換点後また規
定負荷以上または上部室と下部室の規定温度差以内の状
態で閉じるようにしたものである。
In order to achieve the above object, the steam turbine starting method and apparatus according to the present invention closes the lower chamber drain valve of the main steam stop valve having the bypass valve almost at the time of load consolidation during the bypass control operation, and does not have the bypass valve. The lower chamber drain valve of the main steam stop valve is closed after the switching point to the steam control valve control operation, at a specified load or more, or within a specified temperature difference between the upper chamber and the lower chamber.

またバイパス弁の開閉のタイミングの制御によらず
に、バイパス弁のない主蒸気止め弁の下部室ドレン弁の
閉状態においても該下部室に蒸気の流れが生じるように
するために、バイパス弁を有する主蒸気止め弁の下部室
とバイパス弁のない主蒸気止め弁の下部室を連通する流
路を設けるようにしたものである。
In addition, regardless of the control of the opening / closing timing of the bypass valve, the bypass valve is provided so that steam flows into the lower chamber even when the lower chamber drain valve of the main steam stop valve without the bypass valve is closed. A flow path communicating the lower chamber of the main steam stop valve with the lower chamber of the main steam stop valve without the bypass valve is provided.

またバイパス弁のない主蒸気止め弁の主弁が開かない
限り下部室ドレン弁が閉じないことを確実にするため
に、バイパス弁のない主蒸気止め弁の主弁の開状態を条
件として下部室ドレン弁を閉じるようにしたものであ
る。
Also, in order to ensure that the lower chamber drain valve does not close unless the main valve of the main steam stop valve without the bypass valve opens, the lower chamber must be opened on condition that the main valve of the main steam stop valve without the bypass valve is open. The drain valve is closed.

〔作 用〕(Operation)

上記の蒸気タービン起動方法におよびその装置は、タ
ービン起動時から昇速して負荷併入時まではバイパス弁
を有する主蒸気止め弁およびバイパス弁のない主蒸気止
め弁の下部室ドレン弁を全開しておき、負荷併入後の早
期にバイパス弁を有する主蒸気止め弁の下部室ドレン弁
を閉じるが、このさいバイパス弁のない主蒸気止め弁の
下部室ドレン弁を全開にしておくことにより、上記バイ
パス弁からの蒸気を蒸気加減弁を通しドレン弁から流し
てバイパス弁のない主蒸気止め弁の下部室を暖機してお
き、ついで負荷上昇してバイパス弁制御から蒸気加減弁
制御にタービン制御が切換えられて主蒸気止め弁の主弁
が全開するが、この切換点の後にドレン弁を閉じること
により下部室が十分に暖機されているため、同ケーシン
グ部に生じる熱応力が小さくてタービン起動に伴う繰返
し熱応力による寿命消費を低減できる。またはバイパス
弁のない主蒸気止め弁の上部室と下部室の内壁メタル温
度を検出し、その温度差がケーシングにクラックを生じ
ないような規定温度差以内でドレン弁を閉じて、規定温
度差以上でドレン弁を開くことにより、同様に熱応力に
よる寿命消費をなくしてプラント効率の低下を最小限と
することができる。
In the above steam turbine starting method and its apparatus, the lower chamber drain valve of the main steam stop valve having the bypass valve and the main steam stop valve without the bypass valve is fully opened from the start of the turbine to the time when the speed is increased and the load is added. In advance, the lower chamber drain valve of the main steam stop valve having the bypass valve is closed at an early stage after the loading of the load, but the lower chamber drain valve of the main steam stop valve without the bypass valve is fully opened. Then, the steam from the bypass valve flows through the steam control valve through the drain valve to warm up the lower chamber of the main steam stop valve without the bypass valve, and then the load is increased to shift from bypass valve control to steam control valve control. The turbine control is switched, and the main valve of the main steam stop valve is fully opened.However, since the lower chamber is sufficiently warmed up by closing the drain valve after this switching point, the thermal stress generated in the casing part Small can be reduced lifetime consumption due to repeated thermal stress caused by the turbine starting. Alternatively, detect the metal temperature of the inner wall of the upper and lower chambers of the main steam stop valve without a bypass valve, close the drain valve within the specified temperature difference that does not cause cracks in the casing, and exceed the specified temperature difference. By opening the drain valve at the same time, it is also possible to eliminate the life consumption due to thermal stress and minimize the decrease in plant efficiency.

またドレン弁の開閉タイミングによらずに、バイパス
弁を有する主蒸気止め弁とバイパス弁のない主蒸気止め
弁の下部室を連通することにより、常に両弁の下部室に
蒸気を流して上部室と下部室の温度差を小さくして断応
力の発生を抑制できるので、プラント効率の低減なしに
蒸気弁ケーシングの寿命消費を低減できる。
Also, regardless of the opening / closing timing of the drain valve, the lower chamber of the main steam stop valve having the bypass valve and the lower chamber of the main steam stop valve without the bypass valve are communicated, so that the steam always flows to the lower chambers of both valves and the upper chamber The occurrence of shear stress can be suppressed by reducing the temperature difference between the lower chamber and the lower chamber, so that the life consumption of the steam valve casing can be reduced without reducing the plant efficiency.

またバイパス弁のない主蒸気止め弁の主弁の開状態を
検出して、この条件で下部室ドレン弁を閉じることによ
り、主弁動作不良等の発生時のドレン弁の誤閉を防止し
て、より確実に熱応力による寿命消費をなくすることが
できる。
Also, by detecting the open state of the main valve of the main steam stop valve without a bypass valve and closing the lower chamber drain valve under this condition, it is possible to prevent erroneous closing of the drain valve at the time of occurrence of main valve malfunction etc. Thus, the life consumption due to thermal stress can be more reliably eliminated.

〔実施例〕〔Example〕

以下に本発明の実施例を第1図から第4図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS.

第1図は本発明による蒸気タービン起動方法およびそ
の装置の一実施例を示す特性図である。第1図におい
て、上記第5図に示す蒸気タービンプラントの構成系統
ならびに第6図および第7図に示した主蒸気止め弁およ
び蒸気加減弁の系統に本発明の蒸気タービン起動方法を
適用した実施例の特性を示す。
FIG. 1 is a characteristic diagram showing one embodiment of a steam turbine starting method and an apparatus therefor according to the present invention. In FIG. 1, an embodiment in which the steam turbine starting method of the present invention is applied to the configuration system of the steam turbine plant shown in FIG. 5 and the system of the main steam stop valve and the steam control valve shown in FIG. 6 and FIG. The characteristics of the example are shown.

第1図のタービン起動から昇速および負荷併入時まで
はバイパス弁15を有する主蒸気止め弁3aおよびバイパス
弁のない主蒸気止め弁3bの下部室17a,17bのドレン弁19
a,19bを全開しておき、負荷併入後に早期にバイパス弁1
5を有する主蒸気止め弁3aの下部室17aのドレン弁19aを
閉じる(タイミング)。このさいバイパス弁のない主
蒸気止め弁3bの下部室17bのドレン弁19bは全開してお
き、これによりバイパス弁15を有する主蒸気止め弁3aの
バイパス弁15からの蒸気が下部室17aより蒸気加減弁4
を通り、バイパス弁のない主蒸気止め弁3bの下部室17b
に流入させてドレン弁19bから流出させ、この蒸気でバ
イパス弁のない主蒸気止め弁3bの下部室17を暖機してお
く。
From the start of the turbine in FIG. 1 to the time of acceleration and load addition, the drain valves 19 of the lower chambers 17a and 17b of the main steam stop valve 3a having the bypass valve 15 and the main steam stop valve 3b having no bypass valve are provided.
a, 19b fully open and bypass valve 1
The drain valve 19a of the lower chamber 17a of the main steam stop valve 3a having 5 is closed (timing). In this case, the drain valve 19b of the lower chamber 17b of the main steam stop valve 3b without the bypass valve is fully opened, so that the steam from the bypass valve 15 of the main steam stop valve 3a having the bypass valve 15 is steamed from the lower chamber 17a. Control valve 4
And the lower chamber 17b of the main steam stop valve 3b without a bypass valve
And flows out from the drain valve 19b, and the lower chamber 17 of the main steam stop valve 3b without the bypass valve is warmed up by the steam.

ついで負荷上昇して主蒸気止め弁3aのバイパス弁15の
制御から蒸気加減弁4の制御にタービン制御が切換ら
れ、バイパス弁のない主蒸気止め弁3bの主弁13bが全開
する。このときバイパス弁のない主蒸気止め弁3bの弁棒
14bの開動作または主蒸気止め弁3bの前後の差圧または
負荷を検出し、切換点での各規定値と比較して切換後で
あることを判定することにより、バイパス弁のない主蒸
気止め弁3bのドレン弁19bを閉じる(タイミング)。
Then, the load is increased, the turbine control is switched from the control of the bypass valve 15 of the main steam stop valve 3a to the control of the steam control valve 4, and the main valve 13b of the main steam stop valve 3b without the bypass valve is fully opened. At this time, the valve stem of the main steam stop valve 3b without a bypass valve
The opening operation of 14b or the differential pressure or load before and after the main steam stop valve 3b is detected and compared with each specified value at the switching point to judge that the switching has been performed, so that the main steam stop without the bypass valve is performed. The drain valve 19b of the valve 3b is closed (timing).

このようにしてバイパス弁のない主蒸気止め弁3bの下
部室17bが十分に暖機されているため、同ケーシング部
に生じる熱応力が小さいから第9図に示すようなクラッ
ク22の発生もなくなり、タービン起動に伴う繰返し熱応
力による寿命消費を低減できる。
Since the lower chamber 17b of the main steam stop valve 3b without the bypass valve is sufficiently warmed in this way, the thermal stress generated in the casing is small, so that the crack 22 as shown in FIG. 9 does not occur. In addition, the life consumption due to the repeated thermal stress accompanying the start of the turbine can be reduced.

第2図は本発明による蒸気タービン起動装置の一実施
例を示す主蒸気止め弁および蒸気加減弁の系統図であ
る。第2図において、第6図に示したものと同様の系統
のバイパス弁のない主蒸気止め弁3bの上部室16bと下部
室17bの内壁メタル温度を本発明により設けた温度検出
器24,25がそれぞれ検出し、温度検出器24,25の温度差を
下部室17bのケーシングにクラックなどを発生させない
ような規定温度差と温度比較器26で比較して、測定温度
が規定温度以内ではドレン弁19bをドレン弁駆動装置27
で閉じるが、測定温度が規定温度差以上ではドレン弁19
bを同装置27が開くようにする。これにより主蒸気止め
弁3bなどの熱応力による寿命消費を低減させ、またプラ
ント効率の低下を最小限に抑えることができる。
FIG. 2 is a system diagram of a main steam stop valve and a steam control valve showing an embodiment of the steam turbine starting device according to the present invention. In FIG. 2, the temperature detectors 24, 25 provided by the present invention measure the inner wall metal temperatures of the upper chamber 16b and the lower chamber 17b of the main steam stop valve 3b without a bypass valve having the same system as that shown in FIG. The temperature difference between the temperature detectors 24 and 25 is compared with a specified temperature difference that does not cause cracks or the like in the casing of the lower chamber 17b by the temperature comparator 26. 19b to drain valve drive 27
Closes with the drain valve 19
b is opened by the device 27. As a result, life consumption due to thermal stress of the main steam stop valve 3b and the like can be reduced, and a decrease in plant efficiency can be minimized.

第3図は本発明による蒸気タービン起動装置の他の実
施例を示す主蒸気止め弁および蒸気加減弁の系統図であ
る。第3図において、第6図に示したものと同様の系統
のバイパス弁15を有する主蒸気止め弁3aとバイパス弁の
ない主蒸気止め弁3bの各下部室17a,17bの間に本発明に
より両下部室17a,17bを連通する流路をなす連絡管23を
設ける。これにより両主蒸気止め弁3a,3bの下部室17a,1
7bに常に同時に蒸気を流し、バイパス弁のない主蒸気止
め弁3bの上部室16bと下部室17bの温度差を小さくして、
第1図に示したドレン弁19a,19bの開閉のタイミング制
御によらず上記下部室17bの熱応力の発生を抑制できる
ため、同様にプラント効率の低下なしに蒸気弁ケーシン
グの寿命消費を低減できる。
FIG. 3 is a system diagram of a main steam stop valve and a steam control valve showing another embodiment of the steam turbine starting device according to the present invention. In FIG. 3, according to the present invention, between the lower chambers 17a and 17b of the main steam stop valve 3a having the bypass valve 15 having the same system as that shown in FIG. 6 and the main steam stop valve 3b having no bypass valve. A communication pipe 23 is provided as a flow path communicating the lower chambers 17a and 17b. As a result, the lower chambers 17a, 1 of the two main steam stop valves 3a, 3b are
Steam is always flowed simultaneously to 7b to reduce the temperature difference between the upper chamber 16b and the lower chamber 17b of the main steam stop valve 3b without a bypass valve,
Since the generation of thermal stress in the lower chamber 17b can be suppressed regardless of the opening / closing timing control of the drain valves 19a and 19b shown in FIG. 1, similarly, the life consumption of the steam valve casing can be reduced without lowering the plant efficiency. .

第4図は本発明による蒸気タービン起動装置のさらに
他の実施例を示す主蒸気止め弁および蒸気加減弁の系統
図である。第4図において、第6図に示したものと同様
の系統のバイパス弁のない主蒸気止め弁3bの弁棒14bま
たはその駆動系統に本発明により主弁13bの開度を検出
する弁開度検出器28を設け、同検出器28の出力により主
弁13bが全閉でないことを制御装置29で検知してドレン
弁19bを閉じることにより、主弁13bが開かない限りドレ
ン弁19bを閉じないことを確実にするので、主弁13bの動
作不良等の発生時等のドレン弁19bの誤閉を防止可能に
して、より確実に熱応力による寿命消費をなくすことが
できる。
FIG. 4 is a system diagram of a main steam stop valve and a steam control valve showing still another embodiment of the steam turbine starting device according to the present invention. In FIG. 4, a valve opening for detecting the opening of the main valve 13b according to the present invention is provided to the valve rod 14b of the main steam stop valve 3b or the drive system thereof without the bypass valve having the same system as that shown in FIG. A detector 28 is provided, and the controller 29 detects that the main valve 13b is not fully closed by the output of the detector 28 and closes the drain valve 19b, so that the drain valve 19b is not closed unless the main valve 13b is opened. As a result, it is possible to prevent the drain valve 19b from being erroneously closed when the main valve 13b malfunctions or the like, and it is possible to more reliably eliminate the life consumption due to the thermal stress.

〔発明の効果〕〔The invention's effect〕

本発明によれば、タービン起動時の主蒸気止め弁の上
部室と下部室の温度差を小さくするとともに、主弁開時
の急激な温度変化を防止できるので、そのケーシングに
生じる熱応力の低減および寿命消費の抑制の可能な効果
がある。またタービン起動時の主蒸気止め弁のドレン弁
より流出する蒸気を少なくできるので、プラント効率の
低下を抑制できる効果がある。
According to the present invention, the temperature difference between the upper chamber and the lower chamber of the main steam stop valve at the time of starting the turbine can be reduced, and a rapid temperature change at the time of opening the main valve can be prevented. In addition, there is an effect capable of suppressing life consumption. In addition, since the amount of steam flowing out of the drain valve of the main steam stop valve at the time of starting the turbine can be reduced, a reduction in plant efficiency can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の特性図、第2図は本発明の
一実施例の系統図、第3図は本発明の他の実施例の系統
図、第4図は本発明のさらに他の実施例の系統図、第5
図は従来例の蒸気タービンプラントの系統図、第6図は
従来例の系統図、第7図は従来例の主蒸気止め弁および
蒸気加減弁の外観図、第8図は従来例の特性図、第9図
は従来例の主蒸気止め弁の断面図である。 1……ボイラ、2a……スーパーヒータ、2b……再熱器、
3,3a,3b……主蒸気止め弁、4……蒸気加減弁、5,6,7…
…蒸気タービン、8……復水器、9……給水ポンプ、10
……再熱蒸気止め弁、11……インタセプト弁、12……逆
止弁、13a,13b……主弁、14a,14b……弁棒、15……バイ
パス弁、16a,16b……主蒸気止め弁上部室、17a,17b……
主蒸気止め弁下部室、18a,18b……主蒸気止め弁上部室
ドレン弁、19a,19b……主蒸気止め弁下部室ドレン弁、2
0……弁座、21……保温部、22……クラック、23……連
絡管、24,25……温度検出器、26……温度比較器、27…
…ドレン弁駆動装置、28……弁開度検出器、29……制御
装置。
FIG. 1 is a characteristic diagram of one embodiment of the present invention, FIG. 2 is a system diagram of one embodiment of the present invention, FIG. 3 is a system diagram of another embodiment of the present invention, and FIG. System diagram of still another embodiment, FIG.
The figure is a system diagram of a conventional steam turbine plant, FIG. 6 is a system diagram of a conventional example, FIG. 7 is an external view of a main steam stop valve and a steam control valve of a conventional example, and FIG. 8 is a characteristic diagram of the conventional example. FIG. 9 is a sectional view of a conventional main steam stop valve. 1 ... boiler, 2a ... super heater, 2b ... reheater,
3,3a, 3b …… Main steam stop valve, 4 …… Steam control valve, 5,6,7…
... Steam turbine, 8 ... Condenser, 9 ... Feed pump, 10
... Reheat steam stop valve, 11 ... Intercept valve, 12 ... Check valve, 13a, 13b ... Main valve, 14a, 14b ... Valve stem, 15 ... Bypass valve, 16a, 16b ... Main steam Stop valve upper chamber, 17a, 17b ……
Main steam stop valve lower chamber, 18a, 18b …… Main steam stop valve upper chamber drain valve, 19a, 19b …… Main steam stop valve lower chamber drain valve, 2
0… Valve seat, 21… Insulation section, 22… Crack, 23… Connecting pipe, 24,25… Temperature detector, 26 …… Temperature comparator, 27…
... Drain valve drive, 28 ... Valve opening detector, 29 ... Control device.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F01D 19/00 F01D 25/10 F01D 17/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F01D 19/00 F01D 25/10 F01D 17/10

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数個の主蒸気止め弁のうちの蒸気流量を
制御するバイパス弁を有する主蒸気止め弁と蒸気流量を
制御するバイパス弁のない主蒸気止め弁と、上記複数個
の主蒸気止め弁の下流に設けられた蒸気流量を加減する
蒸気加減弁と、上記複数個の主蒸気止め弁のケーシング
の弁体と弁座で仕切られた下流側に設けられたドレン弁
とを有し、蒸気タービン起動時に先ずバイパス弁を有す
る主蒸気止め弁のバイパス弁により蒸気流量を制御し、
その後に蒸気加減弁により蒸気流量を制御する主蒸気止
め弁バイパス弁起動方式の蒸気タービン起動方法におい
て、蒸気タービン起動時にバイパス弁を有する主蒸気止
め弁のドレン弁を主蒸気止め弁バイパス弁制御運転中の
ほぼ負荷併入時に閉じ、その後にバイパス弁のない主蒸
気止め弁のドレン弁を蒸気加減弁制御運転中のほぼ切換
点後に閉じる状態にすることを特徴とする蒸気タービン
起動方法。
A main steam stop valve having a bypass valve for controlling a steam flow among a plurality of main steam stop valves; a main steam stop valve having no bypass valve for controlling a steam flow; A steam control valve for controlling the steam flow rate provided downstream of the stop valve, and a drain valve provided on the downstream side separated by a valve body and a valve seat of a casing of the plurality of main steam stop valves. When starting the steam turbine, first control the steam flow rate by the bypass valve of the main steam stop valve having the bypass valve,
After that, in the steam turbine starting method of the main steam stop valve bypass valve starting method in which the steam flow is controlled by the steam control valve, the main steam stop valve having the bypass valve is operated by the main steam stop valve bypass valve control operation when the steam turbine is started. A method for starting a steam turbine, comprising closing the drain valve of a main steam stop valve without a bypass valve substantially after a switching point during the steam control valve control operation.
【請求項2】バイパス弁のない主蒸気止め弁のドレン弁
を該主蒸気止め弁の前後の蒸気圧差が規定差圧以内で閉
じることを特徴とする請求項1記載の蒸気タービン起動
方法。
2. The steam turbine starting method according to claim 1, wherein the drain valve of the main steam stop valve without the bypass valve is closed when a difference in steam pressure before and after the main steam stop valve is within a specified differential pressure.
【請求項3】バイパス弁のない主蒸気止め弁のドレン弁
を規定負荷以上で閉じることを特徴とする請求項1記載
の蒸気タービン起動方法。
3. The steam turbine starting method according to claim 1, wherein the drain valve of the main steam stop valve having no bypass valve is closed at a specified load or more.
【請求項4】複数個主蒸気止め弁のうちの蒸気流量を制
御するバイパス弁を有する主蒸気止め弁と蒸気流量を制
御するバイパス弁のない主蒸気止め弁と、上記複数個の
主蒸気止め弁の下流に設けられた蒸気流量を加減する蒸
気加減弁と、上記複数個の主蒸気止め弁のケーシングの
弁体および弁座で仕切られた下流側に設けられたドレン
弁とを有し、蒸気タービン起動時に先ずバイパス弁を有
する主蒸気止め弁のバイパス弁により蒸気流量を制御
し、その後に蒸気加減弁により蒸気流量を制御する主蒸
気止め弁バイパス弁起動方式の蒸気タービン起動装置に
おいて、蒸気タービン起動時にバイパス弁を有する主蒸
気止め弁のドレン弁を主蒸気止め弁バイパス弁制御運転
中のほぼ負荷併入時に閉じ、その後にバイパス弁のない
主蒸気止め弁のドレン弁を蒸気加減弁制御運転中のほぼ
切換点後に閉じる状態に制御する構成としたことを特徴
とする蒸気タービン起動装置。
4. A main steam stop valve having a bypass valve for controlling a steam flow among a plurality of main steam stop valves, a main steam stop valve having no bypass valve for controlling a steam flow, and the plurality of main steam stops. A steam control valve for controlling the steam flow rate provided downstream of the valve, and a drain valve provided on the downstream side separated by a valve body and a valve seat of a casing of the plurality of main steam stop valves, In a steam turbine starting device of a main steam stop valve start-up type in which a steam flow is controlled by a bypass valve of a main steam stop valve having a bypass valve first and then a steam flow rate is controlled by a steam control valve at the start of the steam turbine, When the turbine is started, the drain valve of the main steam stop valve having the bypass valve is closed almost when the load is applied during the main steam stop valve bypass valve control operation, and then the drain of the main steam stop valve without the bypass valve is operated. Steam turbine starting device being characterized in that the arrangement for controlling the valve substantially switching point after closing state of the steam control valve control during the operation.
【請求項5】バイパス弁のない主蒸気止め弁のドレン弁
を該主蒸気止め弁の上部室と下部室の内壁または外壁メ
タルの温度検出器による測定温度差が規定値以内で閉じ
る状態に制御する構成としたことを特徴とする請求項4
記載の蒸気タービン起動装置。
5. The drain valve of a main steam stop valve without a bypass valve is controlled so that a temperature difference measured by a temperature detector of an inner wall or an outer wall metal of an upper chamber and a lower chamber of the main steam stop valve is within a specified value. 5. The configuration according to claim 4, wherein
The steam turbine starting device according to any one of the preceding claims.
JP8113890A 1990-03-30 1990-03-30 Steam turbine start-up method and apparatus Expired - Lifetime JP2872739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8113890A JP2872739B2 (en) 1990-03-30 1990-03-30 Steam turbine start-up method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8113890A JP2872739B2 (en) 1990-03-30 1990-03-30 Steam turbine start-up method and apparatus

Publications (2)

Publication Number Publication Date
JPH03281904A JPH03281904A (en) 1991-12-12
JP2872739B2 true JP2872739B2 (en) 1999-03-24

Family

ID=13738042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8113890A Expired - Lifetime JP2872739B2 (en) 1990-03-30 1990-03-30 Steam turbine start-up method and apparatus

Country Status (1)

Country Link
JP (1) JP2872739B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478961B2 (en) * 2009-06-30 2014-04-23 三菱重工業株式会社 Valve control method and apparatus for warming of steam turbine
JP5411087B2 (en) * 2010-08-12 2014-02-12 株式会社日立製作所 Steam turbine valve device and operation method thereof

Also Published As

Publication number Publication date
JPH03281904A (en) 1991-12-12

Similar Documents

Publication Publication Date Title
KR890002916B1 (en) Steam turbine plant having a turbine bypass system
US4598551A (en) Apparatus and method for controlling steam turbine operating conditions during starting and loading
US8276382B2 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
US8776521B2 (en) Systems and methods for prewarming heat recovery steam generator piping
EP0908603B1 (en) Single shaft combined cycle plant
JP2872739B2 (en) Steam turbine start-up method and apparatus
JPH0370804A (en) Starting of steam cycle in combined cycle plant
US10920623B2 (en) Plant control apparatus, plant control method and power plant
JP2633720B2 (en) Pre-warming method for steam turbine
JP3435450B2 (en) Turbine bypass valve control device
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH04148035A (en) Vapor cooled gas turbine system
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
JP2677598B2 (en) Start-up method for two-stage reheat steam turbine plant.
JPH06330707A (en) Control method of reheating type steam turbine
JPH0336123B2 (en)
JPH0330687B2 (en)
JPH0475363B2 (en)
JPS62324B2 (en)
JP4014948B2 (en) Multi-axis combined cycle plant and control method thereof
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JP2001317707A (en) Water hammer preventing device for high pressure water supplying/heating device
JPS6056110A (en) Control method of ventilator
JPH01285605A (en) Method and device of starting 2-stage reheat type steam turbine plant
JPH0861013A (en) Device for draining outlet of exhaust heat recovery boiler