JPH0861013A - Device for draining outlet of exhaust heat recovery boiler - Google Patents

Device for draining outlet of exhaust heat recovery boiler

Info

Publication number
JPH0861013A
JPH0861013A JP19034994A JP19034994A JPH0861013A JP H0861013 A JPH0861013 A JP H0861013A JP 19034994 A JP19034994 A JP 19034994A JP 19034994 A JP19034994 A JP 19034994A JP H0861013 A JPH0861013 A JP H0861013A
Authority
JP
Japan
Prior art keywords
drain
steam
pressure
exhaust heat
stop valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19034994A
Other languages
Japanese (ja)
Inventor
Hide Amamiya
秀 雨宮
Shigenobu Katagiri
重信 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19034994A priority Critical patent/JPH0861013A/en
Publication of JPH0861013A publication Critical patent/JPH0861013A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE: To provide a draining device capable of efficient and automatic drainage to the outside of a system. CONSTITUTION: A steam pressure and temperature on the prior stage side of main steam stop valves 27 to 29 are detected, the measured values are introduced into a temperature-entropy chart calculation device 40, and it is judged whether the steam at the time of measurement is in wet area or dry area. When it is in wet area, the main steam stop valves 27 to 29 are closed and, at the same time, a drain valve 30 on the prior stage side of the main steam stop valves is opened so as to exhaust drain automatically to the outside of a system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンバインドサイクル
発電プラントの起動時に多量に発生するドレインを自動
的に系統外に排除する排熱回収ボイラ出口のドレン排除
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery boiler outlet drain removing device for automatically removing a large amount of drain generated at the time of starting a combined cycle power plant out of the system.

【0002】[0002]

【従来の技術】図4は、従来のコンバイドサイクル発電
プラントにおける排熱回収ボイラおよび蒸気タービンの
蒸気−水系統を示す。大気からの空気は、空気圧縮器1
にて圧縮され高圧空気となって燃焼器2に供給し、燃料
と混合されて燃焼後、高温高圧のガスとなり、ガスター
ビン3に供給される。この高温高圧ガスは、ガスタービ
ン内で大気近くまで断熱膨脹しながらガスタービン翼車
を回転させ、ガスタービンとしての動力を発生させる。
2. Description of the Related Art FIG. 4 shows a steam-water system of an exhaust heat recovery boiler and a steam turbine in a conventional combined cycle power plant. Air from the atmosphere is the air compressor 1
Is compressed into high pressure air and supplied to the combustor 2, mixed with fuel and burned, and then becomes high temperature and high pressure gas, which is supplied to the gas turbine 3. This high-temperature high-pressure gas rotates the gas turbine impeller while adiabatically expanding to near the atmosphere in the gas turbine to generate power for the gas turbine.

【0003】ガスタービンで仕事をした後の排ガスは、
排熱回収ボイラ4内にて排熱回収され、煙突5を介して
大気中に放出される。一方、低圧タービン35からの蒸
気は、運転中常時真空状態となっている復水器17で凝
縮し、復水となる。この復水は、低圧給水ポンプ18に
より排熱回収ボイラ4内に設けられた低圧節炭器7で加
熱され、低圧蒸気ドラム19に供給される。低圧蒸気ド
ラム19に供給された給水は、低圧蒸発器8内で加熱さ
れ蒸気となり、低圧過熱器9でさらに加熱されて、低圧
主蒸気管26および低圧主蒸気止め弁29を介し、低圧
タービン35に供給される。また、低圧節炭器7を出た
給水の一部は、中圧給水ポンプ22により中圧節炭器1
0で加熱され、中圧蒸気ドラム20に供給される。中圧
蒸気ドラム20に供給された給水は、中圧蒸発器12内
で加熱され蒸気となり、中圧過熱器13でさらに加熱さ
れて、中圧主蒸気管25および中圧主蒸気止め弁28を
介し、中圧タービン34に供給される。さらに、低圧節
炭器7を出た給水の一部は、高圧給水ポンプ23によ
り、高圧一次節炭器11および高圧二次節炭器14で加
熱され、高圧蒸気ドラム21に供給される。
The exhaust gas after working with a gas turbine is
Exhaust heat is recovered in the exhaust heat recovery boiler 4 and released into the atmosphere through the chimney 5. On the other hand, the steam from the low-pressure turbine 35 is condensed in the condenser 17 that is always in a vacuum state during operation to be condensed water. The condensate is heated by the low-pressure feed pump 18 by the low-pressure economizer 7 provided in the exhaust heat recovery boiler 4, and is supplied to the low-pressure steam drum 19. The feed water supplied to the low-pressure steam drum 19 is heated in the low-pressure evaporator 8 to become steam, which is further heated in the low-pressure superheater 9 and is passed through the low-pressure main steam pipe 26 and the low-pressure main steam stop valve 29 to the low-pressure turbine 35. Is supplied to. In addition, a part of the feed water that has left the low-pressure economizer 7 is supplied by the medium-pressure feed pump 22 to the medium-pressure economizer 1.
It is heated at 0 and supplied to the medium pressure steam drum 20. The feed water supplied to the intermediate-pressure steam drum 20 is heated in the intermediate-pressure evaporator 12 to become steam, which is further heated in the intermediate-pressure superheater 13 to drive the intermediate-pressure main steam pipe 25 and the intermediate-pressure main steam stop valve 28. Through the intermediate pressure turbine 34. Further, a part of the feed water that has exited from the low-pressure economizer 7 is heated by the high-pressure feed pump 23 by the high-pressure primary economizer 11 and the high-pressure secondary economizer 14, and is supplied to the high-pressure steam drum 21.

【0004】高圧蒸気ドラム21に供給された給水は、
高圧蒸発器15で加熱され蒸気となり、高圧一次過熱器
6でさらに加熱されて、高圧主蒸気管24および高圧主
蒸気止め弁27を介し、高圧タービン33に供給され
る。
The water supplied to the high-pressure steam drum 21 is
It is heated in the high-pressure evaporator 15 to become steam, further heated in the high-pressure primary superheater 6, and supplied to the high-pressure turbine 33 via the high-pressure main steam pipe 24 and the high-pressure main steam stop valve 27.

【0005】高圧タービン33を出た蒸気は、再熱器1
6で再熱された後、中圧過熱器13で加熱された蒸気と
合流し、中圧タービン34に供給される。中圧タービン
34を出た蒸気は、低圧過熱器9で加熱された蒸気と合
流し、低圧タービン35に供給され、低圧タービン内で
仕事をした後、復水器17で凝縮され、復水となって低
圧蒸気ドラム19に供給される循環系を形成している。
The steam leaving the high-pressure turbine 33 is reheated by the reheater 1.
After being reheated in 6, the steam that has been heated in the intermediate pressure superheater 13 merges and is supplied to the intermediate pressure turbine 34. The steam exiting the intermediate-pressure turbine 34 joins the steam heated in the low-pressure superheater 9, is supplied to the low-pressure turbine 35, works in the low-pressure turbine, and then is condensed in the condenser 17 to generate condensed water. Thus, a circulation system to be supplied to the low pressure steam drum 19 is formed.

【0006】プラント起動時には、機器および配管系統
全体が冷却されているために蒸気の凝縮ドインが多量に
発生し、種々の弊害を誘発する。このために、配管およ
び機器の溜まり部にはドレン抜きが設けられており、起
動時に系外排出を行うのが一般的である。
At the time of starting the plant, a large amount of steam condensation doin is generated because the equipment and the entire piping system are cooled, which causes various harmful effects. For this reason, drainage is provided in the piping and the reservoir of the equipment, and it is common to perform drainage outside the system at the time of startup.

【0007】コンバインドサイクル発電プラントにおい
ては、図5にその起動特性を示したように、起動過程に
おいてガスタービンおよび排熱回収ボイラ内に残存する
未燃焼の燃料ガスをガスタービン点火前に空気圧縮機1
の圧縮空気を利用して系外に排出するパージ運転が行わ
れる。このコンバインドサイクル発電プラントは、一般
の火力発電プラントは比較して、その起動特性が優れて
いるためにプラントの起動停止を頻繁に行なうことが特
徴である。
In the combined cycle power plant, as shown in the starting characteristic of FIG. 5, the uncombusted fuel gas remaining in the gas turbine and the exhaust heat recovery boiler in the starting process is compressed by an air compressor before ignition of the gas turbine. 1
Purge operation is performed to discharge the compressed air from the system. This combined cycle power plant is characterized in that the plant is frequently started and stopped because it has excellent starting characteristics as compared with a general thermal power plant.

【0008】プラントを停止した場合には、次の起動を
より早く行うために低、中、高圧蒸気ドラム19〜2
1、低圧過熱器9、中圧過熱器13および高圧一次過熱
器6内に高温の蒸気を封じめた状態とするホットバンキ
ング法が一般的に採用されている。このような状態から
プラントを起動すると、コンバインドサイクル発電プラ
ント特有の前記パージ運転時、低、中、高圧蒸気ドラム
19〜21、低圧過熱器9、中圧過熱器13および高圧
一次過熱器6内に封じ込められた蒸気がガスタービン排
気(この時点ではガスタービンは点火前なので、圧縮に
よる温度上昇のみで排ガス温度は50℃前後である)に
よって冷却されて凝縮し、多量のドレンが発生する。こ
のドレンを完全に排除しない蒸気タービン入口の主蒸気
止め弁27〜29を開にすると、蒸気タービン内に多量
のドレンが流入し、急冷による蒸気タービンへの過大な
熱応力の発生やタービン車室の上下半の温度差大による
変形等を招くなど蒸気タービンに重大な損傷を誘発す
る。これが一般的に言われている蒸気タービンのウォー
ターインダクション現象である。
When the plant is shut down, the low, medium, and high pressure steam drums 19-2 are provided in order to make the next startup quicker.
1. The hot banking method in which high-temperature steam is sealed in the low pressure superheater 9, the medium pressure superheater 13 and the high pressure primary superheater 6 is generally adopted. When the plant is started from such a state, during the purging operation peculiar to the combined cycle power plant, the low, medium and high pressure steam drums 19 to 21, the low pressure superheater 9, the medium pressure superheater 13 and the high pressure primary superheater 6 are provided. The contained steam is cooled and condensed by the gas turbine exhaust gas (at this point, the gas turbine is not ignited, so the exhaust gas temperature is around 50 ° C. only due to the temperature increase due to compression), and a large amount of drain is generated. If the main steam stop valves 27 to 29 at the steam turbine inlet that do not completely remove this drain are opened, a large amount of drain will flow into the steam turbine, causing excessive thermal stress to the steam turbine due to rapid cooling and the turbine casing. It causes serious damage to the steam turbine such as deformation due to large temperature difference between the upper and lower half of the steam turbine. This is the generally called water induction phenomenon of steam turbines.

【0009】このために高圧主蒸気止め弁27、中圧主
蒸気止め弁28、低圧主蒸気止め弁の前に各ドレン弁3
0〜32をそれぞれ配設し、起動時のガスタービン着火
後に一定時間それぞれのドレン弁を開として、高圧主蒸
気管24、中圧主蒸気管25および低圧主蒸気管26の
ドレンの系統外排除を行い、蒸気タービン33〜35へ
のドレンの流入を防止している。
For this purpose, each drain valve 3 is provided in front of the high pressure main steam stop valve 27, the intermediate pressure main steam stop valve 28, and the low pressure main steam stop valve.
0 to 32 are provided, and after the gas turbine is ignited at the time of startup, each drain valve is opened for a certain period of time to remove the drain of the high-pressure main steam pipe 24, the intermediate-pressure main steam pipe 25, and the low-pressure main steam pipe 26 from outside the system. Is performed to prevent the drain from flowing into the steam turbines 33 to 35.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
方法によるドレン排除方法によるとコンバインドサイク
ル発電プラントのようにパージ運転等を行い多量のドレ
ンが発生するプラントにおいては、ドレン排出が確実に
行われない可能性がある。特に、ドレンの発生量は、そ
の時の運転条件、外気温度等に大きく影響され、ドレン
弁30〜32の時間による開閉管理では、確実に系統内
からドレンを排出することができない。また、ドレン弁
30〜32をそれぞれ長時間開状態に維持すれば系統内
のドレンは、完全に排出が可能となるが、この間多量の
高温蒸気も同時に排出することになり、多大のエネルギ
ー損失となる。
However, according to the drain elimination method according to the above method, the drain is not reliably discharged in a plant such as a combined cycle power plant where a large amount of drain is generated by performing a purge operation or the like. there is a possibility. In particular, the amount of drain generated is greatly affected by the operating conditions at that time, the outside air temperature, and the like, and drainage cannot be reliably discharged from the system by the opening / closing management of the drain valves 30 to 32 over time. Further, if the drain valves 30 to 32 are kept open for a long time, the drain in the system can be completely discharged, but during this time, a large amount of high temperature steam is also discharged, which causes a large energy loss. Become.

【0011】本発明は、このような点に基ずいてなされ
たもので、その目的は、コンバインドサイクル発電プラ
ントの起動時に発生する多量のドレンが蒸気タービン内
に流入しないように蒸気の湿り状態又はドレン量を連続
的に検知し、これによってドレンを自動的に排出する排
熱回収ボイラ出口のドレン排除装置を提供することにあ
る。
The present invention has been made based on such a point, and an object thereof is to prevent a large amount of drain generated at the time of start-up of a combined cycle power plant from flowing into a steam turbine, or to prevent steam from being wet. It is an object of the present invention to provide a drain elimination device at the exit of a heat recovery steam generator that continuously detects the drain amount and automatically discharges the drain amount.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するた
め、ガスタービンの排熱を排発熱回収ボイラで回収し、
この回収熱で蒸気タービンを起動するコンバインドサイ
クル発電プラントにおいて、このプラントの起動時前記
蒸気タービンの入口側に設けられている主蒸気止め弁の
前段側に配設され、蒸気圧力および温度を計測する検出
器と、この検出器で計測された蒸気圧力および温度を入
力し、前記蒸気圧力および温度の計測時点の蒸気が湿り
域か乾き域の状態にあるかを判断し、湿り状態の場合
は、前記主蒸気止め弁に対して閉指令を与え、同時にこ
の主蒸気止め弁の前段側に配設されているドレン弁に対
して開指令を与える温度−エントロピー線図演算装置と
を備え、自動的にドレンを系外に排除することを特徴と
した排熱回収ボイラ出口のドレン排除装置である。
In order to achieve the above object, exhaust heat of a gas turbine is recovered by an exhaust heat recovery boiler,
In a combined cycle power plant that starts a steam turbine with this recovered heat, at the start of this plant, it is arranged in front of the main steam stop valve provided on the inlet side of the steam turbine, and measures the steam pressure and temperature. The detector and steam pressure and temperature measured by this detector are input, and it is determined whether the steam at the time of measuring the steam pressure and temperature is in a wet or dry state, and in the case of a wet state, A temperature-entropy diagram calculator is provided automatically for giving a close command to the main steam stop valve and at the same time giving an open command to the drain valve arranged on the upstream side of the main steam stop valve. This is a drain removal device at the exit of the exhaust heat recovery boiler, which is characterized by removing the drain outside the system.

【0013】前記目的を達成するため、ガスタービンの
排熱を排発熱回収ボイラで回収し、この回収熱で蒸気タ
ービンを起動するコンバインドサイクル発電プラントに
おいて、前記蒸気タービンの入口側に設けられている主
蒸気止め弁の前段側のドレイン管の一部に設けられドレ
ンを貯めるドレンポットと、このドレンポット内のドレ
ンの有無を検出し、ドレンが存在する場合には、前記蒸
気タービンの入口側に設けられている主蒸気止め弁に対
して閉指令を与え、同時にこの主蒸気止め弁の前段側に
配設されているドレン弁に対して開指令を与えるレベル
コントローラとを備え、自動的にドレンを系外に排除す
ることを特徴とした排熱回収ボイラ出口のドレン排除装
置である。
In order to achieve the above object, the exhaust heat of the gas turbine is recovered by an exhaust heat recovery boiler, and the combined cycle power plant that starts the steam turbine with the recovered heat is provided on the inlet side of the steam turbine. A drain pot that is provided in a part of the drain pipe on the upstream side of the main steam stop valve to store the drain and the presence or absence of drain in this drain pot are detected.If a drain is present, it is placed on the inlet side of the steam turbine. It is equipped with a level controller that gives a close command to the main steam stop valve provided and at the same time gives an open command to the drain valve arranged in front of this main steam stop valve. This is a drain elimination device at the exhaust heat recovery boiler outlet, which is characterized in that it is excluded from the system.

【0014】[0014]

【作用】請求項1に対応する発明によれば、主蒸気止め
弁の前段側の蒸気圧力および温度を検出し、この計測値
を温度−エントロピー線図演算装置に導き、計測時点の
蒸気が湿り域か乾き域の状態にあるかを判断し、湿り状
態の場合は、前記主蒸気止め弁を閉とし、同時に主蒸気
止め弁の前段側のドレン弁を開として、自動的にドレン
を系外に排除するようにしたので、コンバインドサイク
ル発電プレントの蒸気タービン内にドレンが流入して発
生するウォターインダクション現象が激減し、プラント
全体の信頼性が向上する。
According to the invention corresponding to claim 1, the steam pressure and temperature on the upstream side of the main steam stop valve are detected, and the measured values are guided to the temperature-entropy diagram calculation device so that the steam at the time of measurement becomes wet. If it is wet, the main steam stop valve is closed, and at the same time, the drain valve on the upstream side of the main steam stop valve is opened, and the drain is automatically removed from the system. The water induction phenomenon caused by the inflow of drain into the steam turbine of the combined cycle power plant is drastically reduced, and the reliability of the entire plant is improved.

【0015】請求項2に対応する発明によれば、主蒸気
止め弁の前段側のドレン管にドレンポットを配設し、ド
レンレベル検出器を用いてドレンの有無を検出し、ドレ
ンが存在する場合には、主蒸気止め弁を閉とし、同時に
主蒸気止め弁前のドレン弁を開として、自動的にドレン
を系外に排除するようにしたので、コンバインドサイク
ル発電プレントの蒸気タービン内にドレンが流入して発
生するウォターインダクション現象が激減し、プラント
全体の信頼性が向上する。
According to the second aspect of the invention, the drain pot is arranged in the drain pipe on the upstream side of the main steam stop valve, and the presence or absence of the drain is detected by using the drain level detector, and the drain is present. In this case, the main steam stop valve was closed, and at the same time, the drain valve in front of the main steam stop valve was opened to automatically remove the drain out of the system.Therefore, the drain was placed in the steam turbine of the combined cycle power plant. The water induction phenomenon caused by the inflow of water is drastically reduced, and the reliability of the entire plant is improved.

【0016】[0016]

【実施例】以下本発明の実施例について図面を参照して
説明する。 <第1実施例>図1は本発明の第1実施例を示す概略系
統図であり、図2はその要部のみ示す系統図である。図
4の従来例とは異なる点は、温度検出器37、圧力検出
器38、温度−エントロピー線図演算装置40を新たに
追加したものである。
Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> FIG. 1 is a schematic system diagram showing a first embodiment of the present invention, and FIG. 2 is a system diagram showing only essential parts thereof. The difference from the conventional example of FIG. 4 is that a temperature detector 37, a pressure detector 38, and a temperature-entropy diagram calculation device 40 are newly added.

【0017】図1において、高圧主蒸気管24に設置さ
れている高圧、主蒸気止め弁27の前段側に圧力検出器
38および温度検出器37がそれぞれ設置されている。
主蒸気止め弁27の前段側で検出された主蒸気の温度お
よび圧力の計測値は、温度−エントロピー線図演算装置
40に導かれ計測時点の蒸気が湿り域であるか乾き域で
あるかを連続的に判定する。主蒸気の温度および圧力の
計測結果から測定時点の蒸気が乾き状態であると判定さ
れた場合は、ドレン弁30は、温度−エントロピー線図
演算装置40からの指令信号により自動的に閉状態とな
り、同時に各主蒸気止め弁27は開状態となって、蒸気
タービン33にはドレンを含まない蒸気が通気される。
In FIG. 1, a pressure detector 38 and a temperature detector 37 are installed in front of the high-pressure main steam stop valve 27 installed in the high-pressure main steam pipe 24.
The measured values of the temperature and pressure of the main steam detected on the upstream side of the main steam stop valve 27 are guided to the temperature-entropy diagram calculation device 40 to determine whether the steam at the time of measurement is in the wet region or the dry region. Determine continuously. When it is determined from the measurement results of the temperature and pressure of the main steam that the steam at the time of measurement is in a dry state, the drain valve 30 is automatically closed by a command signal from the temperature-entropy diagram calculation device 40. At the same time, each main steam stop valve 27 is opened, and steam not containing drain is ventilated to the steam turbine 33.

【0018】一方、主蒸気の温度および圧力の計測結果
から測定時点の蒸気が湿り状態であると判定された場合
は、ドレン弁30は、温度−エントロピー線図演算装置
40からの指令信号により自動的に開状態となり、同時
に主蒸気止め弁27は閉状態となる。これによって、蒸
気タービン内へのドレンの流入防止が可能となる。
On the other hand, when it is determined from the measurement results of the temperature and pressure of the main steam that the steam at the time of measurement is in a wet state, the drain valve 30 is automatically operated by a command signal from the temperature-entropy diagram calculation device 40. The main steam stop valve 27 is closed at the same time. This makes it possible to prevent the drain from flowing into the steam turbine.

【0019】ドレン弁30は、測定蒸気が湿り域と判定
されている間は常時開状態を維持し、乾き状態に変化し
た時点で閉状態となるシーケンスを取り入れてあるため
に確実な蒸気タービン33内へのドレン流入防止が可能
となるとともに過渡なドレン排除操作(長時間の開状
態)がないために高温高圧蒸気の系統外排出量の低減が
可能となる。以上述べた構成は、高圧蒸気タービン33
と排熱回収ボイラ4との間に設けたものであり、これと
同様な構成(図2に示す構成)を図1のA、Bに追加し
たものであり、これらの作用効果は前述と同一である。
The drain valve 30 maintains a normally open state while the measured steam is determined to be in the wet region, and incorporates a sequence in which the drain valve 30 is closed at the time when the measured steam changes to a dry state, so that a reliable steam turbine 33 is provided. It is possible to prevent the inflow of drain into the inside, and since there is no transient drain removal operation (open state for a long time), it is possible to reduce the amount of high-temperature high-pressure steam discharged outside the system. The configuration described above is applied to the high pressure steam turbine 33.
Between the exhaust heat recovery boiler 4 and the exhaust heat recovery boiler 4, and a configuration similar to this (configuration shown in FIG. 2) is added to A and B of FIG. 1, and these operational effects are the same as those described above. Is.

【0020】以上述べた第1実施例のドレン排除装置を
設置したコンバインドサイクル発電プレンにおいては、
プラントの起動条件(コールド、ウォームおよびホット
スタート)および大気温度変化等に無関係に、起動時に
発生し、蒸気タービン33,34,35のウォータイン
ダクションの原因となるドレンを効率よく系統外に排出
することが可能となる。
In the combined cycle power generation plane in which the drain removing device of the first embodiment described above is installed,
Efficiently discharging the drain, which is generated at startup and causes the water induction of the steam turbines 33, 34, 35, to the outside of the system regardless of the plant startup conditions (cold, warm and hot start) and atmospheric temperature changes, etc. Is possible.

【0021】<第2実施例>次に、本発明の第2実施例
について図3を参照して説明する。図3において、高圧
主蒸気管24に設置されている高圧主蒸気止め弁27の
前段側の配管の一部にドレンポット36を配設し、ドレ
ンレベル検出器39によって、プラント起動時に発生す
るドレンレベルを連続的に監視するように構成する。
<Second Embodiment> Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 3, the drain pot 36 is provided in a part of the pipe on the upstream side of the high-pressure main steam stop valve 27 installed in the high-pressure main steam pipe 24, and the drain level detector 39 causes the drain generated at the start-up of the plant. Configured for continuous level monitoring.

【0022】この場合、ドレンポット36内でドレンレ
ベルが検出される間は、ドレンが発生状態にあると判定
し、ドレン弁30は、ドレンレベル検出器39からの信
号により自動的に開状態となり、同時に主蒸気止め弁2
7は閉状態となる。これによって、蒸気タービン33内
へのドレン流入防止が可能となる。一方、ドレンポット
36内でドレンレベルが検出されない場合は、ドレンが
発生状態にないと判定し、ドレン弁30は、ドレンレベ
ル検出器39からの信号により自動的に閉状態となり、
同時に主蒸気止め弁27は開状態となって、蒸気タービ
ンにはドレンを含まない蒸気が通気される。
In this case, while the drain level is detected in the drain pot 36, it is determined that the drain is in the generated state, and the drain valve 30 is automatically opened by the signal from the drain level detector 39. , At the same time main steam stop valve 2
7 is closed. This makes it possible to prevent the drain from flowing into the steam turbine 33. On the other hand, when the drain level is not detected in the drain pot 36, it is determined that the drain is not in the generated state, and the drain valve 30 is automatically closed by the signal from the drain level detector 39.
At the same time, the main steam stop valve 27 is opened, and the steam containing no drain is ventilated to the steam turbine.

【0023】ドレン弁30は、ドレンポット36内にド
レンがある場合には常時開状態を維持し、ドレンが存在
しないかもしくはドレン量が増加しなくなった時点で閉
状態となるシーケンスを取り入れてあるために確実な蒸
気タービン33内へのドレン流入防止が可能となるとと
もに過渡なドレン排除操作(長時間の開く状態)がない
ために高温高圧蒸気の系統外排出量の低減が可能とな
る。
The drain valve 30 maintains a normally open state when there is a drain in the drain pot 36, and incorporates a sequence in which the drain valve 30 is closed when there is no drain or the drain amount does not increase. Therefore, it is possible to reliably prevent the drain from flowing into the steam turbine 33, and it is possible to reduce the discharge amount of the high-temperature and high-pressure steam from the outside of the system because there is no transient drain removal operation (open state for a long time).

【0024】以上述べた構成は、図1の高圧蒸気タービ
ン33と排熱回収ボイラ4の間についてであり、図1の
A、Bにおいても同様に構成することは第1実施例と同
一である。この場合の作用効果も前述の実施例と同一で
ある。
The configuration described above is between the high-pressure steam turbine 33 and the exhaust heat recovery boiler 4 in FIG. 1, and the same configuration is the same in A and B in FIG. 1 as in the first embodiment. . The function and effect in this case are also the same as those in the above-described embodiment.

【0025】[0025]

【発明の効果】以上述べた本発明の排熱回収ボイラ出口
のドレン排除装置によれば、起動時に発生する多量のド
レンを蒸気の湿り状態又はドレン量を連続的に検知する
ことによって効率よく、自動的に系外に排出することが
可能となった。この結果は、コンバインドサイクル発電
プレントの蒸気タービン内にドレンが流入して発生する
ウォターインダクション現象が激減し、プラント全体の
信頼性の向上に多大な効果を有する。
According to the drainage elimination device at the outlet of the exhaust heat recovery boiler of the present invention described above, it is possible to efficiently detect a large amount of drainage generated at startup by continuously detecting the wet state of steam or the amount of drainage, It has become possible to automatically discharge to the outside of the system. As a result, the water induction phenomenon caused by the inflow of drain into the steam turbine of the combined cycle power generation plant is drastically reduced, which has a great effect on improving the reliability of the entire plant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排熱回収ボイラ出口のドレン排除装置
の第1実施例を示す概略系統図。
FIG. 1 is a schematic system diagram showing a first embodiment of a drain removing device at an exhaust heat recovery boiler outlet of the present invention.

【図2】図1の実施例の要部のみを示す系統図。FIG. 2 is a system diagram showing only a main part of the embodiment shown in FIG.

【図3】本発明の排熱回収ボイラ出口のドレン排除装置
の第2実施例の要部のみを示す系統図。
FIG. 3 is a system diagram showing only a main part of a second embodiment of the drain removing device at the exhaust heat recovery boiler outlet of the present invention.

【図4】従来のコンバインドサイクル発電プラントの排
熱回収ボイラおよび蒸気タービンの蒸気ー水系統を示す
概略系統図。
FIG. 4 is a schematic system diagram showing an exhaust heat recovery boiler of a conventional combined cycle power plant and a steam-water system of a steam turbine.

【図5】図4のコンバインドサイクル発電プラントの起
動特性図。
FIG. 5 is a starting characteristic diagram of the combined cycle power plant of FIG. 4.

【符号の説明】[Explanation of symbols]

1…空気圧縮機、2…燃焼器、3…ガスタービン、4…
排熱回収ボイラ、5…煙突、6…高圧一次過熱器、7…
低圧節炭器、8…低圧蒸発器、9…低圧過熱器、10…
中圧節炭器、11…高圧一次節炭器、12…中圧蒸発
器、13…中圧過熱器、14…高圧二次節炭器、15…
高圧蒸発器、16…再熱器、17…復水器、18…低圧
給水ポンプ、19…低圧蒸気ドラム、20…中圧蒸気ド
ラム、21…高圧蒸気ドラム、22…中圧給水ポンプ、
23…高圧給水ポンプ、24…高圧主蒸気管、25…中
圧主蒸気管、26…低圧主蒸気管、27…高圧主蒸気止
め弁、28…中圧主蒸気止め弁、29…低圧主蒸気止め
弁、30…高圧主蒸気ドレン弁、31…中圧主蒸気ドレ
ン弁、32…低圧主蒸気ドレン弁、33…高圧蒸気ター
ビン、34…中圧蒸気タービン、35…低圧蒸気タービ
ン、36…ドレンポット、37…温度検出器、38…圧
力検出器、39…ドレンレベル検出器、40…温度−エ
ントロピー線図演算装置。
1 ... Air compressor, 2 ... Combustor, 3 ... Gas turbine, 4 ...
Exhaust heat recovery boiler, 5 ... Chimney, 6 ... High pressure primary superheater, 7 ...
Low pressure economizer, 8 ... Low pressure evaporator, 9 ... Low pressure superheater, 10 ...
Medium pressure economizer, 11 ... High pressure primary economizer, 12 ... Medium pressure evaporator, 13 ... Medium pressure superheater, 14 ... High pressure secondary economizer, 15 ...
High-pressure evaporator, 16 ... Reheater, 17 ... Condenser, 18 ... Low-pressure water supply pump, 19 ... Low-pressure steam drum, 20 ... Medium-pressure steam drum, 21 ... High-pressure steam drum, 22 ... Medium-pressure water supply pump,
23 ... High-pressure feed pump, 24 ... High-pressure main steam pipe, 25 ... Medium-pressure main steam pipe, 26 ... Low-pressure main steam pipe, 27 ... High-pressure main steam stop valve, 28 ... Medium-pressure main steam stop valve, 29 ... Low-pressure main steam Stop valve, 30 ... High pressure main steam drain valve, 31 ... Medium pressure main steam drain valve, 32 ... Low pressure main steam drain valve, 33 ... High pressure steam turbine, 34 ... Medium pressure steam turbine, 35 ... Low pressure steam turbine, 36 ... Drain Pot, 37 ... Temperature detector, 38 ... Pressure detector, 39 ... Drain level detector, 40 ... Temperature-entropy diagram calculation device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンの排熱を排発熱回収ボイラ
で回収し、この回収熱で蒸気タービンを起動するコンバ
インドサイクル発電プラントにおいて、このプラントの
起動時前記蒸気タービンの入口側に設けられている主蒸
気止め弁の前段側に配設され、蒸気圧力および温度を計
測する検出器と、この検出器で計測された蒸気圧力およ
び温度を入力し、前記蒸気圧力および温度の計測時点の
蒸気が湿り域か乾き域の状態にあるかを判断し、湿り状
態の場合は、前記主蒸気止め弁に対して閉指令を与え、
同時にこの主蒸気止め弁の前段側に配設されているドレ
ン弁に対して開指令を与える温度−エントロピー線図演
算装置とを備え、 自動的にドレンを系外に排除することを特徴とした排熱
回収ボイラ出口のドレン排除装置。
1. A combined cycle power plant in which exhaust heat of a gas turbine is recovered by an exhaust heat recovery boiler and the recovered heat is used to start a steam turbine, which is provided on the inlet side of the steam turbine when the plant is started. A detector that is placed in front of the main steam stop valve and that measures the steam pressure and temperature, and the steam pressure and temperature measured by this detector are input, and the steam at the time of measuring the steam pressure and temperature gets wet. Judgment whether it is in a dry or dry area, and if it is wet, give a closing command to the main steam stop valve,
At the same time, the main steam stop valve was equipped with a temperature-entropy diagram calculator that gives an opening command to the drain valve installed in the upstream side, and the drain was automatically excluded from the system. Drain removal device at the exhaust heat recovery boiler outlet.
【請求項2】 ガスタービンの排熱を排発熱回収ボイラ
で回収し、この回収熱で蒸気タービンを起動するコンバ
インドサイクル発電プラントにおいて、前記蒸気タービ
ンの入口側に設けられている主蒸気止め弁の前段側のド
レイン管の一部に設けられドレンを貯めるドレンポット
と、このドレンポット内のドレンの有無を検出し、ドレ
ンが存在する場合には、前記蒸気タービンの入口側に設
けられている主蒸気止め弁に対して閉指令を与え、同時
にこの主蒸気止め弁の前段側に配設されているドレン弁
に対して開指令を与えるレベルコントローラとを備え、 自動的にドレンを系外に排除することを特徴とした排熱
回収ボイラ出口のドレン排除装置。
2. In a combined cycle power plant in which exhaust heat of a gas turbine is recovered by an exhaust heat recovery boiler and the recovered heat is used to start a steam turbine, a main steam stop valve of an inlet side of the steam turbine is installed. A drain pot provided in a part of the drain pipe on the upstream side for storing drain, and the presence or absence of drain in the drain pot are detected, and if drain is present, the main unit is provided at the inlet side of the steam turbine. Equipped with a level controller that gives a closing command to the steam stop valve and at the same time gives an opening command to the drain valve arranged in front of this main steam stop valve, and automatically removes the drain out of the system. A drain elimination device at the exhaust heat recovery boiler outlet.
JP19034994A 1994-08-12 1994-08-12 Device for draining outlet of exhaust heat recovery boiler Pending JPH0861013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19034994A JPH0861013A (en) 1994-08-12 1994-08-12 Device for draining outlet of exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19034994A JPH0861013A (en) 1994-08-12 1994-08-12 Device for draining outlet of exhaust heat recovery boiler

Publications (1)

Publication Number Publication Date
JPH0861013A true JPH0861013A (en) 1996-03-05

Family

ID=16256723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19034994A Pending JPH0861013A (en) 1994-08-12 1994-08-12 Device for draining outlet of exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JPH0861013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151056A (en) * 2008-12-25 2010-07-08 Toshiba Corp Steam turbine
JP2016014350A (en) * 2014-07-02 2016-01-28 株式会社Ihi Exhaust heat power generating system
CN109210522A (en) * 2018-10-04 2019-01-15 孙学贤 Flash boiler and its operation logic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151056A (en) * 2008-12-25 2010-07-08 Toshiba Corp Steam turbine
JP2016014350A (en) * 2014-07-02 2016-01-28 株式会社Ihi Exhaust heat power generating system
CN109210522A (en) * 2018-10-04 2019-01-15 孙学贤 Flash boiler and its operation logic

Similar Documents

Publication Publication Date Title
JP3976857B2 (en) Combined power plant with forced once-through steam generator as a gas turbine cooling air cooler
JP6884721B2 (en) Plant control equipment, plant control methods, and power plants
EP2392787A2 (en) Combined Cycle Power Plant Including a Heat Recovery Steam Generator
JP3694530B2 (en) Single-shaft combined cycle plant and operation method thereof
JPS61205309A (en) Protective operating method and its device of feed water heater
JPH11200816A (en) Combined cycle power generation plant
JPH1037713A (en) Combined cycle power plant
JPS61101604A (en) Initial steam-flow regulator for case of starting of steam turbine
JP2000337107A (en) Closed gas turbine plant
JPH10103008A (en) Steam turbine stationary blade heating method
JPH0693879A (en) Combined plant and operation thereof
JPH0861013A (en) Device for draining outlet of exhaust heat recovery boiler
US8984892B2 (en) Combined cycle power plant including a heat recovery steam generator
JPH1193693A (en) Method of operating combined cycle power plant, and combined cycle power plant
JPH09209713A (en) Steam cooling combined cycle plant
JP3961407B2 (en) Method and apparatus for dry storage of steam turbine
JPH1162619A (en) Steam cooling type gas turbine composite plant and its operation control method
JP4090668B2 (en) Combined cycle power generation facility
JP4278053B2 (en) Drying apparatus and drying method using pressure vessel
JP2001193413A (en) Combined plant and its operating method
CN215057761U (en) Credit letter device free of blowing and clearing for maintaining gas turbine combined cycle unit
JP3159641B2 (en) Combined cycle power plant and method for cooling high temperature members in the plant
JP3065794B2 (en) Feed water heating device
KR100567907B1 (en) Once Through Heat Recovery Steam Generator and Its Bypass Line Structure
JP4209060B2 (en) Steam cooling rapid start system