JPS60143648A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60143648A
JPS60143648A JP15388283A JP15388283A JPS60143648A JP S60143648 A JPS60143648 A JP S60143648A JP 15388283 A JP15388283 A JP 15388283A JP 15388283 A JP15388283 A JP 15388283A JP S60143648 A JPS60143648 A JP S60143648A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
polycrystalline
silicon layer
type
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15388283A
Other languages
Japanese (ja)
Inventor
Shoichi Iwasa
岩佐 昇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15388283A priority Critical patent/JPS60143648A/en
Publication of JPS60143648A publication Critical patent/JPS60143648A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable to form silicide electrodes even in shallow diffusion layers by a method wherein an impurity-added polycrystalline silicon layer is made to grow on the diffusion layers. CONSTITUTION:N type impurities are ion-implanted in a P type Si substrate 1 and diffusion layers 10 are formed. After that, oxide films 11 are removed and an N type impurity-added polycrystalline silicon layer 12 is made to grow on the whole surface by a CVD method in a film thickness of a degree that apertures 13 and 14 provided on the diffusion layers 10 are fully buried with the polycrystalline silicon layer 12. The polycrystalline silicon layer 12 is performed an etchback to the limit in such a way that the polycrystalline silicon layer 12 is left only in the apertures 13 and 14. Polycrystalline gates and the silicon nitride film 7 of the wiring part are removed, and after then, silicide layers 18, 16 and 17 are provided on N<+> type polycrystalline silicon layers 8, 13 and 14.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a semiconductor device.

従来のSiゲー)MO8プロセスにおいては、ゲート形
成と同時に多結晶8iを用いた配線のパターンニングを
行ない、その後Alの配線を形成するという多結晶8i
とAlの二層配線技術が用いられている。ところが、こ
の多結晶8i配線は、その上にCVD法で形成された層
間絶縁膜の多結晶8i配線段部におけるステップカバレ
ッジを悪<L、Al配線の段切れを生じる欠点をもって
いる。また、通常多結晶8iには抵抗を下げる為、不純
物を含ませているが、実際には、工程上の問題等も絡ん
で抵抗を下げるにも限界が生じている。
In the conventional Si (Si) MO8 process, wiring is patterned using polycrystalline 8i at the same time as gate formation, and then Al wiring is formed using polycrystalline 8i.
A two-layer wiring technology of aluminum and aluminum is used. However, this polycrystalline 8i wiring has the disadvantage that the step coverage of the step portion of the polycrystalline 8i wiring of the interlayer insulating film formed thereon by the CVD method is poor, and step breaks in the Al wiring occur. Further, impurities are usually included in the polycrystalline 8i in order to lower the resistance, but in reality, there are limits to lowering the resistance due to process problems and the like.

そこで、最近、多結晶Si上にある特定の金属を蒸着し
て、それと多結晶Siとでシリサイド化合物を形成して
、低抵抗化を計る技術が使われ出される様になったが、
その応用として、ゲート部だけでなく拡散層上にもシリ
サイド電極を形成して抵抗を下げようとする試みがなさ
れている。しかし、シリサイド化合物を形成するには、
蒸着された金属に対応する量のシリコンが食われ、又、
その金属の拡散係数が大きい為、シリサイド化する時に
、シリコン中に深く入り込み合金化される。その為、深
い拡散層に対しては問題は生じないが、拡散層が浅い場
合には、この金属が拡散層を突き抜けてショットキーダ
イオードになる恐れがあった。最近は短チャンネル化に
対応して浅い拡散層が要求されているので上述の理由で
、従来の方法をそのまま適用することは困難でめる。
Recently, a technique has been used to reduce the resistance by depositing a specific metal on polycrystalline Si and forming a silicide compound with the polycrystalline Si.
As an application of this, attempts have been made to lower the resistance by forming a silicide electrode not only on the gate portion but also on the diffusion layer. However, to form a silicide compound,
A corresponding amount of silicon is consumed by the metal deposited, and
Because the metal has a large diffusion coefficient, it penetrates deeply into silicon and becomes alloyed when it is silicided. Therefore, there is no problem with deep diffusion layers, but if the diffusion layer is shallow, there is a risk that this metal will penetrate through the diffusion layer and become a Schottky diode. Recently, shallow diffusion layers have been required in response to shortened channels, so it is difficult to apply the conventional method as is for the reasons mentioned above.

本発明は、拡散層上に不純物添加した多結晶84をCV
D(化学的気相成長法)法によシ成長させることによっ
て、上記問題点を解消し、ソース。
In the present invention, the polycrystalline 84 doped with impurities on the diffusion layer is
The above problems are solved by growing the source using the D (chemical vapor deposition) method.

ドレイン、ゲートにシリサイド電極を用いて低抵抗な半
導体装置を提供するものである。
This provides a low-resistance semiconductor device using silicide electrodes for the drain and gate.

この発明の内存を端的に云えば、所定表面がフィールド
酸化膜でおおわれ所定部に素子領域を肩する半導体基板
上に一様に成長させた多結晶シリコンを窒化シリコン膜
で素子領域と配線領域とをおおい、その後選択酸化を行
なうことによって、下地のフィールド酸化膜と合わせて
厚いフィールド酸化膜を形成しておくとともに多結晶シ
リコン配線部を酸化膜で分離し、すなわち酸化膜中に埋
め込んだ形にする。その後、多結晶シリコンの異方性ド
ライエツチングによってゲート部分を形成し、イオン注
入によって拡散層を形成し、さらに。
To put it simply, the essence of this invention is that polycrystalline silicon grown uniformly on a semiconductor substrate whose predetermined surface is covered with a field oxide film and which covers the device region in a predetermined portion is separated into the device region and the wiring region using a silicon nitride film. Then, by performing selective oxidation, a thick field oxide film is formed together with the underlying field oxide film, and the polycrystalline silicon wiring is separated by an oxide film, that is, it is buried in the oxide film. do. Thereafter, a gate portion is formed by anisotropic dry etching of polycrystalline silicon, a diffusion layer is formed by ion implantation, and then a diffusion layer is formed by ion implantation.

異方性ドライエツチングを用いて拡散層上のマスク酸化
膜を除去する。そして、ドライエツチングに対する所定
の処理後、不純物をドープした多結晶シリコンをCVD
法により成長させて拡散層上の開孔を完全に埋める程度
の厚さにし、等方性エツチングにより、エッチバックし
て、拡散層上にのみ不純物添加多結晶シリコンが残る様
にする。
The mask oxide film on the diffusion layer is removed using anisotropic dry etching. After a predetermined process for dry etching, polycrystalline silicon doped with impurities is then processed by CVD.
The polycrystalline silicon is grown to a thickness that completely fills the openings above the diffusion layer, and is etched back by isotropic etching so that the impurity-doped polycrystalline silicon remains only on the diffusion layer.

その後は、ゲート部、配線部多結晶シリコン上にある窒
化膜を除去して、従来のシリサイド電極形成工程を経る
Thereafter, the nitride film on the polycrystalline silicon of the gate portion and wiring portion is removed, and a conventional silicide electrode formation process is performed.

この方法によれば、浅い拡散層にもシリサイド電極を形
成することが可能であ如、電極面積もほぼ拡散層領域に
等しく広くとれるのでコンタクト抵抗が小さい。また、
拡散層上に所定の厚さの不純物添加多結晶シリコンが形
成されであるので、ゲート電極との段差は少なく、多結
晶シリコン配線部の埋め込みと共に、平坦化に有効であ
る。
According to this method, it is possible to form a silicide electrode even in a shallow diffusion layer, and the electrode area can be made as large as the diffusion layer region, so that the contact resistance is small. Also,
Since impurity-doped polycrystalline silicon having a predetermined thickness is formed on the diffusion layer, there is little difference in level from the gate electrode, which is effective for burying the polycrystalline silicon wiring portion and for planarization.

次に図面を参照して本発明をより詳細に説明する。Next, the present invention will be explained in more detail with reference to the drawings.

本発明をN型導電形シリコンゲー)MO8プロセスに極
用した実施例をFig、1〜Fig、6に示す。
Examples in which the present invention is applied to an N-type conductivity type silicon (MO8) process are shown in FIGS. 1 to 6.

(1) Fig、1に示すように、P型Si基板1を用
いて、選択酸化を行なって素子領域を形成し、ゲート酸
化膜6を素子領域に形成させる。そして、全面にCVD
法により多結晶Si3を成長させ、それにN型不純物を
拡散しておく。その後、同じくCVD法により窒化シリ
コン膜を成長させて写真蝕刻法によって素子領域部5と
多結晶シリコン配線部6上のレジストを残すようにする
(1) As shown in FIG. 1, a p-type Si substrate 1 is used to perform selective oxidation to form an element region, and a gate oxide film 6 is formed in the element region. And CVD on the entire surface
Polycrystalline Si3 is grown by the method, and N-type impurities are diffused into it. Thereafter, a silicon nitride film is grown by the same CVD method, and the resist on the element region portion 5 and polycrystalline silicon interconnection portion 6 is left by photolithography.

そしてドライエツチングによね窒化シリコン膜5.6を
残す。
Then, a silicon nitride film 5.6 is left by dry etching.

(2) Ii’ i g 、1の様に窒化シリコン膜が
パターンニン5− グされたら、FigJに示すように、多結晶シリコンの
選択酸化を行ない、多結晶シリコンの酸化膜9が下地の
フィールド酸化膜2に接する様にする。こうして多結晶
シリコン配線8を形成し、又、写真蝕刻法によって拡散
層上の窒化シリコン膜を除去する。
(2) After the silicon nitride film has been patterned as in step 1, selective oxidation of the polycrystalline silicon is performed as shown in FIG. It should be in contact with the oxide film 2. Polycrystalline silicon wiring 8 is thus formed, and the silicon nitride film on the diffusion layer is removed by photolithography.

(3) Fig、3に示すように、拡散層上の多結晶シ
リコンを異方性ドライエツチングによって除去しゲート
酸化膜6を露出させる。ここで、ゲート部の多結晶シリ
コンの側面を酸化し、N型不純物をイオン注入して拡散
層10を形成する。
(3) As shown in FIG. 3, the polycrystalline silicon on the diffusion layer is removed by anisotropic dry etching to expose the gate oxide film 6. Here, the side surfaces of the polycrystalline silicon in the gate portion are oxidized, and N-type impurity ions are implanted to form the diffusion layer 10.

(4) イオン注入後のアニールをしだ後、Fig、4
に示す様に、再度異方性ドライエツチングによって拡散
層上の酸化膜11を除去する。次に、N型不純物を添加
した多結晶シリコンをCVD法により全面に成長させ、
拡散層上の開孔13゜14が十分埋まる程度の膜厚にす
る。この時、開孔13,14が小さい程、開孔13,1
4を埋めるのが容易である。
(4) After annealing after ion implantation, Fig. 4
As shown in FIG. 3, the oxide film 11 on the diffusion layer is removed again by anisotropic dry etching. Next, polycrystalline silicon doped with N-type impurities is grown on the entire surface using the CVD method.
The film thickness is made so that the openings 13° and 14 on the diffusion layer are sufficiently filled. At this time, the smaller the openings 13, 14, the smaller the openings 13, 14.
It is easy to fill in 4.

(5)等方性エツチングによって多結晶シリコン層6− 12をエッチバックして行き、Fig、5に示す様に、
開孔13,14にのみ多結晶シリコン層が残るようにす
る。そして、多結晶シリコンゲート及び配線部の窒化シ
リコン膜を除去し、シリサイドに用いる金属を蒸着し、
その後の熱処理によってシリサイドを形成する。
(5) Etch back the polycrystalline silicon layer 6-12 by isotropic etching, as shown in FIG.
The polycrystalline silicon layer is left only in the openings 13 and 14. Then, the polycrystalline silicon gate and the silicon nitride film of the wiring part are removed, and the metal used for silicide is deposited.
A subsequent heat treatment forms silicide.

Fig、6は上記の方法を適用して製造した完成図の一
例を示す。すなわち、N+型の多結晶シリコン8,13
.14上にシリサイド層18,16゜17を設け、所定
部にAl配線が貫通した層間絶縁膜20を設け、更にそ
の上をカバー酸化膜21でおおったものである。
FIG. 6 shows an example of a completed drawing manufactured by applying the above method. That is, N+ type polycrystalline silicon 8, 13
.. Silicide layers 18, 16.degree. 17 are provided on 14, an interlayer insulating film 20 through which Al wiring passes is provided at a predetermined portion, and the top thereof is further covered with a cover oxide film 21.

本発明は、前記実施例に限定されず、例えば、素子分離
法においても、選択酸化法の代わりに溝堀分離法等の応
用が可能である。
The present invention is not limited to the above-mentioned embodiments, and for example, trench isolation methods can be applied instead of selective oxidation methods in element isolation methods.

以上、詳述したように、本発明によれば、拡散上に不純
物添加の多結晶シリコン層を成長させることによって、
浅い拡散層においてもシリサイド電極を形成することが
できるし、また、ゲート電極との段差も少ないので平坦
化にも有効である。
As detailed above, according to the present invention, by growing an impurity-doped polycrystalline silicon layer on the diffusion,
A silicide electrode can be formed even in a shallow diffusion layer, and since there is little difference in level from the gate electrode, it is effective for planarization.

は本発明による半導体装置の完成断面(1・・・・・・
P型8i基板、2・・・・・・フィールド酸化膜、3・
・・・・・N型多結晶シリコン層、4,5・・・・・・
Si3N4膜、6−・” ケ−) 用8402膜、7−
8i3N4膜、8・・・・・・配線用多結晶シリコン層
、9・・・・・・フィールド8i02膜、10・・・・
・・N型拡散層、11・・・・・・8i0.膜、12・
・・・・・N型多結晶シリコン層、13.14・・・・
・・拡散層上開孔、15・・・・・・フィールド8i0
.膜、16゜17.18・旧・・シリサイド層、19°
°°・・・Al配線、20・・・・・・層間絶縁膜(P
EG)、21・・・・・・カバー酸化膜。
is a completed cross section of the semiconductor device according to the present invention (1...
P-type 8i substrate, 2...Field oxide film, 3.
...N-type polycrystalline silicon layer, 4,5...
Si3N4 film, 8402 film for 6-"K-), 7-
8i3N4 film, 8... polycrystalline silicon layer for wiring, 9... field 8i02 film, 10...
...N-type diffusion layer, 11...8i0. membrane, 12.
...N-type polycrystalline silicon layer, 13.14...
...Opening above the diffusion layer, 15...Field 8i0
.. Film, 16° 17.18 Old... Silicide layer, 19°
°°...Al wiring, 20...Interlayer insulating film (P
EG), 21...Cover oxide film.

Ftj、 / F、!、Z f β− F;s、4 − F、j、汐 手続補正書(方式) 60.2.12 昭和 イ6燈ω月 日 特許庁長官 殿 1、事件の表示 昭和58年 特 許願第153882
号2、発明の名称 半導体装置の製造方法3、補正をす
る者 事件との関係 出 願 人 東京都港区芝五丁目33番1号 (423) 日本電気株式会社 代表者 関本忠弘 4、代理人 電話東京(03)456−3111(大代表)6 補正
の対象 明細書の1図面の簡単な説明」の欄 7 補正の内容 明細書の第8頁2行目の(”Fig、1〜Fig、5 
Jを「第1図〜第5図」と訂正し、同頁3行目の「Fi
g、6 Jを「第6図」に削正する。
Ftj, / F,! , Z f β- F; s, 4-F, j, Shio procedural amendment (formality) 60.2.12 Showa I6 Tow month Date Commissioner of the Japan Patent Office 1, Indication of case 1982 Patent application No. 153882
No. 2, Title of the invention Method for manufacturing semiconductor devices 3, Relationship to the amended person's case Applicant 5-33-1 Shiba, Minato-ku, Tokyo (423) NEC Corporation Representative Tadahiro Sekimoto 4, Agent Telephone Tokyo (03) 456-3111 (main representative) 6 Column 7 “Brief explanation of one drawing of the specification subject to amendment” 7 Line 2 of page 8 of the specification of contents of the amendment (”Fig, 1 to Fig. 5
J was corrected as “Figures 1 to 5” and “Fi” on the third line of the same page
g, 6 J is revised to “Figure 6”.

、m−″ 、 代理人 弁理士 内 原 晋 ・′, m-″, Agent: Patent attorney Susumu Uchihara ・′

Claims (1)

【特許請求の範囲】[Claims] 第一導電型の単結晶シリコン基板上に絶縁膜を形成し、
該絶縁膜上に第1の多結晶シリコンを成長し、MOS)
ランジスタ及び配線とすべき領域以外の前記第1の多結
晶シリコンを選択酸化により、二酸化ケイ素とし、MO
S)ランジスタのソース、ドレインとなる領域の前記第
1の多結晶シリコン及び前記絶縁膜を取り去った後、第
二導電型の不純物を導入し、表面に第二導電型の第2の
多結晶シリコンを成長し、ソースドレイン領域にのみ前
記第2の多結晶シリコンを残し、第1および第2の多結
晶シリコンをシリサイド化することによってソース、ド
レインとなる領域とシリサイド電極間に第2の多結晶シ
リコンを介在させ、しかもソース、ドレインとなる領域
にシリサイド電極を形成してなることを特徴とする半導
体装置の製造方法。
An insulating film is formed on a first conductivity type single crystal silicon substrate,
A first polycrystalline silicon is grown on the insulating film to form a MOS)
The first polycrystalline silicon other than the regions to be transistors and wiring is selectively oxidized to silicon dioxide, and MO
S) After removing the first polycrystalline silicon and the insulating film in the regions that will become the source and drain of the transistor, impurities of a second conductivity type are introduced to form a second polycrystalline silicon of the second conductivity type on the surface. The second polycrystalline silicon is left only in the source and drain regions, and the first and second polycrystalline silicon are silicided to form a second polycrystalline silicon between the source and drain regions and the silicide electrodes. 1. A method of manufacturing a semiconductor device, characterized in that silicide electrodes are formed in regions that will become sources and drains with silicon interposed therebetween.
JP15388283A 1983-08-23 1983-08-23 Manufacture of semiconductor device Pending JPS60143648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15388283A JPS60143648A (en) 1983-08-23 1983-08-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15388283A JPS60143648A (en) 1983-08-23 1983-08-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60143648A true JPS60143648A (en) 1985-07-29

Family

ID=15572168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15388283A Pending JPS60143648A (en) 1983-08-23 1983-08-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60143648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256455A (en) * 1986-04-30 1987-11-09 Hitachi Ltd Semiconductor device and manufacture thereof
JPH02194524A (en) * 1988-12-24 1990-08-01 Samsung Electron Co Ltd Method of ferming low resistance connection at low resistance area of vlsi device
US5122855A (en) * 1988-01-29 1992-06-16 Kabushiki Kaisha Toshiba Semiconductor device with latch-up prevention structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212587A (en) * 1975-07-21 1977-01-31 Hitachi Ltd Mis type semi-conductor integrated device and its production method
JPS584924A (en) * 1981-07-01 1983-01-12 Hitachi Ltd Forming method for semiconductor device electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212587A (en) * 1975-07-21 1977-01-31 Hitachi Ltd Mis type semi-conductor integrated device and its production method
JPS584924A (en) * 1981-07-01 1983-01-12 Hitachi Ltd Forming method for semiconductor device electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256455A (en) * 1986-04-30 1987-11-09 Hitachi Ltd Semiconductor device and manufacture thereof
US5122855A (en) * 1988-01-29 1992-06-16 Kabushiki Kaisha Toshiba Semiconductor device with latch-up prevention structure
JPH02194524A (en) * 1988-12-24 1990-08-01 Samsung Electron Co Ltd Method of ferming low resistance connection at low resistance area of vlsi device

Similar Documents

Publication Publication Date Title
JP5286701B2 (en) Semiconductor device and manufacturing method of semiconductor device
US5883418A (en) Semiconductor device with particular silicide structure
JPH1126597A (en) Fabrication of semiconductor device
US4419813A (en) Method for fabricating semiconductor device
JPH0640583B2 (en) Method for manufacturing semiconductor device
US6184127B1 (en) Semiconductor processing method of forming a contact opening to a region adjacent a field isolation mass, and a semiconductor structure
JPH0574806A (en) Semiconductor device and manufacture thereof
JP3305929B2 (en) Semiconductor device and manufacturing method thereof
KR100275739B1 (en) A transistor having a reverse self-aligned structure and method for fabricating thereof
JPS60143648A (en) Manufacture of semiconductor device
JPH098135A (en) Manufacture of semiconductor device
JP2685033B2 (en) MIS type FET and manufacturing method thereof
JP3457532B2 (en) Method for manufacturing semiconductor device
JP3134344B2 (en) Semiconductor device
JP3855638B2 (en) Manufacturing method of semiconductor device
JP3110054B2 (en) Semiconductor device and manufacturing method thereof
JPH10209167A (en) Semiconductor device and its manufacture
JP3321613B2 (en) Method for forming shallow and deep grooves in silicon substrate
JPH06112481A (en) Manufacture of mos transistor
JPS59124142A (en) Manufacture of semiconductor device
JPH0794721A (en) Semiconductor device and manufacture thereof
JP3285855B2 (en) Semiconductor device and manufacturing method thereof
JPS6092666A (en) Manufacture of mis transistor
JP2600972B2 (en) Method for manufacturing semiconductor device
JP2019192741A (en) Semiconductor device and method of manufacturing semiconductor device