JPS60131904A - Manufacture of fine metallic nickel powder - Google Patents

Manufacture of fine metallic nickel powder

Info

Publication number
JPS60131904A
JPS60131904A JP23968083A JP23968083A JPS60131904A JP S60131904 A JPS60131904 A JP S60131904A JP 23968083 A JP23968083 A JP 23968083A JP 23968083 A JP23968083 A JP 23968083A JP S60131904 A JPS60131904 A JP S60131904A
Authority
JP
Japan
Prior art keywords
powder
nickel
nickel powder
metallic nickel
nickel chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23968083A
Other languages
Japanese (ja)
Other versions
JPS6139373B2 (en
Inventor
Yasuhiro Okajima
岡島 靖弘
Yasuhiro Tsugita
泰裕 次田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23968083A priority Critical patent/JPS60131904A/en
Publication of JPS60131904A publication Critical patent/JPS60131904A/en
Publication of JPS6139373B2 publication Critical patent/JPS6139373B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To manufacture efficiently fine metallic nickel powder by adding a straight chain satd. fatty acid or a carbohydrate to nickel chloride powder and treating the mixture at a specified temp. in a flow of gas contg. hydrogen. CONSTITUTION:To nickel chloride powder is added 1-10wt% straight chain satd. fatty acid and/or carbohydrate. The fatty acid is represented by the formula (where m is >=6), and starch, glucose, dextrin or the like is used as the carbohydrate. The mixture is reduced at 400-750 deg.C in a flow of gas contg. hydrogen to obtain metallic nickel powder of <=1mum particle size.

Description

【発明の詳細な説明】 本発明は、超微細な金属ニッケル粉末の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ultrafine metallic nickel powder.

従来、金属ニッケル粉末の製造方法としては、(1)粉
末状又はガス状のニッケル化合物を熱分解するか、ある
いはガス還元する方法、(2)ニッケル含有水浴液から
還元によって製造する方法、(3)ニッケル合金(Ni
とAe又はSlの合金)を水酸化ナトリウムで処理し、
AdやSiを溶出分離することにより水素活性の高いニ
ッケル粉末を製造する方法及び塊状金属ニッケルから金
属ニッケル粉末を製造する方法等に大別される。この内
第2、第3の方法では望ましい微細な金属ニッケル粉末
を得ることは困難である。
Conventionally, methods for producing metallic nickel powder include (1) a method of thermally decomposing or gaseous reduction of a powdered or gaseous nickel compound, (2) a method of producing it by reduction from a nickel-containing water bath liquid, and (3) a method of producing it by reduction from a nickel-containing water bath liquid. ) Nickel alloy (Ni
and Ae or Sl alloy) with sodium hydroxide,
These methods are broadly divided into two methods: a method for producing nickel powder with high hydrogen activity by eluting and separating Ad and Si, and a method for producing metallic nickel powder from bulk metallic nickel. It is difficult to obtain desirable fine metallic nickel powder using the second and third methods.

第1の方法は、酸化ニッケル、水酸化ニッケルあるいは
炭酸ニッケル粉末を水素ガスによって還元するか、ある
いは蓚酸ニッケルの如き固体粉末や、ニッケルカーボニ
ル化合物の熱分解によって金属ニッケル粉末を得るもの
である。
The first method is to obtain metallic nickel powder by reducing nickel oxide, nickel hydroxide, or nickel carbonate powder with hydrogen gas, or by thermally decomposing a solid powder such as nickel oxalate or a nickel carbonyl compound.

以上の方法によって得られる金属ニッケル粉末は、何れ
も再酸化されやすいという欠点があり、これを防止する
ため種々の不活性化処理が行なわれる。この不活性化処
理により、微細な金属ニッケル粉末の製造が極めて困難
になる。
All of the metal nickel powders obtained by the above methods have the disadvantage of being easily reoxidized, and various inactivation treatments are performed to prevent this. This passivation treatment makes it extremely difficult to produce fine metallic nickel powder.

上記の欠点を解消する方法として、本発明者等は、既に
、塩化ニッケルの水素還元方法による微細な金属ニッケ
ル粉末の製造方法について出願している。(特開昭58
−174506号公報)。
As a method for solving the above-mentioned drawbacks, the present inventors have already filed an application for a method for producing fine metallic nickel powder using a hydrogen reduction method of nickel chloride. (Unexamined Japanese Patent Publication No. 58
-174506).

この方法は、塩化ニッケル粉末を水素ガス含有気流中で
流動させつつ500〜700℃で処理することを特徴と
するものであり、上記のような再酸化のない微細な金属
ニッケル粉末を得ることができるが、本発明は、さらに
微細な金属ニッケル粉末を効率よく得る方法を提供しよ
うとするものである。本発明法で対象とする粉末の平均
粒径が約1μm 以下のものは超微粉とよばれ、従来の
粉末にはない特性が、いろいろ見い出されている。
This method is characterized by treating nickel chloride powder at 500 to 700°C while flowing it in an air stream containing hydrogen gas, and it is possible to obtain fine metallic nickel powder without reoxidation as described above. However, the present invention aims to provide a method for efficiently obtaining even finer metallic nickel powder. Powders targeted by the method of the present invention with an average particle size of about 1 μm or less are called ultrafine powders, and various properties have been found that are not found in conventional powders.

たとえば1)赤外線をよく吸収する。2)微小孔フィル
ターとして使用できる。3)比表面積が極めて大ぎい。
For example, 1) It absorbs infrared rays well. 2) Can be used as a micropore filter. 3) The specific surface area is extremely large.

4)燃焼特性を向上させる。5)低温で焼結する。6)
残留磁束密度が大きく、かつ抗磁力が極めて高い。
4) Improve combustion characteristics. 5) Sinter at low temperature. 6)
It has a large residual magnetic flux density and an extremely high coercive force.

このように1μIn 以下の金属ニッケル粉末の用途は
多く、さらに多くの可能性を秘めており広範な実用化が
期待されるものである。
As described above, metallic nickel powder of 1 .mu.In or less has many uses, has even more potential, and is expected to be put to widespread practical use.

しかしながら、1μm以下の超微粉金属は、極めて活性
である。即ち酸素との親和力が極めて大きいので酸素と
の断絶が必要である。このため、真空蒸発装置が一般に
良く用いられる。つまり真空度10’Torr以下の真
空蒸発装置内に数ないし数百’rorrの不活性ガス(
H6,Ar)を入れ、その中で溶解、蒸発し、特殊な回
収装置にて超微粉金属が回収されている。こσ)方法の
欠点は、生産性か低く、エネルギーを多く消費すること
である。
However, ultrafine metal particles of 1 μm or less are extremely active. That is, it has an extremely high affinity with oxygen, so it is necessary to disconnect it from oxygen. For this reason, vacuum evaporators are commonly used. In other words, several to hundreds of inert gas (
H6, Ar) are put therein, and the metal is dissolved and evaporated, and the ultrafine metal powder is recovered using a special recovery device. The disadvantage of this method is that it has low productivity and consumes a lot of energy.

この欠点を解消するため、本発明者等は、前述の塩化ニ
ッケルの水素還元による微細な金属ニッケル粉末の製造
方法をさらに改良すべく種々の方法について検討を行な
った結果、塩化ニッケルに有機系の化合物、即ち、直鎖
飽和脂肪酸あるいは炭水化物あるいはこれらの組み合せ
化合物を添加し、水素ガス含有気流中にて還元すること
によって好ましい粒度を有し、しかも再酸化の起り難い
金属ニッケル粉末を得る方法を見い出し本発明に到達し
たものである。
In order to overcome this drawback, the present inventors investigated various methods to further improve the above-mentioned method for producing fine metallic nickel powder by hydrogen reduction of nickel chloride. Discovered a method for obtaining metallic nickel powder having a preferable particle size and resistant to reoxidation by adding a compound, i.e., a linear saturated fatty acid, a carbohydrate, or a combination thereof, and reducing it in a hydrogen gas-containing gas stream. This has led to the present invention.

すなわち本発明の方法は塩化ニッケルに、ラウリン酸、
ミリスチン酸、ステアリン酸等の直鎖飽和脂肪酸あるい
は殿粉、ブトつ糖、デキストリン等の炭水化物を6水塩
の塩化ニッケルに対して外割りで1〜10重量%添加し
、温度400〜750℃にて、水素ガス含有気流中、好
ましくは水素ガス30容量%以上、残部はN2、Ar等
の不活性ガス中にて、固体状の塩化ニッケルを還元処理
した後不活性雰囲気中で常温まで冷却して微細な金属ニ
ッケル粉末として取り出すようにしたものである。
That is, the method of the present invention adds lauric acid and nickel chloride to nickel chloride.
Straight-chain saturated fatty acids such as myristic acid and stearic acid or carbohydrates such as starch, butuctose, and dextrin are added in an amount of 1 to 10% by weight relative to the nickel chloride hexahydrate, and the temperature is raised to 400 to 750°C. Then, solid nickel chloride is reduced in an air flow containing hydrogen gas, preferably 30% by volume or more of hydrogen gas, and the remainder is an inert gas such as N2 or Ar, and then cooled to room temperature in an inert atmosphere. The nickel powder is then extracted as fine metallic nickel powder.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明の実施に際して、使用可能な添加剤としては、一
般式CmH2mO2中m之6の直鎖飽和脂肪酸、あるい
は炭水化物あるいはこれらの組み合せ化合物を用いるこ
とができる。特に、効果の著しいものとしてステアリン
酸あるいはデキストリンが好ましい。該脂肪酸中、mが
6以下のものは微細ニッケルとするための効果が弱く実
用的ではな(−0 一般に直鎖飽和脂肪酸は、セッケン、金属セッケン、表
面活性剤、分散剤などの原料として用いられ、その起泡
性が良いことが知られている。特に、ステアリン酸が、
飽和脂肪酸セッケンとして良く用いられている。そして
、泡立ちの面からすると、さらにラウリン酸、ミリスチ
ン酸の方が良好とされている。また、炭水化物は、いわ
ゆる糊の原料として用いられるが、直鎖飽和脂肪酸と比
較的構造が似ている。
In carrying out the present invention, additives that can be used include m6 linear saturated fatty acids of the general formula CmH2mO2, carbohydrates, or combinations thereof. In particular, stearic acid or dextrin are preferred as they are highly effective. Among these fatty acids, those with m of 6 or less have a weak effect on forming fine nickel and are not practical (-0 Generally, straight chain saturated fatty acids are used as raw materials for soaps, metal soaps, surfactants, dispersants, etc. It is known that stearic acid has good foaming properties.In particular, stearic acid
It is often used as a saturated fatty acid soap. In terms of foaming, lauric acid and myristic acid are said to be even better. Carbohydrates are also used as raw materials for so-called glue, and have a relatively similar structure to straight-chain saturated fatty acids.

これらの化合物は、G、H,Oから成り、分子式として
cmHnoeで示される炭化水素化合物である。特にm
〉6の直鎖飽和脂肪酸はCm82m0z で示され、炭
水化物のGrnP2’mOm−1に比べ酸素含有量が少
ない。
These compounds are hydrocarbon compounds consisting of G, H, and O and having the molecular formula cmHnoe. Especially m
The straight chain saturated fatty acid of >6 is shown as Cm82m0z and has a lower oxygen content than the carbohydrate GrnP2'mOm-1.

このような、直鎖飽和脂肪酸あるいは炭水化物を外割り
で1〜10重量%、塩化ニッケル粉末に添加し、400
〜750℃にて還元処理することにより、極めて効率的
にかつ安定に平均粒径(Fsss)=1μm 以下の微
細なニッケル粉末を生成させ得ることを見い出した。さ
らに驚くべきことには、本発明によれば、Fs6s=1
μm以下でかつ比表面積5 m 2 / jJ 以上の
微細粉末にもかかわらず、再酸化が殆んどないことであ
る。従って本発明法により得られる製品の散り扱いは極
めて容易である。
Add 1 to 10% by weight of such linear saturated fatty acids or carbohydrates to nickel chloride powder,
It has been found that fine nickel powder with an average particle size (Fsss) of 1 μm or less can be produced extremely efficiently and stably by reduction treatment at ~750°C. Even more surprisingly, according to the invention, Fs6s=1
Despite being a fine powder with a particle size of μm or less and a specific surface area of 5 m 2 /jJ or more, there is almost no reoxidation. Therefore, it is extremely easy to handle the product obtained by the method of the present invention.

本発明の方法において、該脂肪酸等の添加剤の添加量を
塩化ニッケル(6水塩)に対し外割りで1〜10重量%
とするのは、これ以下では効果が認められず、これ以上
でも特に効果が向上しないからである。還元時の温度を
400〜750℃とするのは9これ以下では還元速度が
小さく、これ以上ではニッケルが揮散するためである。
In the method of the present invention, the amount of additives such as fatty acids added is 1 to 10% by weight relative to nickel chloride (hexahydrate).
This is because no effect is observed below this range, and no particular improvement in effect occurs above this range. The reason why the temperature during reduction is set to 400 to 750°C is that below this temperature, the reduction rate is low, and above this temperature, nickel will volatilize.

以下これらについて具体的に説明する。These will be explained in detail below.

まず添加剤としてステアリン酸の添加量が平均粒径(F
sssμm)に及ぼす影響を調べたのが第1図である。
First, the amount of stearic acid added as an additive is determined by the average particle size (F
Fig. 1 shows an investigation of the effect on sssμm).

第1図より、処理温度500℃の場合ステアリン酸の添
加量が多くなるにしたがって平均粒径(Fs、ss)が
小さくなっていることが明らかである。第2図にはNi
Ce2・5H20にステアリン酸を外割りで1重量7o
添加した塩化ニッケル装入量がニッケル粉の平均粒径(
以下F’sssと略す)に及ぼす影響を示した。還元処
理温度は500Gである。
From FIG. 1, it is clear that when the treatment temperature is 500° C., the average particle size (Fs, ss) becomes smaller as the amount of stearic acid added increases. Figure 2 shows Ni
Ce2・5H20 and stearic acid are divided into 1 weight 7o
The amount of nickel chloride added increases the average particle size of nickel powder (
(hereinafter abbreviated as F'sss). The reduction treatment temperature is 500G.

添加剤無添加の場合には塩化ニッケル装入量とともに、
F’sssが大きくなる傾向があるが、ステアリン酸添
加の場合は、むしろF’sssは小さくなる傾向がある
。また図中の矢印で示しているのは、生成した微細な金
属ニッケル粉末のF’sssのバラツキで、ステアリン
酸添加の方がバラツキが小さいことが明らかである。即
ちステアリン酸添加の方が微細な金属ニッケル粉を安定
して得られることになる。
In the case of no additives, along with the amount of nickel chloride charged,
F'sss tends to increase, but when stearic acid is added, F'sss tends to decrease. Furthermore, the arrows in the figure indicate the variation in F'sss of the produced fine metallic nickel powder, and it is clear that the variation is smaller when stearic acid is added. That is, the addition of stearic acid makes it possible to more stably obtain fine metallic nickel powder.

以上の具体例でわかるように、本発明法においてはF 
s s s、1μm 以下の所謂超微粉の金属ニッケル
粉末が効率よく得られ、殆んど再酸化しない製品が得ら
れる。又この粉末は比表面積5■12/g以上と太きい
ものが得られるという利点も得られる。
As can be seen from the above specific examples, in the method of the present invention, F
A so-called ultrafine metallic nickel powder of 1 μm or less can be efficiently obtained, and a product that is hardly reoxidized can be obtained. Further, this powder has the advantage that it can be obtained with a large specific surface area of 5.12/g or more.

以下、実施例について説明する。Examples will be described below.

実施例1 6水塩の塩化ニッケルを150℃で無水にした塩化ニッ
ケル1500.9にデキストリンを外割りで1重量%添
加して混合しこれをニッケル ボート中に入れ環状炉を
用い、5oo℃にて水素5゜容量%残部窒素雰囲気で還
元して得られた微細な金属ニッケル粉末の平均粒径FS
SSを測定したところF’sss = 0.97μIT
Iであった。また比表面積は5 ■」2’/ 、¥ で
あった。なおこの微細金属ニッケル粉末は、取り扱い時
に、発熱をともなう角酸化は殆んど認められなかった。
Example 1 Nickel chloride (hexahydrate salt) was made anhydrous at 150°C and 1% by weight of dextrin was added and mixed.The mixture was placed in a nickel boat and heated to 500°C using an annular furnace. Average particle size FS of fine metallic nickel powder obtained by reduction with 5% hydrogen by volume and balance nitrogen atmosphere
When SS was measured, F'sss = 0.97μIT
It was I. Further, the specific surface area was 5 ■''2'/, ¥. It should be noted that when handling this fine metallic nickel powder, almost no corner oxidation accompanied by heat generation was observed.

確認のため、酸素を分析したところ0.74%であった
For confirmation, oxygen was analyzed and found to be 0.74%.

実施例2 6水塩の塩化ニッケル1500.9に、ラウリン酸を外
割りで1N量%添加して混合し150℃で無水にした塩
化ニッケルをニッケル ボート中に入れ、600℃にて
実施例1と同様にして水素(水素4O容量%残部アルゴ
ン)還元し得られた微細な金属ニッケル粉末の平均粒径
F’sssを測定したところFsss= 1.00pm
であった。また比表面積は4.5m2/、@であった。
Example 2 Nickel chloride, which was made by adding 1N amount of lauric acid to hexahydrate nickel chloride 1500.9 and mixing it and making it anhydrous at 150°C, was placed in a nickel boat and heated at 600°C Example 1 When the average particle size F'sss of the fine metallic nickel powder obtained by reducing hydrogen (4O hydrogen by volume, balance argon) was measured in the same manner as above, Fsss = 1.00 pm.
Met. Further, the specific surface area was 4.5 m2/@.

なお、この微細金属ニッケル粉末は、取り扱い時に、発
熱にともなう再酸化は殆んど認められなかった。確認の
ため含有酸素量を分析したところ0.50%であった。
It should be noted that when this fine metallic nickel powder was handled, almost no reoxidation due to heat generation was observed. For confirmation, the oxygen content was analyzed and found to be 0.50%.

実施例3 6水塩の塩化ニッケルに、ステアリン酸を外割りで5重
量%添加し混合したのち150℃で無水にした塩化ニッ
ケル1500gをニッケル ボート中に入れ、700℃
にて水素(水素30容量%残部窒素)還元して得られた
微細金属ニッケル粉末の平均粒径Fsssを測定したと
ころFsss=0.60μ■」 であった。また比表面
積は10 m 2 / jJであった。なお、この微細
金属ニッケル粉末は取り扱い時に発熱にともなう再酸化
は殆んど認められなかった。、確認のため酸素を分析し
たところ0.85%であった。以上の実施例から明らか
なように何れもF’SSSは1.0μITI 以下で比
表面積は5m2/y以上のものが得られた。
Example 3 5% by weight of stearic acid was added to hexahydrate nickel chloride, mixed, and anhydrous at 150°C. 1500g of nickel chloride was placed in a nickel boat and heated to 700°C.
The average particle diameter Fsss of the fine metallic nickel powder obtained by reducing hydrogen (hydrogen 30% by volume, balance nitrogen) was measured, and it was found that Fsss=0.60μ■. Further, the specific surface area was 10 m 2 /jJ. In addition, almost no reoxidation due to heat generation was observed in this fine metallic nickel powder during handling. For confirmation, oxygen was analyzed and found to be 0.85%. As is clear from the above examples, in all cases, F'SSS was less than 1.0 μITI and specific surface area was greater than 5 m2/y.

比較例 塩化ニッケル 6H20を150℃で無水にした塩化ニ
ッケル150(lをニッケル ボート中に入れ500℃
にて水素(水素50容量%残部窒素)還元して得られた
微細な金属ニッケル粉末の平均粒径F’sssを測定し
たところFsss= 2.15μmであった。また比表
面積はQ、5 m 2/jj であった。
Comparative Example Nickel chloride 6H20 was made anhydrous at 150°C and nickel chloride 150 (l) was placed in a nickel boat and heated to 500°C.
When the average particle diameter F'sss of the fine metallic nickel powder obtained by hydrogen reduction (hydrogen 50% by volume balance nitrogen) was measured, it was found to be Fsss = 2.15 μm. Further, the specific surface area was Q, 5 m 2 /jj.

なおこの微細金属ニッケル粉末は取り扱い時に発熱をと
もなう再酸化は殆んど認められなかった。
In this fine metallic nickel powder, almost no reoxidation accompanied by heat generation was observed during handling.

確認のため含有酸素量を分析したところ0,6%であっ
た。
For confirmation, the oxygen content was analyzed and found to be 0.6%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はステアリン酸の添加量が平均粒径(Fsssμ
m) に及ぼす影響を示すグラフで、横軸はステアリン
酸の添加量(車量%/ NjCg2・6H20)、縦軸
1重量%添加した塩化ニッケル装入量がニッケル粉の平
均粒径(F’sss、μm)に及はす影響を示すグラフ
で、横軸ばNiCd2装入量Cg/バッチ)、縦軸は平
均粒径(Fsss、μm ) である。
Figure 1 shows that the amount of stearic acid added is determined by the average particle size (Fsssμ
In this graph, the horizontal axis shows the amount of stearic acid added (vehicle weight%/NjCg2.6H20), and the vertical axis shows the amount of nickel chloride added at 1% by weight on the average particle size of nickel powder (F' sss, μm), the horizontal axis is the NiCd2 charge (Cg/batch), and the vertical axis is the average particle size (Fsss, μm).

Claims (1)

【特許請求の範囲】 1)塩化ニッケル粉末を水素ガスで還元して、金属ニッ
ケル粉末を製造する方法において、塩化ニッケル粉末に
添加剤として直鎖飽和脂肪酸及び又は炭水化物を添加し
たのち、水素ガス含有気流中400〜750℃で処理す
ることを特徴とする微細な金属ニッケル粉末の製造方法
。 2)直鎖飽和脂肪酸は、一般式CmH2mC)2 中の
mは6以上であることを特徴とする特許請求の範囲第1
項に記載の方法。 3)添加剤の量は、6水塩の塩化ニッケルに対し外割り
で1〜10車量%である特許請求の範囲第1項に記載の
方法。
[Claims] 1) In a method for producing metallic nickel powder by reducing nickel chloride powder with hydrogen gas, after adding linear saturated fatty acids and/or carbohydrates as additives to nickel chloride powder, hydrogen gas-containing A method for producing fine metallic nickel powder, characterized by processing at 400 to 750°C in an air stream. 2) The linear saturated fatty acid has the general formula CmH2mC)2, where m is 6 or more. Claim 1
The method described in section. 3) The method according to claim 1, wherein the amount of the additive is 1 to 10% by weight based on the nickel chloride of the hexahydrate salt.
JP23968083A 1983-12-21 1983-12-21 Manufacture of fine metallic nickel powder Granted JPS60131904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23968083A JPS60131904A (en) 1983-12-21 1983-12-21 Manufacture of fine metallic nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23968083A JPS60131904A (en) 1983-12-21 1983-12-21 Manufacture of fine metallic nickel powder

Publications (2)

Publication Number Publication Date
JPS60131904A true JPS60131904A (en) 1985-07-13
JPS6139373B2 JPS6139373B2 (en) 1986-09-03

Family

ID=17048309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23968083A Granted JPS60131904A (en) 1983-12-21 1983-12-21 Manufacture of fine metallic nickel powder

Country Status (1)

Country Link
JP (1) JPS60131904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520824A (en) * 2004-11-19 2008-06-19 ファルコンブリッジ リミテッド Method for producing fine, low bulk density metallic nickel powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520824A (en) * 2004-11-19 2008-06-19 ファルコンブリッジ リミテッド Method for producing fine, low bulk density metallic nickel powder
JP2012112044A (en) * 2004-11-19 2012-06-14 Falconbridge Ltd Method for producing fine, low bulk density, metallic nickel powder

Also Published As

Publication number Publication date
JPS6139373B2 (en) 1986-09-03

Similar Documents

Publication Publication Date Title
KR101629816B1 (en) Process for Preparing Tantalum Powder for Capacitors
US20080105085A1 (en) Method Of Production Of High Purity Silver Particles
JPS6347304A (en) Powder metallurgical method for producing compact having high strength and low relative density from heat resistant aluminum alloy
JPH0362764B2 (en)
JPS62294435A (en) Cryogenic systesis
JPS6171840A (en) Oxide catalyst precursor composition and its production
JPS60131904A (en) Manufacture of fine metallic nickel powder
US2730441A (en) Process of reducing iron formate
JPS58171506A (en) Manufacture of fine metallic nickel powder
JPS6021307A (en) Production of ferromagnetic metallic powder
JP4010526B2 (en) Manufacturing method of iron alloy briquette
JPS6223912A (en) Production of fine metallic powder
Ram et al. Synthesis, stability against air and moisture corrosion, and magnetic properties of finely divided loose Nd/sub 2/Fe/sub 14/BH/sub x/, x/spl les/5, hydride powders
JPS60238406A (en) Manufacture of hyperfine metallic powder
JPS63243210A (en) Production of fine metal powder
JP2736693B2 (en) Method for producing jarosite particle powder
JPS59232249A (en) Manufacture of porous sintered body of stainless steel powder
JPS60128230A (en) Production of vanadium
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JP2669010B2 (en) Desiliconization method in metal salt solution
JPH10251714A (en) Production of silver powder for powder metallurgy
JPH05156325A (en) Production of fine metal powder
JPH05156324A (en) Production of superfine nickel aggregated powder
JPS61158828A (en) Production of iron oxide fine powder
JPS5919162B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees