JPH06271905A - Production of monodisperse gold superfine particle - Google Patents

Production of monodisperse gold superfine particle

Info

Publication number
JPH06271905A
JPH06271905A JP9351593A JP9351593A JPH06271905A JP H06271905 A JPH06271905 A JP H06271905A JP 9351593 A JP9351593 A JP 9351593A JP 9351593 A JP9351593 A JP 9351593A JP H06271905 A JPH06271905 A JP H06271905A
Authority
JP
Japan
Prior art keywords
gold
ultrafine
amorphous alloy
particles
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9351593A
Other languages
Japanese (ja)
Other versions
JP3300460B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Masami Uzawa
正美 鵜沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP09351593A priority Critical patent/JP3300460B2/en
Publication of JPH06271905A publication Critical patent/JPH06271905A/en
Application granted granted Critical
Publication of JP3300460B2 publication Critical patent/JP3300460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce the monodisperse gold superfine particle which is stable in a high-temp. region by heat treating an amorphous alloy compounded with Zr and Au and Ni, etc., at specific ratios at a specific temp. in an oxygen-contg.. atmosphere. CONSTITUTION:The amorphous alloy is produced by compounding Zr and Au and M (>=1 kinds among Cr, Mo, Fe, Co, Ni, Pt, Cu, Al, Si, etc.) so as to attain (ZraAU100-a)bM100-b (where 50>=a>=90, 1<=b<=30) and melting the mixture in an atmosphere of argon or helium in a vessel from which oxygen is removed. The amorphous alloy produced in such a manner is heat treated at 200 to 1000 deg.C in the atmosphere of about 1 to 50vol.% oxygen partial pressure diluted with argon, helium or nitrogen, by which the amorphous alloy is oxidized. As a result, the monodisperse gold superfine particle having much better high-temp. stability than by the conventional methods is obtd. with a simple process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単分散状超微粒子の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing monodisperse ultrafine particles.

【0002】[0002]

【従来の技術】一般に金超微粒子の製造方法には液相法
と気相法とがある。液相法は、例えば塩化金酸溶液等に
適当な沈殿剤を添加し、金超微粒子を析出させる方法で
ある。この金超微粒子を単分散化するためには、ヘマタ
イトや酸化チタン等の担体を溶液中に混ぜ、金の析出反
応を起こせば、担体上に単分散状金超微粒子が製造でき
る。
2. Description of the Related Art Generally, there are a liquid phase method and a gas phase method for producing ultrafine gold particles. The liquid phase method is a method in which, for example, a suitable precipitating agent is added to a chloroauric acid solution or the like to precipitate ultrafine gold particles. In order to monodisperse the gold ultrafine particles, a carrier such as hematite or titanium oxide is mixed in the solution and a gold precipitation reaction is caused to produce monodispersed gold ultrafine particles on the carrier.

【0003】一方、気相法は、例えば金インゴットを高
温で加熱蒸発し、気相中で金超微粒子を製造する方法が
ある。単分散化するために回収した金超微粒子を例えば
エチルアルコール中に超音波等を使用して分散させ、分
散液中に担体を投入し担持させる。
On the other hand, the vapor phase method includes, for example, a method of heating and evaporating a gold ingot at a high temperature to produce ultrafine gold particles in a vapor phase. The gold ultrafine particles recovered for monodispersion are dispersed in, for example, ethyl alcohol by using ultrasonic waves, and a carrier is put into the dispersion and supported.

【0004】これらの方法でいずれも良好な単分散状金
超微粒子が得られるが、以下の欠点がある。液相法は、
1)超微粒子を得るために金超微粒子同士が衝突し凝集
しないよう溶液中の金の濃度を極端に稀薄にする必要が
ある。2)従って、量産時には大規模な容器が必要にな
る。3)沈殿剤投入後の溶液は再利用できないため多量
の廃液が生じる。気相法は、1)金を蒸発させるために
多くの電力が必要になる。2)超微粒子同士の凝集を防
ぐため気相中の金の密度は極端に小さくする必要があ
る。3)従って、量産時には多くの空間をもった蒸発装
置や多数の蒸発装置が必要になる。4)担持工程が別途
必要となる。
Good monodisperse gold ultrafine particles can be obtained by any of these methods, but they have the following drawbacks. The liquid phase method is
1) In order to obtain ultrafine particles, it is necessary to extremely dilute the gold concentration in the solution so that the ultrafine gold particles do not collide with each other and aggregate. 2) Therefore, a large-scale container is required for mass production. 3) Since the solution after the precipitant is added cannot be reused, a large amount of waste liquid is generated. The vapor phase method requires 1) a lot of electric power to evaporate gold. 2) It is necessary to make the density of gold in the vapor phase extremely small in order to prevent aggregation of ultrafine particles. 3) Therefore, in mass production, an evaporator having many spaces and many evaporators are required. 4) A supporting step is required separately.

【0005】さらに、これらの方法によって製造された
超微粒子は、高温域では金同士が極めて焼結しやすい状
態にあり高温域での使用には適していなかった。
Further, the ultrafine particles produced by these methods are not suitable for use in the high temperature region because gold particles are extremely likely to sinter in the high temperature region.

【0006】また近年金超微粒子の製造法としてアモル
ファス材料を使用したものが報じられている。これはZ
rとAuとからなるアモルファス材料を空気中や高湿中
で酸化することによりZrO中に金超微粒子を分散さ
せるようにしたものである。この方法は、前記の液相法
や気相法にある欠点はなく担持工程も不要であることか
ら優れてはいるが高温では焼結しやすいため好ましい方
法ではない。
In recent years, a method using an amorphous material has been reported as a method for producing ultrafine gold particles. This is Z
The ultrafine gold particles are dispersed in ZrO 2 by oxidizing an amorphous material composed of r and Au in air or in high humidity. This method is excellent because it does not have the drawbacks of the liquid phase method and the gas phase method and does not require a supporting step, but it is not preferable because it easily sinters at high temperatures.

【0007】[0007]

【発明が解決しようとする課題】以上の従来技術によっ
て製造される金超微粒子は、高温での安定性に多大な問
題点があり、金超微粒子の高温域での使用、例えば触媒
体等での工業化を停滞させる大きな原因となっていた。
従って、本発明の目的は高温域でも安定な単分子状金超
微粒子の製造方法を提供することにある。
The ultrafine gold particles produced by the above-mentioned conventional techniques have a great problem in stability at high temperature. Therefore, the ultrafine gold particles are used in a high temperature range, for example, in a catalyst body. Was a major cause of slowing down the industrialization of.
Therefore, an object of the present invention is to provide a method for producing monomolecular gold ultrafine particles which is stable even in a high temperature range.

【0008】[0008]

【課題を解決するための手段】本発明者らは、従来技術
の問題点を解決すべく種々研究を行った結果、ZrとA
uとM(但し、MはSc、Y、La、Ce、Pr、N
d、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Lu、Ti、Hf、V、Ta、Cr、Mo、
W、Mn、Re、Fe、Ru、Os、Rh、Ir、C
o、Ni、Pd、Pt、Cu、Ag、Zn、Cd、H
g、B、Al、Ga、In、Si、Ge、Sn、Pb、
P、Sb及びBiから選ばれた少なくとも1種)とから
なるアモルファス合金を酸素を含む雰囲気中で熱処理す
ると高温域でも金超微粒子が単分散状に保持された材料
が製造出来ることを見出だし本発明を完成した。
The present inventors have conducted various studies to solve the problems of the prior art, and as a result, Zr and A
u and M (where M is Sc, Y, La, Ce, Pr, N
d, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, Lu, Ti, Hf, V, Ta, Cr, Mo,
W, Mn, Re, Fe, Ru, Os, Rh, Ir, C
o, Ni, Pd, Pt, Cu, Ag, Zn, Cd, H
g, B, Al, Ga, In, Si, Ge, Sn, Pb,
It has been found that a material in which ultrafine gold particles are held in a monodisperse state can be produced even in a high temperature range by heat-treating an amorphous alloy composed of P, Sb and at least one selected from Bi) in an atmosphere containing oxygen. Completed the invention.

【0009】すなわち、本発明は、ZrとAuとM(但
し、MはSc、Y、La、Ce、Pr、Nd、Sm、E
u、Gd、Tb、Dy、Ho、Er、Tm、Yb、L
u、Ti、Hf、V、Ta、Cr、Mo、W、Mn、R
e、Fe、Ru、Os、Rh、Ir、Co、Ni、P
d、Pt、Cu、Ag、Zn、Cd、Hg、B、Al、
Ga、In、Si、Ge、Sn、Pb、P、Sb及びB
iから選ばれた少なくとも1種)とからなるアモルファ
ス合金を酸素を含む雰囲気中で熱処理することを特徴と
する単分散状金超微粒子の製造方法である。
That is, according to the present invention, Zr, Au, and M (where M is Sc, Y, La, Ce, Pr, Nd, Sm, E).
u, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
u, Ti, Hf, V, Ta, Cr, Mo, W, Mn, R
e, Fe, Ru, Os, Rh, Ir, Co, Ni, P
d, Pt, Cu, Ag, Zn, Cd, Hg, B, Al,
Ga, In, Si, Ge, Sn, Pb, P, Sb and B
A method for producing monodisperse gold ultrafine particles, which comprises heat-treating an amorphous alloy consisting of at least one selected from i) in an atmosphere containing oxygen.

【0010】[0010]

【作用】本発明に使用するZr、Au及びMのいずれの
金属も純度99.5%以上のものを使用するのが好まし
い。
The metal used in the present invention is preferably Zr, Au or M having a purity of 99.5% or more.

【0011】また、ZrとAuとMとでつくるアモルフ
ァス合金は、下記の式で表される組成とするのが好まし
い。 (ZrAu100−a100−b (但
し、50≦a≦90、1≦b≦30) ここで、a及びbは合金がアモルファス化する範囲を示
すものであり、この範囲以外ではアモルファス化するの
が困難である。
The amorphous alloy made of Zr, Au and M preferably has a composition represented by the following formula. (Zr a Au 100-a ) b M 100-b (however, 50 ≦ a ≦ 90, 1 ≦ b ≦ 30) Here, a and b represent the range in which the alloy becomes amorphous, and other than this range. It is difficult to make it amorphous.

【0012】Mおよびbは使用する温度域によって適宜
選択する。すなわち、一般にbは大きいほど、MはZr
との親和性が高いものほど、高温でも金が超微粒子性を
失わない。しかしながら余り高い温度付近で安定なMお
よびbの選択は、比較的低温では金が超微粒子化しない
ため、後述の実施例を参考にして最適な組み合わせを選
択するのが良い。
M and b are appropriately selected depending on the temperature range used. That is, in general, the larger b is, the more M is Zr.
The higher the affinity with, the less the gold loses its ultrafine particle properties even at high temperatures. However, in selecting M and b that are stable around a temperature that is too high, gold does not become ultrafine particles at a relatively low temperature, so it is preferable to select an optimum combination with reference to the examples described later.

【0013】本発明の単分散状金超微粒子は次のように
して製造する。まず、Zr、Au及びMを熔解し合金化
する。熔解には各金属原料を熔解できる加熱源と雰囲気
を調整できる容器が必要である。加熱源としては直流ア
ークや高周波が使用できるので、一般に市販されている
アーク熔解炉や高周波熔解炉を使用するのが最も簡便で
ある。
The monodisperse gold ultrafine particles of the present invention are manufactured as follows. First, Zr, Au and M are melted and alloyed. For melting, a heating source capable of melting each metal raw material and a container capable of adjusting the atmosphere are required. Since a DC arc or a high frequency can be used as the heating source, it is most convenient to use an arc melting furnace or a high frequency melting furnace which is generally commercially available.

【0014】雰囲気は金属が酸化しないよう酸素を除去
した容器内にアルゴンやヘリウムを導入して熔解する。
なお、Zrは雰囲気に窒素が存在すると容易に窒化され
窒化ジルコニウムとなり、しかもこのものはアモルファ
ス形成には寄与しないため事実上Zrが減少したことに
なるので、窒素の雰囲気での熔解は不適当である。
The atmosphere is melted by introducing argon or helium into a container from which oxygen has been removed so that the metal is not oxidized.
Zr is easily nitrided to zirconium nitride in the presence of nitrogen in the atmosphere, and since this does not contribute to the formation of amorphous, it means that Zr is actually reduced. Therefore, melting in a nitrogen atmosphere is inappropriate. is there.

【0015】つぎに、作成された合金をアモルファス化
する。アモルファス化は、高周波を熱源とした単ロール
型液体急冷法やガスアトマイズ法、直流アークを熱源と
した回転電極法等を使用する。これら以外の方法を用い
る場合には、得られるアモルファス合金が薄帯や微粉末
状となるものを選択すべきである。これは、最終的に得
られる単位重量当りの金超微粒子の量を大きくするため
である。
Next, the produced alloy is made amorphous. For the amorphization, a single roll type liquid quenching method using a high frequency heat source, a gas atomizing method, a rotating electrode method using a direct current arc heat source, or the like is used. When using a method other than these, the amorphous alloy to be obtained should be selected in the form of ribbon or fine powder. This is to increase the amount of ultrafine gold particles finally obtained per unit weight.

【0016】また、合金が比較的高融点の場合には熔解
温度の高い回転電極法を使用する。回転電極法は、熱源
に高周波よりも高温なアーク放電を使用しており、より
高融点の金属を熔解することが出来る。ただし、回転電
極法では合金をロッド状に加工する必要があるので注意
を要する。
When the alloy has a relatively high melting point, the rotating electrode method having a high melting temperature is used. The rotating electrode method uses arc discharge at a temperature higher than high frequency as a heat source, and is capable of melting a metal having a higher melting point. However, it should be noted that the rotating electrode method requires processing the alloy into a rod shape.

【0017】最後に、作成されたアモルファス合金を酸
素を含む雰囲気中で熱処理して酸化する。雰囲気はアル
ゴンやヘリウム、窒素ガスで希釈した酸素分圧1〜50
体積%、好ましくは5〜30体積%の範囲である。酸素
分圧が1体積%未満の場合、酸化反応が極端に進みにく
くなり好ましくなく、50体積%を越えると酸素の助燃
性の効果が大きくなりすぎ急激な酸化反応が生じ、例え
ばアモルファス合金が爆発的な酸化反応とともに大きく
発熱して設定温度以上になるため、超微粒子が溶融する
こともあるので好ましくない。雰囲気としては、空気中
で酸化処理するのが最も簡便で経済的にも優れている。
Finally, the formed amorphous alloy is heat-treated and oxidized in an atmosphere containing oxygen. The atmosphere is an oxygen partial pressure of 1 to 50 diluted with argon, helium, or nitrogen gas.
It is in the range of volume%, preferably 5 to 30 volume%. If the oxygen partial pressure is less than 1% by volume, the oxidation reaction is extremely difficult to proceed, which is not preferable. Heat is generated along with the general oxidation reaction and the temperature becomes higher than the set temperature, which is not preferable because the ultrafine particles may melt. As the atmosphere, the oxidation treatment in air is the simplest and economically superior.

【0018】熱処理温度は200℃〜1000℃、好ま
しくは300℃〜800℃である。200℃未満では酸
化が起こらず好ましくなく、1000℃を超える温度で
は金の融点(1063℃)に極めて近いため溶融が始ま
るため好ましくない。なお、200℃〜1000℃の温
度範囲ではZrの窒化反応が生じないことを付記する。
以上の工程によって、高温でも安定した超微粒子径を保
つ単分散状金超微粒子が得られる。しかもアモルファス
合金化することにより、通常の合金状態よりも耐酸化性
の向上がなされることは良く知られたことであるので、
このことも本発明方法の利点でもある。
The heat treatment temperature is 200 ° C to 1000 ° C, preferably 300 ° C to 800 ° C. If the temperature is lower than 200 ° C., no oxidation occurs, which is not preferable, and if the temperature is higher than 1000 ° C., the melting point is very close to the melting point of gold (1063 ° C.) and melting is started. It should be noted that Zr nitriding reaction does not occur in the temperature range of 200 ° C to 1000 ° C.
Through the above steps, monodispersed gold ultrafine particles that maintain a stable ultrafine particle size even at high temperature can be obtained. Moreover, it is well known that by making an amorphous alloy, the oxidation resistance is improved as compared with the normal alloy state.
This is also an advantage of the method of the present invention.

【0019】本発明方法により単分散状金超微粒子が得
られるメカニズムは完全には解明されていないが、Zr
とMによって構成される金属は耐酸化性の非常に高い合
金であり、上述の条件で酸化させるとZrとMが僅かに
酸化され、金は単分散状の超微粒子として表層に露出す
る。金超微粒子は周囲をZrとMからなる合金によって
囲まれているため超微粒子同士の接触もなく、従来技術
では粒の粗大化が生じる300℃以上でも安定した粒径
が得られるものと推定される。
Although the mechanism of obtaining monodisperse gold ultrafine particles by the method of the present invention has not been completely clarified, Zr
The metal composed of M and M is an alloy having a very high oxidation resistance, and when it is oxidized under the above conditions, Zr and M are slightly oxidized, and gold is exposed to the surface layer as monodispersed ultrafine particles. Since the ultrafine gold particles are surrounded by an alloy composed of Zr and M, there is no contact between the ultrafine particles, and it is presumed that a stable particle size can be obtained even at 300 ° C. or higher where coarsening of the particles occurs in the conventional technique. It

【0020】[0020]

【実施例】【Example】

実施例1 純度99.9%の金属原料を、(Zr70Au30
90Ni10となるように秤り取りアーク熔解炉で合金
化した。雰囲気ガスは高純度アルゴンを使用した。つぎ
に、この合金を単ロール型液体急冷装置によりアモルフ
ァス化した。得られたものは幅5mm、厚さ10μmの
テープ状で、X線回折からアモルファス化していること
を確認した。このアモルファス合金を空気中500℃で
1時間酸化処理を行った。酸化処埋後の材料のX線回折
からアモルファス相と結晶からなり、結晶相は金とZr
の混合体であった。電子顕微鏡によれば、金は5〜
30nmの単分散状超微粒子として存在していた。な
お、示差熱重量分析によれば、この材料はZrの約70
%がZrのままであった。
Example 1 A metal raw material having a purity of 99.9% was added (Zr 70 Au 30 ).
90 Ni 10 was weighed and alloyed in an arc melting furnace. High-purity argon was used as the atmosphere gas. Next, this alloy was made amorphous by a single roll type liquid quenching device. The obtained product was in the form of a tape having a width of 5 mm and a thickness of 10 μm, and it was confirmed by X-ray diffraction that it was amorphized. This amorphous alloy was oxidized in air at 500 ° C. for 1 hour. From the X-ray diffraction of the material after oxidation treatment, it was composed of an amorphous phase and a crystal, and the crystal phase was gold and Zr.
It was a mixture of O 2 . According to electron microscope, gold is 5
It was present as monodisperse ultrafine particles of 30 nm. According to the differential thermogravimetric analysis, this material has a Zr value of about 70.
% Remained Zr.

【0021】実施例2 ZrとAuの組成比をZr60Au40とした以外は実
施例1と同様にしてアモルファス合金を作製し酸化処理
を行った。金超微粒子の粒径は、実施例1で得られたも
のよりもやや大きく10〜50nmであったが、高温で
も安定して単分散状超微粒子を保持していることを確認
した。
Example 2 An amorphous alloy was prepared and oxidized in the same manner as in Example 1 except that the composition ratio of Zr and Au was Zr 60 Au 40 . The particle size of the gold ultrafine particles was slightly larger than that obtained in Example 1 and was 10 to 50 nm, but it was confirmed that the monodisperse ultrafine particles were stably retained even at high temperatures.

【0022】実施例3 表1に記したように、M、bを種々変えて、実施例1と
同様にしてアモルファス合金を作成後、同表に示した温
度で酸化処理を行った。酸化処理後の金超微粒子の平均
粒径を同表に記す。なお、得られたものは、いずれも単
分散状の金微粒子であることを確認した。
Example 3 As shown in Table 1, various kinds of M and b were changed, an amorphous alloy was prepared in the same manner as in Example 1, and then an oxidation treatment was performed at the temperature shown in the table. The average particle size of the ultrafine gold particles after the oxidation treatment is shown in the same table. It was confirmed that all of the obtained products were monodisperse gold fine particles.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例4 熱処理時間を5時間、24時間とした以外は、実施例1
と同じ条件で金超微粒子を得た。粒径は5時間では変わ
らず、24時間では5%増大していた。
Example 4 Example 1 was repeated except that the heat treatment time was changed to 5 hours and 24 hours.
Ultrafine gold particles were obtained under the same conditions as above. The particle size did not change at 5 hours and increased by 5% at 24 hours.

【0025】実施例5 酸化処理を酸素を30体積%含んだアルゴン雰囲気中で
行った以外は、実施例1と同様にして金超微粒子を得
た。得られた材料における金の粒径や存在状態は、実施
例1とほとんど変わりなく両者の雰囲気による違いがな
いことを確認した。
Example 5 Ultrafine gold particles were obtained in the same manner as in Example 1 except that the oxidation treatment was carried out in an argon atmosphere containing 30% by volume of oxygen. It was confirmed that the particle size and the state of existence of gold in the obtained material were almost the same as in Example 1 and that there was no difference due to the atmospheres of the two.

【0026】比較例1 塩化金酸を蒸留水中に0.1mol/Lとなるよう溶解
した。ここへ酸化チタン微粉末(粒径0.5μm)を超
音波を用いて分散させた後、10体積%のアンモニア溶
液を滴下して溶液のpHを9に調整して酸化チタン上に
金超微粒子を担持させた。担持した金の粒径は20〜5
0nmであった。このものを空気中400℃で30分加
熱したところ、金の粒径は80〜100nm以上に粗大
化しており、金の焼結が行われていた。
Comparative Example 1 Chloroauric acid was dissolved in distilled water to a concentration of 0.1 mol / L. Titanium oxide fine powder (particle size 0.5 μm) was dispersed therein using ultrasonic waves, and then 10% by volume of ammonia solution was added dropwise to adjust the pH of the solution to 9 and gold ultrafine particles were formed on titanium oxide. Was carried. The supported gold particle size is 20-5
It was 0 nm. When this was heated in air at 400 ° C. for 30 minutes, the grain size of gold was coarsened to 80 to 100 nm or more, and gold was sintered.

【0027】比較例2 純度99.9%のZrとAuとをZr70Au30とな
るよう秤量後、実施例1と同様にしてテープ状アモルフ
ァス合金を作製した。これを相対湿度90%の雰囲気で
100℃に5時間保持したところ完全に酸化した。X線
回折からZrOとAuとからなる混合体であることが
確認された。このものの金の粒径は10〜50nmと比
較的小さく良好であったが、空気中400℃で1時間加
熱したところ、金の粒径は100〜200nm以上とな
り金の焼結が起こった。また、低温で酸化処理せずアモ
ルファス合金を直接400℃で1時間酸化させたとこ
ろ、粒径は上述よりやや小さかったものの金の焼結が生
じていた。
Comparative Example 2 Zr and Au having a purity of 99.9% were weighed so as to be Zr 70 Au 30, and then a tape-shaped amorphous alloy was prepared in the same manner as in Example 1. When this was kept at 100 ° C. for 5 hours in an atmosphere of 90% relative humidity, it was completely oxidized. From X-ray diffraction, it was confirmed to be a mixture of ZrO 2 and Au. The gold particle size of this product was 10-50 nm, which was relatively small and good, but when heated in air at 400 ° C. for 1 hour, the gold particle size became 100-200 nm or more, and gold sintering occurred. Further, when the amorphous alloy was directly oxidized at 400 ° C. for 1 hour without being oxidized at a low temperature, gold sintering occurred although the grain size was slightly smaller than the above.

【0028】[0028]

【発明の効果】本発明方法によれば、簡単に工程で従来
方法に比べ格段に高温安定性に優れた単分散状金超微粒
子を製造することが出来る。従って、本発明方法で得ら
れたものは金が超微粒子の状態を保ち得るので、例えば
触媒としての用途が期待される。これまで金は活性が少
なく他の貴金属のように触媒への利用がなされていなか
ったが、これは金超微粒子同士が接触しやすく、かつ金
の融点が非常に低いため高温で焼結が開始するためであ
った。
According to the method of the present invention, it is possible to easily produce ultrafine monodispersed gold particles having excellent high-temperature stability as compared with the conventional method in a simple process. Therefore, since the gold obtained by the method of the present invention can maintain the state of ultrafine particles, it is expected to be used as a catalyst, for example. Until now, gold was less active and was not used as a catalyst like other noble metals, but this is because ultrafine gold particles easily contact each other and the melting point of gold is very low, so sintering starts at high temperature. It was to do.

【0029】これを解決するためには金を単分散状と
し、しかも高い温度においても焼結しないよう、超微粒
子同士が接触しない環境を作ることが必要であったが、
本発明方法で製造されたものは、金超微粒子が耐酸化性
の高い合金に単分散状で囲まれているため、高温にさら
しても焼結することはない。従って、高温での触媒活性
も良好になるため、従来使用できなかった高温域でも金
超微粒子の優れた特性を生かして高温用触媒を実現する
ことができる。
In order to solve this, it was necessary to make gold monodisperse and to create an environment in which ultrafine particles do not come into contact with each other so as not to sinter even at high temperature.
Since the ultrafine gold particles produced by the method of the present invention are surrounded by the alloy having high oxidation resistance in a monodisperse state, they do not sinter even when exposed to a high temperature. Therefore, the catalytic activity at high temperature is also improved, so that it is possible to realize a high temperature catalyst by utilizing the excellent characteristics of the ultrafine gold particles even in a high temperature range which could not be used conventionally.

【0030】また、CO、NO、SO、フロン、
ハロン等の分解反応用触媒、これらを原料とした化合物
生成反応触媒(例えばCOと水素からメタンやエタン
を生成するときの触媒)、自動車等の未燃焼廃ガスの完
全燃焼反応用触媒、石油精製、重油脱硫、石油化学品製
造、高分子重合、無機化学品製造、油脂加工、医薬製
造、食品製造、雰囲気ガス製造などの各種工業用触媒と
して応用展開が可能である。
Further, CO 2 , NO X , SO X , Freon,
Catalyst for decomposition reaction of halon, etc., compound production reaction catalyst using these as raw materials (for example, catalyst for producing methane or ethane from CO 2 and hydrogen), catalyst for complete combustion reaction of unburned waste gas of automobiles, petroleum It can be applied as various industrial catalysts for refining, heavy oil desulfurization, petrochemical production, polymer polymerization, inorganic chemical production, oil and fat processing, pharmaceutical production, food production, atmospheric gas production, etc.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 鵜沢 正美 宮城県仙台市若林区若林2−3−9−201 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Akihisa Inoue Kawauchi Muzen, Aoba-ku, Sendai City, Miyagi Prefecture Kawauchi House 11-806 (72) Inami Masami Uwazawa 2-3-9-201 Wakabayashi, Wakabayashi-ku, Sendai City, Miyagi Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ZrとAuとM(但し、MはSc、Y、
La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb、Lu、Ti、Hf、V、
Ta、Cr、Mo、W、Mn、Re、Fe、Ru、O
s、Rh、Ir、Co、Ni、Pd、Pt、Cu、A
g、Zn、Cd、Hg、B、Al、Ga、In、Si、
Ge、Sn、Pb、P、Sb及びBiから選ばれた少な
くとも1種)とからなるアモルファス合金を酸素を含む
雰囲気中で熱処理することを特徴とする単分散状金超微
粒子の製造方法。
1. Zr, Au and M (where M is Sc, Y,
La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm, Yb, Lu, Ti, Hf, V,
Ta, Cr, Mo, W, Mn, Re, Fe, Ru, O
s, Rh, Ir, Co, Ni, Pd, Pt, Cu, A
g, Zn, Cd, Hg, B, Al, Ga, In, Si,
A method for producing monodisperse gold ultrafine particles, which comprises heat-treating an amorphous alloy composed of Ge, Sn, Pb, P, Sb and Bi) in an atmosphere containing oxygen.
【請求項2】 アモルファス合金の組成が(ZrAu
100−a100−b(但し、50≦a≦90、
1≦b≦30)で表されるものである請求項1記載の単
分散状金超微粒子の製造方法。
2. The composition of the amorphous alloy is (Zr a Au
100-a ) b M 100-b (provided that 50 ≦ a ≦ 90,
The method for producing monodisperse ultrafine gold particles according to claim 1, which is represented by 1 ≦ b ≦ 30).
【請求項3】 200℃〜1000℃で熱処理する請求
項1又は請求項2記載の単分散状金超微粒子の製造方
法。
3. The method for producing monodisperse gold ultrafine particles according to claim 1, wherein the heat treatment is performed at 200 ° C. to 1000 ° C.
JP09351593A 1993-03-16 1993-03-16 Method for producing ultrafine monodispersed gold particles Expired - Fee Related JP3300460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09351593A JP3300460B2 (en) 1993-03-16 1993-03-16 Method for producing ultrafine monodispersed gold particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09351593A JP3300460B2 (en) 1993-03-16 1993-03-16 Method for producing ultrafine monodispersed gold particles

Publications (2)

Publication Number Publication Date
JPH06271905A true JPH06271905A (en) 1994-09-27
JP3300460B2 JP3300460B2 (en) 2002-07-08

Family

ID=14084485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09351593A Expired - Fee Related JP3300460B2 (en) 1993-03-16 1993-03-16 Method for producing ultrafine monodispersed gold particles

Country Status (1)

Country Link
JP (1) JP3300460B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524354B2 (en) 2005-07-07 2009-04-28 Research Foundation Of State University Of New York Controlled synthesis of highly monodispersed gold nanoparticles
US7829140B1 (en) 2006-03-29 2010-11-09 The Research Foundation Of The State University Of New York Method of forming iron oxide core metal shell nanoparticles
US8343627B2 (en) 2007-02-20 2013-01-01 Research Foundation Of State University Of New York Core-shell nanoparticles with multiple cores and a method for fabricating them
JP2020037537A (en) * 2018-09-05 2020-03-12 日本メナード化粧品株式会社 Method for producing gold nanoparticle-carrying powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524354B2 (en) 2005-07-07 2009-04-28 Research Foundation Of State University Of New York Controlled synthesis of highly monodispersed gold nanoparticles
US7829140B1 (en) 2006-03-29 2010-11-09 The Research Foundation Of The State University Of New York Method of forming iron oxide core metal shell nanoparticles
US8343627B2 (en) 2007-02-20 2013-01-01 Research Foundation Of State University Of New York Core-shell nanoparticles with multiple cores and a method for fabricating them
US9327314B2 (en) 2007-02-20 2016-05-03 The Research Foundation For The State University Of New York Core-shell nanoparticles with multiple cores and a method for fabricating them
US10006908B2 (en) 2007-02-20 2018-06-26 The Research Foundation For The State University Of New York Core-shell nanoparticles with multiple cores and a method for fabricating them
US10191042B2 (en) 2007-02-20 2019-01-29 The Research Foundation For The State University Of New York Core-shell nanoparticles with multiple cores and method for fabricating them
JP2020037537A (en) * 2018-09-05 2020-03-12 日本メナード化粧品株式会社 Method for producing gold nanoparticle-carrying powder

Also Published As

Publication number Publication date
JP3300460B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
US6746508B1 (en) Nanosized intermetallic powders
JP3205793B2 (en) Ultrafine particles and method for producing the same
JP3813311B2 (en) Method for producing iron aluminide by thermochemical treatment of elemental powder
EP0508757A1 (en) Process for the production of fine powder
WO2012115073A1 (en) Metal-carbon composite material and method for producing same
WO2005102568A2 (en) Binary rhenium alloys
TW200932928A (en) Multi-element alloy powder containing silver and at least two non-silver containing elements
TW506869B (en) Method for preparing metal powder
JP5967764B2 (en) Method for producing alloy powder for oxidation-resistant coating, method for producing alloy having excellent oxidation resistance characteristics using the powder, and method for producing member using the alloy
US20090298683A1 (en) Production of a material comprising a mixture of noble metal nanoparticles and rare-earth oxide nanoparticles
CA2426665C (en) Nanosized intermetallic powders
JP2000248304A (en) Porous metal powder and its production
JP2004124257A (en) Metal copper particulate, and production method therefor
JP3300460B2 (en) Method for producing ultrafine monodispersed gold particles
JP2002226926A (en) Composite functional material and its manufacturing method
WO2006090151A1 (en) Process of forming a nanocrystalline metal alloy
JPH09143502A (en) Graphite coated metallic particle and its production
EP0537502A1 (en) Metal- and metal alloy powder comprising microcrystalline, spherical and dense particles and process and installation for preparing same
US3070440A (en) Production of dispersion hardened metals
CA2016514C (en) Alloy catalyst for oxidation of hydrogen
JP3918161B2 (en) Method for producing aluminum nitride powder
JP3872465B2 (en) High hydrogen storage material and its manufacturing method
JPS6223912A (en) Production of fine metallic powder
JP6163021B2 (en) Method for producing composite fine particles
EP0645466A1 (en) Catalyst material, based on a titanium-copper alloy and process for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees