JP2002226926A - Composite functional material and its manufacturing method - Google Patents

Composite functional material and its manufacturing method

Info

Publication number
JP2002226926A
JP2002226926A JP2001026268A JP2001026268A JP2002226926A JP 2002226926 A JP2002226926 A JP 2002226926A JP 2001026268 A JP2001026268 A JP 2001026268A JP 2001026268 A JP2001026268 A JP 2001026268A JP 2002226926 A JP2002226926 A JP 2002226926A
Authority
JP
Japan
Prior art keywords
metal element
solid solution
compound
fine particles
metallic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001026268A
Other languages
Japanese (ja)
Inventor
Goro Yamauchi
五郎 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001026268A priority Critical patent/JP2002226926A/en
Publication of JP2002226926A publication Critical patent/JP2002226926A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a composite catalytic material in which fine particles having various functions according to the combination of a metal X and a metal Y are dispersedly precipitated. SOLUTION: A mixture in which the metallic element X having a strong affinity for a vapor-phase element Z is mixed with the metallic element Y having a weak affinity is heated and melted at a temperature not lower than the melting points of the metallic element X and metallic element Y, and the resultant melt is cooled at >=103 deg.C/s cooling rate or at zero gravity, by which a solid solution of the metallic element Y and the metallic element Y is prepared. Subsequently, the solid solution is heated in the atmosphere of the vapor- phase element Z having potential high enough to form a compound of the metallic element X and the vapor-phase element Z but not high enough to form a compound of the metallic element Y and the vapor-phase element Z, and the fine particles of the compound of the metallic element X and the vapor- phase element Z are dispersedly precipitated in the inner part of the metallic element Y or at its surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マトリックスとなる金
属中に異種金属の化合物粒子を分散析出させることによ
り、種々の機能が付加された複合機能材料を製造する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite functional material having various functions by dispersing and depositing compound particles of different metals in a metal serving as a matrix.

【0002】[0002]

【従来の技術】微粒子分散複合機能材料は、マトリック
スを構成する金属又は合金粉末に所定の機能を呈する微
粒子を配合し、得られた混合物を所定形状に成形した
後、焼成することによって製造している。しかし、この
製造方法によるとき、機能性微粒子をマトリックスに均
一分散させることが困難である。因みに、大きな比表面
積が要求される触媒粒子を分散させた複合機能材料では
機能性微粒子の粒径が小さなほど触媒反応に有効に寄与
するが、極微細粒径の微粒子は凝集しやすい。そのた
め、マトリックスを構成する金属又は合金粉末と混合し
た状態で、機能性微粒子が大径の凝集粒子として分布
し、極微細粒化に由来する反応活性の向上が期待できな
い。
2. Description of the Related Art Fine-particle-dispersed composite functional materials are produced by blending fine particles having a predetermined function with a metal or alloy powder constituting a matrix, molding the resulting mixture into a predetermined shape, and then firing. I have. However, according to this production method, it is difficult to uniformly disperse the functional fine particles in the matrix. Incidentally, in the case of a composite functional material in which catalyst particles requiring a large specific surface area are dispersed, the smaller the particle size of the functional fine particles, the more effectively it contributes to the catalytic reaction, but the fine particles having an extremely fine particle size tend to aggregate. Therefore, the functional fine particles are distributed as large-diameter aggregated particles in a state of being mixed with the metal or alloy powder constituting the matrix, and it is not possible to expect an improvement in the reaction activity due to ultrafine granulation.

【0003】粉末混合−焼結法における機能性微粒子の
凝集を避けるため、酸化物(機能性微粒子)となる金属
元素を含む合金を内部酸化する方法がある。本発明者
も、特定条件下での内部酸化により酸化物粒子をマトリ
ックスに分散析出させることにより、導電材料,接点材
料,高強度材料等の機能材料が得られることを紹介した
(JEMS NEWS,第28号(1986)第1〜5頁)。
In order to avoid aggregation of functional fine particles in the powder mixing and sintering method, there is a method of internally oxidizing an alloy containing a metal element to be an oxide (functional fine particles). The present inventors have also introduced that functional materials such as conductive materials, contact materials, and high-strength materials can be obtained by dispersing and depositing oxide particles in a matrix by internal oxidation under specific conditions (JEMS NEWS. 28 (1986) pp. 1-5).

【0004】[0004]

【発明が解決しようとする課題】内部酸化法によると
き、機能性酸化物をマトリックスに分散できる。しか
し、内部酸化法の適用対象は、機能性酸化物となる金属
元素が一様に溶けている固溶体合金に限られる。また、
添加元素の濃度が平衡状態図における固溶限界を超える
ものが多く、固溶限を超える添加元素は塊となってマト
リックス中に分布する。そのため、塊状添加元素とマト
リックスとの界面に化合物が生成し、機能性酸化物の均
一分散が図れず、塊内部の添加元素が未反応のまま残留
しやすい。しかも、生成した機能性酸化物は、酸化中の
加熱により大粒径に成長する傾向を示す。その結果、機
能性酸化物の実効比表面積が予定値ほど大きくならず、
機能性に限りがあり、極微細粒径の機能性酸化物に起因
した機能性向上にも限度がある。
According to the internal oxidation method, a functional oxide can be dispersed in a matrix. However, the application of the internal oxidation method is limited to a solid solution alloy in which a metal element to be a functional oxide is uniformly dissolved. Also,
In many cases, the concentration of the additional element exceeds the solid solubility limit in the equilibrium diagram, and the additional element exceeding the solid solubility limit is distributed as a mass in the matrix. Therefore, a compound is generated at the interface between the bulk additive element and the matrix, and the functional oxide cannot be uniformly dispersed, and the additive element inside the bulk tends to remain unreacted. Moreover, the generated functional oxide tends to grow to a large particle size by heating during oxidation. As a result, the effective specific surface area of the functional oxide does not become as large as expected,
The functionality is limited, and there is a limit to the improvement in functionality due to the functional oxide having an extremely fine particle size.

【0005】[0005]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、急冷凝固又は無
重力場凝固によって機能性微粒子となる金属元素を均一
固溶させた固溶体を特定ポテンシャルのガス雰囲気中で
反応させることにより、固溶限による制約を受けること
なく機能性微粒子が均一分散した複合機能材料を提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve such a problem, and is a solid solution obtained by uniformly dissolving a metal element which becomes functional fine particles by rapid solidification or solidification in a zero-gravity field. Is reacted in a gas atmosphere of a specific potential to provide a composite functional material in which functional fine particles are uniformly dispersed without being restricted by a solid solubility limit.

【0006】本発明の製造方法は、その目的を達成する
ため、常態が気相の元素Zとの親和力が大きな金属元素
X及び親和力の小さな金属元素Yを混合して金属元素X
の濃度が0.0001〜70原子%の混合物を用意し、金属元素
X及び金属元素Yの融点以上の温度で前記混合物を加熱
溶融して金属元素Xが金属元素Yに完全に溶け込んだ溶
融物とし、103℃/秒以上の冷却速度で又は無重力状
態で前記溶融物を冷却することにより金属元素Xと金属
元素Yとの固溶体を作製し、金属元素Xと気相元素Zと
の化合物を生成するが金属元素Yと気相元素Zとの化合
物の生成には不足するポテンシャルの気相元素Zの雰囲
気中で前記固溶体を加熱し、金属元素Xと気相元素Zと
の化合物微粒子をマトリックスの内部又は表面に分散析
出させることを特徴とする。
In order to achieve the object, the production method of the present invention mixes a metal element X having a large affinity with an element Z in a normal gas phase and a metal element Y having a small affinity to form a metal element X.
A mixture having a concentration of 0.0001 to 70 atomic% is prepared, and the mixture is heated and melted at a temperature equal to or higher than the melting points of the metal element X and the metal element Y to form a melt in which the metal element X is completely dissolved in the metal element Y, By cooling the melt at a cooling rate of 10 3 ° C / sec or more or in a zero gravity state, a solid solution of the metal element X and the metal element Y is produced, and a compound of the metal element X and the gas phase element Z is generated. Is heated in an atmosphere of a gaseous phase element Z having a potential that is insufficient for the formation of a compound of a metal element Y and a gaseous phase element Z. Alternatively, it is characterized by being dispersed and deposited on the surface.

【0007】[0007]

【作用】本発明では、急冷凝固又は無重力凝固によって
金属元素Xと金属元素Yとの固溶体を作製している。急
冷凝固又は無重力凝固のため、金属元素Xは、X−Yの
合金平衡状態に起因する制約を受けることなく、過飽和
状態であってもマトリックスに固溶した状態で存在す
る。得られた固溶体を気相元素Zの雰囲気中で加熱する
際、金属元素X/気相元素Zの反応が進行するが金属元
素Y/気相元素Zの反応が進行しないポテンシャルに雰
囲気の気相元素Zの分圧を維持する。気相元素Zの分圧
制御によって金属元素Xが選択的に反応して酸化物,窒
化物,フッ化物,塩化物,水素化物等の化合物となる。
このとき、非平衡の過飽和状態で金属元素Xを含む固溶
体にあっては、非平衡状態が崩れることから化合物生成
反応が急速に進行する。
According to the present invention, a solid solution of the metal element X and the metal element Y is prepared by rapid solidification or weightless solidification. Due to rapid solidification or weightless solidification, the metal element X exists as a solid solution in the matrix even in a supersaturated state without being restricted by the XY alloy equilibrium state. When the obtained solid solution is heated in the atmosphere of the gaseous phase element Z, the reaction of the metal element X / the gaseous phase element Z proceeds, but the vapor phase of the atmosphere reaches a potential where the reaction of the metal element Y / the gaseous phase element Z does not proceed. Maintain the partial pressure of element Z. By controlling the partial pressure of the gas phase element Z, the metal element X selectively reacts to form compounds such as oxides, nitrides, fluorides, chlorides, and hydrides.
At this time, in a solid solution containing the metal element X in a non-equilibrium supersaturated state, the non-equilibrium state is collapsed, so that the compound generation reaction proceeds rapidly.

【0008】化合物は、微細な粒子状,平板状等の分散
形態でマトリックスの表面や内部に分布する。したがっ
て、化合物及びマトリックスそれぞれの機能が発現する
複合機能材料が得られる。生成した化合物の機能は、固
溶体を基準として金属元素Xの添加量を0.0001原子%以
上にするとき顕著になる。しかし、金属元素Xの添加量
が70原子%を超えると、機能性化合物粒子をマトリック
ス中に分散させることが困難になる。
The compound is distributed on the surface or inside of the matrix in a dispersed form such as fine particles or tabular form. Therefore, a composite functional material that exhibits the functions of the compound and the matrix can be obtained. The function of the formed compound becomes remarkable when the addition amount of the metal element X is 0.0001 atomic% or more based on the solid solution. However, when the addition amount of the metal element X exceeds 70 atomic%, it becomes difficult to disperse the functional compound particles in the matrix.

【0009】金属元素Xとしては、Si,Mn,P,A
l,Zn,Ti,Ni,Cr,Co,Fe,Be,M
g,K,Na,Cd,In,Zr,Sn,Ce,Ga,
La,Tl,B,Sb,Tb,Pb,Nb,Ta,B
i,Li,Mo,W,V,Hf,Y,U等から選ばれた
1種又は2種以上が使用される。金属元素Yとしては、
金属元素Xに比較して化合物の標準生成自由エネルギー
が小さい限り、Ag,Cu,Ni,Fe,Pd,Co,
Au,Pt,Cr,Mo,W,Ti,Zr,Hf,V,
Nb,Ta,Ge,Sn,Pb,Mgから選ばれた1種
又は2種以上が使用される。金属元素Xと化合物を生成
する気相元素Zとしては、O,N,F,Cl,H等があ
る。
As the metal element X, Si, Mn, P, A
1, Zn, Ti, Ni, Cr, Co, Fe, Be, M
g, K, Na, Cd, In, Zr, Sn, Ce, Ga,
La, Tl, B, Sb, Tb, Pb, Nb, Ta, B
One or more selected from i, Li, Mo, W, V, Hf, Y, U and the like are used. As the metal element Y,
As long as the standard free energy of formation of the compound is smaller than that of the metal element X, Ag, Cu, Ni, Fe, Pd, Co,
Au, Pt, Cr, Mo, W, Ti, Zr, Hf, V,
One or more selected from Nb, Ta, Ge, Sn, Pb, and Mg are used. Examples of the gas phase element Z that forms a compound with the metal element X include O, N, F, Cl, and H.

【0010】たとえば、TiO2,WO3等の酸化物微粒
子をAg,Ni等のマトリックスに分散させた複合機能
材料では、酸化物微粒子に由来する光触媒作用及びマト
リックス金属に由来する化学触媒作用を兼ね備える。A
lN,Si34等の窒化物微粒子をCu,Ag等のマト
リックスに分散させた複合材料では、窒化物微粒子に由
来する高熱伝導性及び分散強化が発現され、Cu,Ag
等のマトリックスに由来する熱伝導性や触媒活性が強調
される。このように、金属元素X,金属元素Y,気相元
素Zの組合せによって、種々の機能が複合的に付与され
た複合材料が得られる。
For example, a composite functional material in which oxide fine particles such as TiO 2 and WO 3 are dispersed in a matrix such as Ag and Ni has both a photocatalytic action derived from the oxide fine particles and a chemical catalytic action derived from the matrix metal. . A
In a composite material in which nitride fine particles such as 1N and Si 3 N 4 are dispersed in a matrix such as Cu and Ag, high thermal conductivity and dispersion strengthening derived from the nitride fine particles are exhibited, and Cu, Ag
The thermal conductivity and catalytic activity derived from the matrix such as are emphasized. In this way, a composite material having various functions provided in a complex manner is obtained by the combination of the metal element X, the metal element Y, and the gas phase element Z.

【0011】気相元素ZとしてOを選択するとき、酸化
物となる金属元素XとしてはSi,Mn,P,Al,Z
n,Ti,Ni,Cr,Co,Fe,Be,Mg,C
d,In,Zr,Sn,Ce,Ga,Tl,B,Sb,
Pb,Nb,Ta,Bi,Li,Mo,W,V,Hf,
Y等の1種又は2種以上、マトリックスを構成する金属
元素Yとしては金属元素Xよりも酸化物の標準生成自由
エネルギーが小さなAg,Cu,Ni,Fe,Pd,C
o,Au,Pt,Cr,Mo,W,Ti,Zr,Hf,
V,Nb,Ta,Ge,Sn,Pb等の1種又は2種以
上が使用される。
When O is selected as the gas phase element Z, Si, Mn, P, Al, Z
n, Ti, Ni, Cr, Co, Fe, Be, Mg, C
d, In, Zr, Sn, Ce, Ga, Tl, B, Sb,
Pb, Nb, Ta, Bi, Li, Mo, W, V, Hf,
One or more of Y and the like, and as the metal element Y constituting the matrix, Ag, Cu, Ni, Fe, Pd, C having a smaller standard free energy of formation of an oxide than the metal element X are used.
o, Au, Pt, Cr, Mo, W, Ti, Zr, Hf,
One or more of V, Nb, Ta, Ge, Sn, Pb and the like are used.

【0012】気相元素ZとしてNを選択するとき、窒化
物となる金属元素XとしてはTi,Zr,Al,Fe,
Cr,Ti,Mo,V,Si等の1種又は2種以上、マ
トリックスを構成する金属元素Yとしては金属元素Xよ
りも窒化物の標準生成自由エネルギーが小さなAg,C
u,Ni,Fe,Pd,Co,Au,Pt,Cr,M
o,W,Ti,Zr等の1種又は2種以上が使用され
る。この場合、気相元素Zのソースとして、高温でNに
分解するアンモニアHN3を使用できる。
When N is selected as the gas phase element Z, Ti, Zr, Al, Fe,
One or more of Cr, Ti, Mo, V, Si, etc., and the metal element Y constituting the matrix is Ag, C, which has a smaller standard free energy of formation of nitride than the metal element X.
u, Ni, Fe, Pd, Co, Au, Pt, Cr, M
One or more of o, W, Ti, Zr and the like are used. In this case, ammonia HN 3 which decomposes to N at a high temperature can be used as a source of the gas phase element Z.

【0013】気相元素ZとしてF又はClを選択すると
き、フッ化物又は塩化物となる金属元素XとしてはB
e,Mg,Ca,Al,Ti,Si,Cr等の1種又は
2種以上、マトリックスを構成する金属元素Yには金属
元素Xよりもフッ化物又は塩化物の標準生成自由エネル
ギーが小さなAg,Cu,Ni,Fe,Pd,Co,A
u,Pt,Cr,Mo,W,Ti,Zr等の1種又は2
種以上が使用される。
When F or Cl is selected as the gaseous phase element Z, the metal element X to be fluoride or chloride is B
e, one or more of Mg, Ca, Al, Ti, Si, Cr, etc., and the metal element Y constituting the matrix is Ag, which has a smaller standard free energy of formation of fluoride or chloride than the metal element X, Cu, Ni, Fe, Pd, Co, A
one or two of u, Pt, Cr, Mo, W, Ti, Zr, etc.
More than seeds are used.

【0014】気相元素ZとしてHを選択するとき、水素
化物となる金属元素XとしてはLa,Ca,Li,T
i,Na,U,Mg,Ni,Co,V,Fe,Mn,C
e,Al,Y,Zr等の1種又は2種以上、マトリック
スを構成する金属元素Yとしては水素化物の標準生成自
由エネルギーが小さなAg,Cu,Ni,Fe,Pd,
Co,Au,Pt,Cr,Mo,W,Ti,Zr,Mg
等の1種又は2種以上が使用される。
When H is selected as the gaseous phase element Z, La, Ca, Li, T
i, Na, U, Mg, Ni, Co, V, Fe, Mn, C
One or more of e, Al, Y, Zr, etc., and as the metal element Y constituting the matrix, Ag, Cu, Ni, Fe, Pd, which have a small standard free energy of formation of hydride,
Co, Au, Pt, Cr, Mo, W, Ti, Zr, Mg
One or more of these are used.

【0015】化合物の標準生成自由エネルギーは、気相
元素Zに応じて個々の金属元素X,Yごとに定まってい
る。たとえば、酸化物の標準生成自由エネルギーは、図
1に示すように金属元素ごとに異なっていることが知ら
れている(J.F.Elliot, M.Gleiser, Thermochemistry f
or Steelmaking, vol.1(1960), Addison-Wesley)の
で、この標準生成自由エネルギーを参酌しながら金属元
素X及び金属元素Yを選択する。窒化物を生成させる場
合も、図2の標準生成自由エネルギー(J.F.Elliot, M.
Gleiser, Thermochemistry for Steelmaking, vol.1(19
60), Addison-Wesley)を参酌しながら金属元素X及び金
属元素Yを選択する。
The standard free energy of formation of a compound is determined for each of the metal elements X and Y according to the gas phase element Z. For example, it is known that the standard free energy of formation of an oxide differs for each metal element as shown in FIG. 1 (JFElliot, M. Gleiser, Thermochemistry f.
or Steelmaking, vol. 1 (1960), Addison-Wesley), so that the metal element X and the metal element Y are selected in consideration of the standard free energy of formation. When nitrides are formed, the standard free energy of formation (JFElliot, M.
Gleiser, Thermochemistry for Steelmaking, vol. 1 (19
60), Addison-Wesley), and select the metal element X and the metal element Y.

【0016】[0016]

【実施例1】NiにTiを30.0原子%配合した混合物を
Ar気流中1500℃で加熱溶解した後、ツインロール法に
より104℃/秒の冷却速度で急冷凝固することにより、
Ni−Tiの固溶体を作製した。得られた固溶体をX線
回折した結果、Niのピークが検出されたが、Tiのピ
ークは検出されず、Tiが強制的に固溶した固溶体であ
ることが判った。
Example 1 A mixture of Ni and 30.0 atomic% of Ti was heated and melted at 1500 ° C. in an Ar gas stream, and then rapidly solidified by a twin roll method at a cooling rate of 10 4 ° C./sec.
A solid solution of Ni-Ti was prepared. As a result of X-ray diffraction of the obtained solid solution, a peak of Ni was detected, but no peak of Ti was detected, indicating that the solid solution was a solid solution in which Ti was forcibly dissolved.

【0017】等量の酸化ニッケル粉,ニッケル粉及びア
ルミナ粉を混合した粉末混合物に強制固溶体を埋め込
み、Ar気流中1050℃に時間保持した後,更に550℃に1
0時間保持した。熱処理された試料の断面を走査型電子
顕微鏡で観察したところ、試料内部に微細な粒子が均一
分散した組織であった。X線回折の結果では、Niのピ
ークの他にアナターゼ型及びルチル型のTiO2のピー
クが検出され、光触媒作用の強いアナターゼ型TiO2
がNiマトリックスに分散していることが確認された。
The forced solid solution is buried in a powder mixture in which equal amounts of nickel oxide powder, nickel powder and alumina powder are mixed, kept at 1050 ° C. for an hour in an Ar gas stream, and further heated to 550 ° C. for 1 hour.
Hold for 0 hours. Observation of the cross section of the heat-treated sample with a scanning electron microscope revealed a structure in which fine particles were uniformly dispersed inside the sample. In the result of X-ray diffraction, peaks of anatase type and rutile type TiO 2 were detected in addition to the Ni peak, and the anatase type TiO 2 having strong photocatalytic action was detected.
Was dispersed in the Ni matrix.

【0018】TiO2が分散している試料表面にサラダ
オイルを0.1mg/cm2滴下し、1mW/cm2の紫外光を6時
間照射した。照射前後で板状試料の重量を測定し、重量
差からサラダオイルの減少量を求めた。比較のため、T
iO2が分散していない比較試料についても、同様な試
験でサラダオイルの減少量を求めた。その結果、TiO
2が分散している試料は、比較試料に比べてサラダオイ
ルの減少量が62倍以上となっており、光触媒作用に由来
する防汚作用をもつことが判った。しかも、化学触媒性
に優れたNiでマトリックスが構成されているので、水
素化,脱水素反応,還元脱硫,還元アルキル化,還元ア
ミノ化,レドックス反応等の機能も発現され優れた複合
触媒材料として使用できた。
TiOTwoSalad on the sample surface where
0.1mg / cm of oilTwoDripping, 1mW / cmTwo6 o'clock ultraviolet light
Irradiation. Measure the weight of the plate sample before and after irradiation,
The amount of salad oil reduction was determined from the difference. For comparison, T
iOTwoA similar test was performed for the comparative sample where
The amount of reduction in salad oil was determined by an experiment. As a result, TiO
TwoThe sample in which is dispersed is more salad oil than the comparative sample.
The amount of reduction is more than 62 times, derived from photocatalysis
It has an antifouling effect. Moreover, chemical catalytic
The matrix is composed of Ni
Iodination, dehydrogenation, reductive desulfurization, reductive alkylation,
Excellent complex with functions such as amino and redox reactions
It could be used as a catalyst material.

【0019】[0019]

【実施例2】AuにTiを45原子%添加した混合物をA
r気流中1800℃で加熱溶解した後、地下に掘った竪穴を
使用して融液を500m自由落下させることによりTiを
Auに強制固溶させた板状固溶体を作製した。得られた
固溶体をX線回折したところ、Auのピークが検出され
たが、Tiのピークは検出されなかった。この結果か
ら、TiがAuに強制固溶していることが判る。
Example 2 A mixture of Au and 45 atomic% of Ti was added to A
After heating and melting at 1800 ° C. in an air stream, the melt was allowed to fall freely by 500 m using a pit dug underground to produce a plate-like solid solution in which Ti was forcibly dissolved in Au. When the obtained solid solution was subjected to X-ray diffraction, an Au peak was detected, but a Ti peak was not detected. From this result, it can be seen that Ti is forcibly dissolved in Au.

【0020】板状固溶体試料を300気圧の純酸素雰囲気
中で850℃に12時間加熱し、更に550℃に10時間保持し
た。加熱処理された板状試料をカッターで切断し、切断
面を走査型電子顕微鏡で観察したところ、マトリックス
に均一分散した粒子が検出された。X線回折の結果で
は、Auのピークに加えて光触媒作用のあるアナターゼ
型及びルチル型TiO2のピークが検出された。
The plate-like solid solution sample was heated at 850 ° C. for 12 hours in a pure oxygen atmosphere at 300 atm, and further maintained at 550 ° C. for 10 hours. The heat-treated plate-like sample was cut with a cutter, and the cut surface was observed with a scanning electron microscope. As a result, particles uniformly dispersed in the matrix were detected. As a result of X-ray diffraction, peaks of anatase type and rutile type TiO 2 having photocatalysis were detected in addition to the Au peak.

【0021】TiO2が分散している板状試料の表面に
実施例1と同様にサラダオイルを滴下し、光触媒作用に
よるサラダオイルの減少量を求めた。比較のため、Ti
2が分散していない比較試料についても、同様な試験
でサラダオイルの減少量を求めた。その結果、TiO2
が分散している板状試料は、比較試料に比べてサラダオ
イルの減少量が72倍以上となっており、光触媒作用に
由来する防汚作用をもつことが判った。しかも、化学触
媒であるAuでマトリックスが構成されているため、優
れた複合触媒材料として機能した。
Salad oil was dropped on the surface of the plate-like sample in which TiO 2 was dispersed in the same manner as in Example 1, and the amount of salad oil reduced by photocatalysis was determined. For comparison, Ti
For a comparative sample in which O 2 was not dispersed, the amount of reduction in salad oil was determined in a similar test. As a result, TiO 2
The plate-like sample in which is dispersed has a salad oil reduction of 72 times or more as compared with the comparative sample, and it has been found that the plate-like sample has an antifouling action derived from the photocatalytic action. Moreover, since the matrix was composed of Au as a chemical catalyst, it functioned as an excellent composite catalyst material.

【0022】[0022]

【実施例3】PtにTiを30原子%配合した混合物をA
r気流中1900℃で溶解し、得られた融液をアトマイズ法
で急冷することによってTiをPtに固溶させた固溶体
粒子を作製した。固溶体粒子をX線回折したところ、主
としてPtのピークが検出され、Tiが強制固溶状態に
あることが判った。
Example 3 A mixture of Pt and 30 atomic% of Ti was mixed with A
The melt was melted at 1900 ° C. in an r stream, and the obtained melt was quenched by an atomizing method to produce solid solution particles in which Ti was dissolved in Pt. When the solid solution particles were subjected to X-ray diffraction, a Pt peak was mainly detected, and it was found that Ti was in a forced solid solution state.

【0023】固溶体粒子を300気圧の純酸素雰囲気中で9
00℃に12時間加熱した後、550℃に10時間保持した。熱
処理された固溶体粒子をX線回折すると、Ptのピーク
の他にアナターゼ型及びルチル型のTiO2のピークが
検出され、光触媒作用の強いアナターゼ型TiO2微粒
子が分散していることが判った。TiO2微粒子が分散
している粒子を、水素を燃料,酸素を酸化剤とする燃料
電池の電極に使用したところ、従来のPt粒子からなる
電極に比較して電池出力が67%向上した。
The solid solution particles are placed in a pure oxygen atmosphere at 300 atm.
After heating to 00 ° C for 12 hours, it was kept at 550 ° C for 10 hours. When the solid solution particles subjected to the heat treatment were subjected to X-ray diffraction, peaks of anatase type and rutile type TiO 2 were detected in addition to the Pt peak, and it was found that anatase type TiO 2 fine particles having a strong photocatalytic action were dispersed. When the particles in which the TiO 2 fine particles are dispersed were used for an electrode of a fuel cell using hydrogen as fuel and oxygen as an oxidant, the cell output was improved by 67% as compared with a conventional electrode comprising Pt particles.

【0024】[0024]

【実施例4】FeにTiを5.0原子%配合した混合物を
Ar気流中でFe及びTiの融点以上の温度1500℃に加
熱することにより溶解し、得られた融液をツインロール
法によって104℃/秒の冷却速度で急冷凝固することに
より、Fe−Tiの固溶体を作製した。作製された固溶
体をX線回折したところ、Feのピークのみが検出さ
れ、Tiが強制固溶状態にあることが判った。
Example 4 A mixture of Fe and 5.0 atomic% of Ti was melted by heating to a temperature of 1500 ° C. or higher than the melting points of Fe and Ti in an Ar gas stream, and the resulting melt was melted by a twin-roll method to 10 4. A solid solution of Fe-Ti was prepared by rapid solidification at a cooling rate of ° C / sec. When the produced solid solution was subjected to X-ray diffraction, only the peak of Fe was detected, and it was found that Ti was in a forced solid solution state.

【0025】固溶体試料を純酸素100気圧雰囲気中で550
℃に2時間保持することによって、試料表面から内部に
向けての酸素拡散を促進させ、試料内部から表面方向へ
のTi拡散と均衡させた。熱処理後の試料をX線回折し
たところ、アナターゼ型及びルチル型TiO2のピーク
が検出され、光触媒作用の強いアナターゼ型TiO2
粒子が試料表面に生成していることが確認できた。
The solid solution sample was placed in a pure oxygen 100 atm atmosphere at 550
By holding at 2 ° C. for 2 hours, oxygen diffusion from the sample surface toward the inside was promoted, and the Ti diffusion from the sample inside to the surface direction was balanced. When the sample after the heat treatment was subjected to X-ray diffraction, peaks of anatase type and rutile type TiO 2 were detected, and it was confirmed that anatase type TiO 2 fine particles having a strong photocatalytic action were generated on the sample surface.

【0026】熱処理された試料に1mW/cm2の紫外光を6
時間照射しながら、5%NaCl水溶液を用いた塩水噴
霧試験を48時間継続した。比較のため、同じ試料を紫外
線照射のない暗所に配置し、同様な塩水噴霧試験に供し
た。塩水噴霧試験後に試料表面を観察したところ、暗所
に配置した試料では表面にFeの腐食生成物が検出され
たが、紫外線照射した試料では腐食が検出されなかっ
た。このことから、紫外線照射によってTiO2中の電
子が励起され、電子がFeマトリックス中に移行して腐
食の進行が抑制されたことが推察される。
The heat-treated sample was irradiated with 1 mW / cm 2 of ultraviolet light for 6 minutes.
While irradiating for 5 hours, the salt spray test using a 5% aqueous NaCl solution was continued for 48 hours. For comparison, the same sample was placed in a dark place without UV irradiation and subjected to a similar salt spray test. When the sample surface was observed after the salt spray test, corrosion products of Fe were detected on the surface of the sample placed in a dark place, but no corrosion was detected on the sample irradiated with ultraviolet light. From this, it is inferred that the electrons in TiO 2 were excited by the ultraviolet irradiation, and the electrons were transferred into the Fe matrix, thereby suppressing the progress of corrosion.

【0027】[0027]

【実施例5】CuにAlを30.0原子%配合した混合物を
Ar気流中1300℃で加熱溶解し、溶融物を無重力状態で
凝固することにより、Alを強制凝固させたCu−Al
固溶体を作製した。得られた固溶体をX線回折したとこ
ろ、Cuのピークのみが検出され、Alが強制固溶状態
にあることが判った。
Example 5 Cu-Al in which Al was forcibly solidified by heating and dissolving a mixture of Cu and 30.0 atomic% of Al in an Ar gas stream at 1300 ° C. and solidifying the melt in a zero-gravity state.
A solid solution was prepared. When the obtained solid solution was subjected to X-ray diffraction, only a peak of Cu was detected, and it was found that Al was in a forced solid solution state.

【0028】Cu−Al強制固溶体を1気圧のNH3雰囲
気中800℃に2時間保持した。熱処理された試料の断面を
走査型電子顕微鏡で観察したところ、試料内部に微細粒
子が均一分散した組織であった。また、X線回折の結果
では、AlNのピークが検出され、熱伝導性の高いAl
NがCuマトリックスに分散していることが判った。そ
こで、試料の熱伝導率を測定したところ、0.91cal/cm
・℃と極めて高い値が得られ、AlN析出による強度向
上効果と相俟って熱交換器用に適した材料であった。
The Cu—Al forced solid solution was kept at 800 ° C. in a 1 atm NH 3 atmosphere for 2 hours. Observation of the cross section of the heat-treated sample with a scanning electron microscope revealed a structure in which fine particles were uniformly dispersed inside the sample. In the result of X-ray diffraction, a peak of AlN was detected, and AlN having high thermal conductivity was detected.
It was found that N was dispersed in the Cu matrix. Then, when the thermal conductivity of the sample was measured, it was 0.91 cal / cm
A very high value of ° C. was obtained, which was a material suitable for heat exchangers in combination with the strength improvement effect of AlN precipitation.

【0029】[0029]

【実施例6】AgにMgを30.0原子%配合した混合物を
Ar気流中1100℃で溶解し、得られた融液を無重力状態
で凝固させることにより、Mgを強制固溶させたAg−
Mg固溶体を作製した。この固溶体をX線回折したとこ
ろ、Agのピークのみが検出され、Mgが強制固溶状態
にあることが判った。
Example 6 A mixture of Ag and 30.0 atomic% of Mg was melted in an Ar gas stream at 1100 ° C., and the resulting melt was solidified in a zero-gravity state to form an Ag-solid solution.
An Mg solid solution was prepared. When this solid solution was subjected to X-ray diffraction, only the Ag peak was detected, indicating that Mg was in a forced solid solution state.

【0030】Ag−Mg固溶体を1気圧のF2雰囲気中70
0℃で2時間保持した。熱処理後の試料断面を走査型電子
顕微鏡で観察したところ、試料内部に微細粒子が均一分
散した組織であった。X線回折の結果では、MgF2
ピークが検出された。MgF2は耐化学薬品性に優れて
おり、化学触媒作用のあるAgをマトリックスとしてい
ることから、耐化学薬品性の良好な触媒としての使用が
期待される。
The Ag-Mg solid solution was placed in an atmosphere of F 2 at 1 atm.
Hold at 0 ° C. for 2 hours. Observation of the cross section of the sample after the heat treatment with a scanning electron microscope revealed a structure in which fine particles were uniformly dispersed inside the sample. As a result of X-ray diffraction, a peak of MgF 2 was detected. Since MgF 2 is excellent in chemical resistance and uses Ag having a chemical catalytic action as a matrix, it is expected to be used as a catalyst having good chemical resistance.

【0031】[0031]

【実施例7】MgにZrを30.0原子%配合した混合物を
Ar気流中1800℃で溶解し、無重力状態で凝固すること
により、Mgが強制固溶したMg−Zr固溶体を作製し
た。得られた固溶体をX線回折したところ、Mgのピー
クのみが検出され、Zrが強制固溶状態にあることが判
った。
Example 7 A mixture of Mg and 30.0 atomic% of Zr was melted in an Ar gas stream at 1800 ° C. and solidified in a zero-gravity state to produce a Mg-Zr solid solution in which Mg was forcibly dissolved. When the obtained solid solution was subjected to X-ray diffraction, only the peak of Mg was detected, and it was found that Zr was in a forced solid solution state.

【0032】次いで、固溶体試料を1気圧のH2雰囲気中
で530℃に1時間保持した。熱処理された試料の断面を
走査型電子顕微鏡で観察したところ、微細粒子が均一分
散した組織を呈していた。X線回折の結果では、ZrH
2のピークが検出された。ZrH2微粒子は耐化学薬品性
に優れた物質であり、水素吸蔵・放出性のあるMgマト
リックスに分散していることから、水素吸蔵材料として
の展開が期待できる。実際、水素の放出圧を測定したと
ころ、290℃で1気圧であった。
Next, the solid solution sample was kept at 530 ° C. for 1 hour in an atmosphere of H 2 at 1 atm. Observation of the cross section of the heat-treated sample with a scanning electron microscope revealed a structure in which fine particles were uniformly dispersed. Xr diffraction results show that ZrH
Two peaks were detected. ZrH 2 fine particles are a substance having excellent chemical resistance and are dispersed in a Mg matrix capable of absorbing and releasing hydrogen, so that development as a hydrogen storage material can be expected. In fact, when the release pressure of hydrogen was measured, it was 1 atm at 290 ° C.

【0033】[0033]

【発明の効果】以上に説明したように、本発明において
は、気相元素Zとの反応で生じる化合物の標準生成自由
エネルギーに差がある金属元素X及び金属元素Yを溶解
し、急冷又は無重力状態で凝固させた固溶体を作製した
後、金属元素Xを気相元素Zと選択的に反応させて化合
物微粒子をマトリックスに分散析出させている。この方
法によるとき、金属Yに対する金属Xの固溶限に拘わら
ず、金属Xを非平衡で均一固溶させた固溶体が得られ、
該固溶体の熱処理によって種々の触媒活性を呈する酸化
物,窒化物,フッ化物,塩化物,水素化物等の化合物微
粒子が生成する。そのため、化合物微粒子に由来する電
気的,磁気的,機械的,化学的,触媒的な機能が付与さ
れ、防汚材料,抗菌材料,耐食材料,高熱伝導性材料,
耐化学薬品性材料,水素吸蔵材料等、種々の機能を備え
た複合機能材料が提供される。
As described above, in the present invention, the metal element X and the metal element Y having a difference in the standard free energy of formation of the compound generated by the reaction with the gas phase element Z are dissolved and quenched or weightless. After preparing a solid solution solidified in the state, the metal element X is selectively reacted with the gas phase element Z to disperse and precipitate compound fine particles in the matrix. According to this method, regardless of the solubility limit of the metal X with respect to the metal Y, a solid solution in which the metal X is uniformly dissolved in a non-equilibrium state is obtained,
By the heat treatment of the solid solution, compound fine particles such as oxides, nitrides, fluorides, chlorides and hydrides exhibiting various catalytic activities are produced. Therefore, the electrical, magnetic, mechanical, chemical, and catalytic functions derived from the compound fine particles are imparted, and antifouling materials, antibacterial materials, corrosion resistant materials, high heat conductive materials,
A composite functional material having various functions such as a chemical resistant material and a hydrogen storage material is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 金属元素が酸化反応する温度−酸素ポテンシ
ャルを示すグラフ
FIG. 1 is a graph showing a temperature-oxygen potential at which a metal element undergoes an oxidation reaction.

【図2】 金属元素が窒化反応する温度−窒素ポテンシ
ャルを示すグラフ
FIG. 2 is a graph showing a temperature-nitrogen potential at which a metal element undergoes a nitriding reaction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 5/06 C22C 5/06 Z 9/01 9/01 23/00 23/00 Fターム(参考) 4G069 AA03 AA08 BA04A BA04B BA48A BB02A BB04A BB08B BB11A BC10B BC16A BC31A BC32A BC32B BC33B BC60A BC66B BC68A BC68B BC75B BD05A BD15B CB02 CC32 CD10 DA05 EC22Y EC27 ED04 FA01 FB29 FB37 FC07 FC08 4K020 AA21 AC07 BB21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) C22C 5/06 C22C 5/06 Z 9/01 9/01 23/00 23/00 F-term (reference) 4G069 AA03 AA08 BA04A BA04B BA48A BB02A BB04A BB08B BB11A BC10B BC16A BC31A BC32A BC32B BC33B BC60A BC66B BC68A BC68B BC75B BD05A BD15B CB02 CC32 CD10 DA05 EC22Y EC27 ED04 FA01 FB08 ACB FCA FC21 FC21

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 常態が気相の元素Zとの親和力が大きな
金属元素X及び親和力の小さな金属元素Yを混合して金
属元素Xの濃度が0.0001〜70原子%の混合物を用意し、
金属元素X及び金属元素Yの融点以上の温度で前記混合
物を加熱溶融して金属元素Xが金属元素Yに完全に溶け
込んだ溶融物とし、103℃/秒以上の冷却速度で又は
無重力状態で前記溶融物を冷却することにより金属元素
Xと金属元素Yとの固溶体を作製し、金属元素Xと気相
元素Zとの化合物を生成するが金属元素Yと気相元素Z
との化合物の生成には不足するポテンシャルの気相元素
Zの雰囲気中で前記固溶体を加熱し、金属元素Xと気相
元素Zとの化合物微粒子をマトリックスの内部又は表面
に分散析出させることを特徴とする複合機能材料の製造
方法。
1. A mixture in which a metal element X having a high affinity for an element Z in a gaseous state and a metal element Y having a small affinity is prepared by mixing a metal element X having a concentration of 0.0001 to 70 atomic%.
The mixture is heated and melted at a temperature equal to or higher than the melting points of the metal element X and the metal element Y to form a molten material in which the metal element X is completely dissolved in the metal element Y, at a cooling rate of 10 3 ° C / sec or more or in a zero gravity state. By cooling the melt, a solid solution of the metal element X and the metal element Y is prepared, and a compound of the metal element X and the gas phase element Z is formed.
The solid solution is heated in an atmosphere of a gaseous phase element Z having a potential that is insufficient for the formation of a compound with the metal element X and the compound fine particles of the metal element X and the gaseous phase element Z are dispersed and deposited inside or on the surface of the matrix. Method for manufacturing a composite functional material.
【請求項2】 固溶体に含まれていた金属元素Xの選択
反応によって生成した化合物微粒子がマトリックスの内
部又は表面に均一分散していることを特徴とする請求項
1記載の製造方法で作製された複合機能材料。
2. The method according to claim 1, wherein the fine particles of the compound generated by the selective reaction of the metal element X contained in the solid solution are uniformly dispersed inside or on the surface of the matrix. Composite functional materials.
JP2001026268A 2001-02-02 2001-02-02 Composite functional material and its manufacturing method Pending JP2002226926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001026268A JP2002226926A (en) 2001-02-02 2001-02-02 Composite functional material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026268A JP2002226926A (en) 2001-02-02 2001-02-02 Composite functional material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002226926A true JP2002226926A (en) 2002-08-14

Family

ID=18891110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026268A Pending JP2002226926A (en) 2001-02-02 2001-02-02 Composite functional material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002226926A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087209A (en) * 1998-09-07 2000-03-28 Sulzer Innotec Ag Use of high temperature spraying method for producing heat insulating coating
JP2006069804A (en) * 2004-08-31 2006-03-16 Asahi Kasei Chemicals Corp Mesoporous oxynitride compound and/or mesoporous nitride compound
JP2006108652A (en) * 2004-09-07 2006-04-20 Denso Corp Laminated piezoelectric element and its manufacturing method
JP2008006344A (en) * 2006-06-27 2008-01-17 National Institute For Materials Science Visible light-responsive photocatalyst
US7754370B2 (en) 2002-08-21 2010-07-13 Kabushiki Kaisha Toshiba Fuel cell catalyst material, fuel cell electrode, membrane-electrode assembly, fuel cell, fuel cell catalyst material manufacturing method, and fuel cell electrode manufacturing method
WO2013073695A1 (en) * 2011-11-16 2013-05-23 エム・テクニック株式会社 Solid metal alloy
WO2013137469A1 (en) * 2012-03-16 2013-09-19 エム・テクニック株式会社 Solid gold-nickel alloy nanoparticles and production method thereof
JPWO2013073241A1 (en) * 2011-11-16 2015-04-02 エム・テクニック株式会社 Solid silver copper alloy
JP2016176103A (en) * 2015-03-19 2016-10-06 大日製罐株式会社 Surface treated steel sheet, metal container, production method of surface treated steel sheet, rust-resistance imparting method, slidability improvement method, ablation prevention method, scratch-filled property improvement method and chemical-resistance imparting method
JP2022507758A (en) * 2018-11-19 2022-01-18 プランゼー エスエー Additional refractory metal parts, additional manufacturing methods and powders
JP2022513611A (en) * 2018-11-19 2022-02-09 プランゼー エスエー Additional refractory metal parts, additional manufacturing methods and powders
CN115386762A (en) * 2022-09-01 2022-11-25 江西蓝微电子科技有限公司 High-performance bonding alloy wire and preparation method thereof
CN115505876A (en) * 2022-09-29 2022-12-23 中国科学院兰州化学物理研究所 Gold-nickel-nitrogen ternary composite conductive lubricating coating and preparation method and application thereof

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087209A (en) * 1998-09-07 2000-03-28 Sulzer Innotec Ag Use of high temperature spraying method for producing heat insulating coating
US7754370B2 (en) 2002-08-21 2010-07-13 Kabushiki Kaisha Toshiba Fuel cell catalyst material, fuel cell electrode, membrane-electrode assembly, fuel cell, fuel cell catalyst material manufacturing method, and fuel cell electrode manufacturing method
JP2006069804A (en) * 2004-08-31 2006-03-16 Asahi Kasei Chemicals Corp Mesoporous oxynitride compound and/or mesoporous nitride compound
JP4662434B2 (en) * 2004-08-31 2011-03-30 旭化成ケミカルズ株式会社 Mesoporous oxynitride compound and / or mesoporous nitride compound
JP2006108652A (en) * 2004-09-07 2006-04-20 Denso Corp Laminated piezoelectric element and its manufacturing method
JP2008006344A (en) * 2006-06-27 2008-01-17 National Institute For Materials Science Visible light-responsive photocatalyst
CN103945959A (en) * 2011-11-16 2014-07-23 M技术株式会社 Solid metal alloy
WO2013073695A1 (en) * 2011-11-16 2013-05-23 エム・テクニック株式会社 Solid metal alloy
US9732401B2 (en) 2011-11-16 2017-08-15 M. Technique Co., Ltd. Solid metal alloy
KR20140093672A (en) * 2011-11-16 2014-07-28 엠. 테크닉 가부시키가이샤 Solid metal alloy
US10829838B2 (en) 2011-11-16 2020-11-10 M. Technique Co., Ltd. Solid metal alloy
JPWO2013073241A1 (en) * 2011-11-16 2015-04-02 エム・テクニック株式会社 Solid silver copper alloy
JPWO2013073695A1 (en) * 2011-11-16 2015-04-02 エム・テクニック株式会社 Solid metal alloy
KR102129275B1 (en) * 2011-11-16 2020-07-02 엠. 테크닉 가부시키가이샤 Solid metal alloy
US10006105B2 (en) 2011-11-16 2018-06-26 M. Technique Co., Ltd. Solid silver-copper alloy having mainly a non-eutectic structure not containing a eutectic at room temperature
JP2017002406A (en) * 2011-11-16 2017-01-05 エム・テクニック株式会社 Solid metal alloy
WO2013137469A1 (en) * 2012-03-16 2013-09-19 エム・テクニック株式会社 Solid gold-nickel alloy nanoparticles and production method thereof
US11229949B2 (en) 2012-03-16 2022-01-25 M. Technique Co., Ltd. Solid gold-nickel alloy nanoparticle
JP2017186675A (en) * 2012-03-16 2017-10-12 エム・テクニック株式会社 Solid gold nickel alloy nanoparticle and method for producing the same
US10035186B2 (en) 2012-03-16 2018-07-31 M. Technique Co., Ltd. Solid gold-nickel alloy nanoparticles and production method thereof
JPWO2013137469A1 (en) * 2012-03-16 2015-08-03 エム・テクニック株式会社 Solid gold-nickel alloy nanoparticles and method for producing the same
CN104203456A (en) * 2012-03-16 2014-12-10 M技术株式会社 Solid gold-nickel alloy nanoparticles and production method thereof
JP2016176103A (en) * 2015-03-19 2016-10-06 大日製罐株式会社 Surface treated steel sheet, metal container, production method of surface treated steel sheet, rust-resistance imparting method, slidability improvement method, ablation prevention method, scratch-filled property improvement method and chemical-resistance imparting method
JP2022507758A (en) * 2018-11-19 2022-01-18 プランゼー エスエー Additional refractory metal parts, additional manufacturing methods and powders
JP2022513611A (en) * 2018-11-19 2022-02-09 プランゼー エスエー Additional refractory metal parts, additional manufacturing methods and powders
JP7397868B2 (en) 2018-11-19 2023-12-13 プランゼー エスエー Additively manufactured refractory metal components, additive manufacturing methods and powders
JP7397869B2 (en) 2018-11-19 2023-12-13 プランゼー エスエー Additively manufactured refractory metal components, additive manufacturing methods and powders
CN115386762A (en) * 2022-09-01 2022-11-25 江西蓝微电子科技有限公司 High-performance bonding alloy wire and preparation method thereof
CN115505876A (en) * 2022-09-29 2022-12-23 中国科学院兰州化学物理研究所 Gold-nickel-nitrogen ternary composite conductive lubricating coating and preparation method and application thereof
CN115505876B (en) * 2022-09-29 2023-11-17 中国科学院兰州化学物理研究所 Gold-nickel-nitrogen ternary composite conductive lubricating coating and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2021020377A1 (en) Alloy nanoparticles, aggregate of alloy nanoparticles, catalyst, and method for producing alloy nanoparticles
JP5774756B2 (en) Solid solution type alloy fine particles
JP2002226926A (en) Composite functional material and its manufacturing method
Zhao et al. Thermal history dependence of the crystal structure of Co fine particles
JP5967764B2 (en) Method for producing alloy powder for oxidation-resistant coating, method for producing alloy having excellent oxidation resistance characteristics using the powder, and method for producing member using the alloy
Mourdikoudis et al. Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights
Liu et al. Recent progress in intermetallic nanocrystals for electrocatalysis: From binary to ternary to high‐entropy intermetallics
JP7098758B2 (en) Ultra-small nanostructures manufactured using amorphous nanostructures and their manufacturing methods
US8974719B2 (en) Composite materials formed with anchored nanostructures
Xu et al. One-pot synthesis of lotus-shaped Pd–Cu hierarchical superstructure crystals for formic acid oxidation
WO2022009871A1 (en) Alloy, aggregate of alloy nanoparticles, and catalyst
WO2022009870A1 (en) Alloy, aggregate of alloy nanoparticles, and catalyst
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
JP4688986B2 (en) Surface treatment method of hydrogen storage alloy for battery materials
JP2020059908A (en) Alloy fine particle group and manufacturing method thereof
JP2002105609A (en) High hydrogen storage alloy and its manufacturing method
JP4328052B2 (en) Method for producing porous structure with added functionality
JP3300460B2 (en) Method for producing ultrafine monodispersed gold particles
WO2020162336A1 (en) Nanocrystal complex
JP4386662B2 (en) Method for producing compound catalyst ultrafine particles using quasicrystalline Al alloy particles as carrier
JP2006016653A (en) Method for producing nanoparticle of less noble metal
Pandas et al. Fabrication of Pb₃O₄ and Fe₂O₃ nanoparticles and their application as the catalysts in thermal decomposition of ammonium perchlorate
JPH08215570A (en) Catalyst for synthesis of methanol, production thereof and synthesis of methanol
JP2005105350A (en) High hydrogen storage material, and its production method
JPH03166393A (en) Electrode for generating hydrogen

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703