JPS6223912A - Production of fine metallic powder - Google Patents

Production of fine metallic powder

Info

Publication number
JPS6223912A
JPS6223912A JP16115285A JP16115285A JPS6223912A JP S6223912 A JPS6223912 A JP S6223912A JP 16115285 A JP16115285 A JP 16115285A JP 16115285 A JP16115285 A JP 16115285A JP S6223912 A JPS6223912 A JP S6223912A
Authority
JP
Japan
Prior art keywords
powder
metal
metallic
halide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16115285A
Other languages
Japanese (ja)
Other versions
JPH0478683B2 (en
Inventor
Kenzo Hanawa
健三 塙
Norio Ito
則雄 伊藤
Katsura Ito
桂 伊藤
Hirosumi Izawa
伊沢 広純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP16115285A priority Critical patent/JPS6223912A/en
Publication of JPS6223912A publication Critical patent/JPS6223912A/en
Publication of JPH0478683B2 publication Critical patent/JPH0478683B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a single-crystalline and polygonal fine metallic powder having high purity when a metallic halide is reduced with hydrogen, by lowering the heating temp. of the metallic halide and the flow rate of the hydrogen. CONSTITUTION:The metallic halide is reduced with gaseous hydrogen to produce metallic powder. At this time, the metallic halide is heated to a temp. which is below the m.p. of the metallic halide by about 400 deg.C so as to control the extent of evaporation. The flow rate of the gaseous hydrogen is regulated to <=about 100cm/min so as to slowly grow a nuclei and to make the resulting particles practically a single-crystalline. By this method, fine metallic powder having high purity useful as a magnetic material, a material for powder metallurgy or a filler is obtd. The metal may be Fe, Co, Ni or an alloy thereof.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉄、ニッケル、コバルト等の金属微粉の製造法
に関し、4′¥に実質的に単結晶で高純度であるため、
磁性材、粉末冶金、各種の充填材等として有用な金属微
粉の製造法に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for producing metal fine powder of iron, nickel, cobalt, etc., which is substantially single crystal and has high purity.
This invention relates to a method for producing fine metal powder useful as magnetic materials, powder metallurgy, various fillers, etc.

従来の技術 高純度鉄粉には以下のような製法がある。ニッケル、コ
バルト等についても同様に製造することができる。
Conventional technology High-purity iron powder can be produced using the following methods. Nickel, cobalt, etc. can also be produced in the same way.

■電解が、で得た高純度鉄フレークを粉砕する方法。■Electrolysis is a method of crushing high-purity iron flakes obtained by.

(り精製した鉄カルボニル(Fe (Co)5)を熱分
解する方法。
(A method of thermally decomposing purified iron carbonyl (Fe (Co)5).

■溶融した高純度鉄をアトマイズする方法。■A method of atomizing molten high-purity iron.

■高純度の塩化鉄又は醇化鉄を水素等で5元する方7人
 。
■7 people who processed 5 yuan of high-purity iron chloride or iron liquefaction with hydrogen, etc.

(りの鉄粉は、表面がでこぼこの偏平状であり、257
Lm以下になると偏平がひどくなる。また粉砕中に不純
物が入るので、微粉になるほど純度が低下する。■の鉄
粉は、粒径は1〜108LI11の球状粉である。 1
〜lopLmの範囲では現存の鉄粉の中で最も高純度で
あるがCの混入が避けられないので不純物の合計が約1
%である。またその粉末粒子は層状多結晶である。■の
鉄粉は、球状と不規則形状とがあるが、いづれにせよ、
lopLm以下の微粉にすることは困難である。純IW
についても、溶湯の純度を上げ不活性雰囲気中でアトマ
イズをすればかなり高純度となるが、不純物合計を 1
%以下にすることは難しい。粒子の結晶も多結晶である
。■で酸化鉄を還元した鉄粉は、酸化鉄の形状・大きさ
に対応した形状・大きさの鉄粉があるが、一般に多結晶
で酸化鉄が残るのでポーラスで純度が悪い。
(Rino iron powder has an uneven surface and a flat shape, 257
If it becomes less than Lm, the flattening becomes severe. Also, since impurities are introduced during pulverization, the finer the powder, the lower the purity. The iron powder (2) is a spherical powder with a particle size of 1 to 108 LI11. 1
In the range of ~ lopLm, it has the highest purity among existing iron powders, but since the contamination of C is unavoidable, the total amount of impurities is approximately 1
%. Moreover, the powder particles are layered polycrystalline. ■The iron powder has a spherical shape and an irregular shape, but in any case,
It is difficult to make it into a fine powder of lopLm or less. Pure IW
However, if the purity of the molten metal is increased and atomization is performed in an inert atmosphere, the purity will be considerably high, but if the total impurity is reduced to 1.
% or less is difficult. The crystals of the particles are also polycrystalline. Iron powder produced by reducing iron oxide in step (2) has iron powders with shapes and sizes that correspond to the shape and size of iron oxide, but they are generally polycrystalline and leave iron oxide behind, making them porous and of poor purity.

また塩化鉄を還元する方法には特公昭58−7785 
、特開昭5!]−170211のような方法があるが、
そこで得られた微粉は数珠状に連なったものであり、個
々の粒子も単結晶ではない。この方法は塩化鉄の蒸気と
水素ガスの接触面で界面不安定領域を形成し、ここで多
数の金属核を急速に生成させるので自然に多結晶になる
In addition, the method for reducing iron chloride was published in Japanese Patent Publication No. 58-7785.
, Tokukai Showa 5! ]-170211, but
The fine powder obtained there is a string of beads, and the individual particles are not single crystals. In this method, an interfacial unstable region is formed at the interface between iron chloride vapor and hydrogen gas, and a large number of metal nuclei are rapidly generated there, resulting in a polycrystalline state naturally.

発明が解決しようとする問題点 従来の鉄等の微粉末は多結晶で、その形状も偏平であっ
たり、また不純物も多い。そのため磁性材、例えばコイ
ルの芯材として使用した場合に十分にその性能を発揮で
きない。また偏平であるとフィラーとしての充填性、粉
末冶金としての使用にも問題がノ[する。
Problems to be Solved by the Invention Conventional fine powders of iron and the like are polycrystalline, flat in shape, and contain many impurities. Therefore, when used as a magnetic material, for example, a core material of a coil, it cannot fully exhibit its performance. Furthermore, if the material is flat, there will be problems in filling properties as a filler and in use in powder metallurgy.

本発明は−1−記の欠点を改善した高純度のFe、旧、
Coの粉末又はこれらの合金粉末を提供することを1−
1的とする。
The present invention is a high-purity Fe, old,
1- to provide Co powder or alloy powder thereof;
1 target.

問題点を解決するための手段 本発明方法は金属ハロゲン化物の水素還元であ反させる
ことによって実質的に粒子を単結晶とするものである。
Means for Solving the Problems The method of the present invention consists in converting metal halides by hydrogen reduction to substantially form the particles into single crystals.

金属ハロゲン化物の蒸発量は少ないので、還元は大部分
は金属ハロゲン化物の粉末層−I−あるいは層内で起る
。前記特許公報に記載のように金属ハロゲン化物の蒸気
を別の帯或に移動させて、そこで水素ガスと接触させ還
元反応させるのではなく、本発明の方法は原料の金属ハ
ロゲン化物が存在している所、即ち同一帯域で金属を還
元析出させる方法である。この反応機構は定かでない点
もあるが、還元された金属が単結晶として成長していく
ことから考えて固相反応ではなく、金属ハロゲン化物が
一旦蒸発し、それが水素で還元よれて金属ハロゲン化物
の粉末層内あるいは層上に析出するものと考えられる。
Since the amount of evaporation of the metal halide is small, the reduction takes place mostly in the metal halide powder layer -I- or within the layer. Instead of moving the metal halide vapor to another zone and bringing it into contact with hydrogen gas there for a reduction reaction as described in the above-mentioned patent publication, the method of the present invention uses metal halide vapor as a starting material in the presence of the metal halide. This is a method in which metals are reduced and precipitated where they are present, that is, in the same zone. This reaction mechanism is not certain, but given that the reduced metal grows as a single crystal, it is not a solid-phase reaction; the metal halide is first evaporated, then reduced and twisted by hydrogen to form a metal halide. It is thought that the particles precipitate within or on the compound powder layer.

金属ハロゲン化物の加熱温度は上記のようにそれが粉末
状態を維持する必要があるから金属/\ロゲン化物の融
点以下である。その下限は反応速度を実用化可能にする
必要」二金属)\ロゲン化物の融点マイナス400℃が
適当である。そして好ましくは400〜600°Cの範
囲である。
The heating temperature of the metal halide is below the melting point of the metal/halide because it is necessary to maintain the powder state as described above. The lower limit is necessary to make the reaction rate practical, and is preferably 400°C minus the melting point of the bimetallic compound. The temperature is preferably in the range of 400 to 600°C.

金属ハロゲン化物はたとえばF e Cl 3は情意3
17℃であり、この程度の温度では水素ガスと混合して
も反応しないので、適当な融点を持つものがよく二塩化
物であるFeC1ycocI  、 NiCl2が適す
る。これらの粒度は還元された金属の凝集を防ぐためl
0gm以下が好ましい。」二記の原料中に同金属酸化物
を少量混合しておくことが望ましい。
For example, metal halides are F e Cl 3
The temperature is 17° C., and since it does not react even when mixed with hydrogen gas at this temperature, dichlorides such as FeClycocI and NiCl2 are suitable if they have an appropriate melting point. These particle sizes are chosen to prevent agglomeration of the reduced metal.
It is preferably 0 gm or less. It is desirable to mix a small amount of the same metal oxide into the raw materials mentioned above.

それは金属酸化物はハロゲン化物より還元され易く、そ
れを適当に分散させておくことにより還元された金属が
核となり、単結晶の粒径を制御することができる。もつ
とも通常はFeCl2等には少量Fe2O3等が混入し
ているので、この場合は特に添加しなくてもよい。
This is because metal oxides are more easily reduced than halides, and by appropriately dispersing them, the reduced metal becomes a nucleus, and the grain size of the single crystal can be controlled. However, since a small amount of Fe2O3 etc. is usually mixed in FeCl2 etc., it is not necessary to add it in this case.

げる。流量は還元方法によって適正な値が異なるが、例
えば皿形のような容器に金属ハロゲン化物を入れ、その
−1−を一方から他方に水素ガスを流すような方法、あ
るいはロータリーキルン方式で原料を回転させ、キルン
の一端から水素ガスを流すような方法では水素ガスの流
速は100cm/分以下が適する。そして好ましくは3
0〜80cm/分である。また筒体に原料粉末を充填し
、筒底から水素ガスを流して原料層内を通す方式では水
素ガスの流速は50〜100 co+/分が適する。
Geru. The appropriate flow rate varies depending on the reduction method, but for example, metal halide is placed in a dish-shaped container and hydrogen gas is passed from one side to the other, or the raw material is rotated using a rotary kiln method. In a method in which hydrogen gas is flowed from one end of the kiln, the flow rate of hydrogen gas is preferably 100 cm/min or less. and preferably 3
The speed is 0 to 80 cm/min. Further, in a method in which a cylinder is filled with raw material powder and hydrogen gas is flowed from the bottom of the cylinder to pass through the raw material layer, a suitable flow rate of hydrogen gas is 50 to 100 co+/min.

これらの流速は常温における送入(J(Cm”/分)を
反応帯の断面積(crn’)で除した値である。
These flow rates are the inflow (J (Cm''/min)) divided by the cross-sectional area of the reaction zone (crn') at room temperature.

水素ガスには不活性ガス、C01H20ガス等を含んで
いてもよい。
The hydrogen gas may contain an inert gas, C01H20 gas, etc.

本発明の方法によって得られた金属粉末は実質的に単結
晶である。実質的にとは粒子は結晶粒界がなく転位密度
も非常に低いことを意味する。
The metal powder obtained by the method of the invention is substantially single crystal. Substantially means that the grains have no grain boundaries and a very low dislocation density.

釈fr全中結晶とするごとにより、磁気中〜+1、例え
ばヒスーTリジメ曲線を残留磁気の少ない曲線とするこ
とができる。
By using an all-round crystal, a magnetic medium to +1, for example, a Histo T rigid curve can be made into a curve with less residual magnetism.

次にその11ン了は多面体形状をな17でいる。その形
は多くはI■六面体以−1−の多面体で、偏平や剣状で
ない粒状をなしており、アスペクI・比で表わゼば大部
分1〜3の範囲に入る。このような粒状であるため、本
発明による粒子は、粉末冶金用やフィラー用と]7て使
用すれば充填に(が極めてよい。粒子の大きさは殆んど
が0.1〜100 μmの範囲である。
Next, the 11th round has a polyhedral shape of 17. Most of the shapes are polyhedrons with a hexahedron size of 1-1 or less, and are not oblate or sword-shaped, and most of them fall within the range of 1 to 3 when expressed in terms of aspect ratio. Because of their granular shape, the particles according to the present invention are extremely suitable for use in powder metallurgy and fillers. range.

また本発明による金属粉末は高純度であることも特徴の
−・つである。即ち、なfましくはイく鈍物は0.5重
h%%以下である。このように不純物が少ないのは粉末
粒r−が殆んど結晶欠陥がないので、欠陥にトラップさ
れる不純物が少ないからである。
Another feature of the metal powder according to the present invention is that it has high purity. That is, preferably the dull material is 0.5% by weight or less. The reason why there are so few impurities is that the powder grains r- have almost no crystal defects, so there are few impurities trapped in the defects.

実施例1 市販の試薬特級の塩イヒ第1鉄(Feel  ・xH2
O)をナイロン製のボールで1時間粉砕し、その粒度を
50gm以ドとトド。その3gを軟鋼製のポートに時l
゛、内1.150+nmのイl1fi−管を炉芯/6・
と1.た横型′市気炉にて、流早 1.Q/分(これl
コ常温での値で、これを電気炉の…i面積で割るどが1
.速50cm/分となる。)の水素中、450℃で超絶
1.また。県冗中、反応ガス(HCIを含む)を水に吸
収さけ、水溶液の電導度をA11l定割ることによ−〕
て反Iイー、の終1ハを捕えた。その結果約5時間な要
り、た。
Example 1 Commercially available reagent grade ferrous salt (Feel xH2
C. O) was crushed with a nylon ball for 1 hour until the particle size was 50 gm or more. When that 3g is transferred to a mild steel port,
゛、Including 1.150+nm Il1fi-tube as furnace core/6・
and 1. 1. Q/min (this l
This is the value at room temperature, divided by the i area of the electric furnace, which is 1
.. The speed is 50cm/min. ) in hydrogen at 450℃ 1. Also. Prefectural Junior High School, by avoiding the absorption of reactive gases (including HCI) in water and dividing the conductivity of the aqueous solution by A11l.
I caught the last 1 ha of the anti-I Yi. As a result, it took about 5 hours.

/l成したボートドの鉄粉は第1図に4−査型電イ顕微
鏡写ガ(倍率+000f:’i)で示すように多面体形
状で結晶欠陥は殆んど見られない。その大きさは殆んど
が6〜8gm、アスペクト化は平均的 1である。この
粒子−の化学分析の結果不純物は以下の通り(数字はp
pm )。
As shown in FIG. 1 (magnification +000 f:'i), the Bored iron powder produced in the form of a polyhedron has a polyhedral shape with almost no crystal defects. Most of them are 6 to 8 gm in size and have an average aspect ratio of 1. As a result of chemical analysis of these particles, the impurities are as follows (the numbers are p
pm).

A1、  Sl 、  P、Ca、  Ti、 V、C
r5以下 5以下 20以ド 312以ド 2Kn、 
 Co 、Ni 、Cu、Zn 、  Mo、  −1
Na135511以−ト 4 20以ド −なお、Ni
C1、CoCl2からも仝〈同様に単結晶、多面体形状
の粒子がtIIられる。
A1, Sl, P, Ca, Ti, V, C
r5 or less 5 or less 20 or more 312 or more 2Kn,
Co, Ni, Cu, Zn, Mo, -1
Na135511 or higher 4 20 or higher
Similarly, single crystal, polyhedral particles are obtained from C1 and CoCl2.

発明の効果 本発明のフコ法によれば従来のような数珠状に連なり、
かつその個々の粒子が多結晶であったり、粒子となるた
め、多くの用途に優れた性能を発揮する。
Effects of the Invention According to the fuco method of the present invention, the beads are arranged in a string like the conventional method,
Moreover, since each particle is polycrystalline or forms particles, it exhibits excellent performance in many applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によって得られた鉄粉の走査型電
子顕微鏡写真である(倍率1000倍)。
FIG. 1 is a scanning electron micrograph of iron powder obtained by the method of the present invention (1000x magnification).

Claims (2)

【特許請求の範囲】[Claims] (1)金属ハロゲン化物を水素ガスで還元して金属粉末
を得る方法において、金属をその金属ハロゲン化物と同
一帯域で実質的に単結晶として析出する範囲に金属ハロ
ゲン化物の加熱温度及び水素ガスの流速を抑制すること
を特徴とする金属粉末の製造法。
(1) In a method of obtaining metal powder by reducing a metal halide with hydrogen gas, the heating temperature of the metal halide and the hydrogen gas are adjusted so that the metal is precipitated as a substantially single crystal in the same zone as the metal halide. A method for producing metal powder characterized by suppressing flow velocity.
(2)金属がFe、Ni、Coの一種もしくはこれらの
合金である特許請求の範囲第1項記載の金属微粉の製造
法。
(2) The method for producing metal fine powder according to claim 1, wherein the metal is one of Fe, Ni, and Co or an alloy thereof.
JP16115285A 1985-07-23 1985-07-23 Production of fine metallic powder Granted JPS6223912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16115285A JPS6223912A (en) 1985-07-23 1985-07-23 Production of fine metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16115285A JPS6223912A (en) 1985-07-23 1985-07-23 Production of fine metallic powder

Publications (2)

Publication Number Publication Date
JPS6223912A true JPS6223912A (en) 1987-01-31
JPH0478683B2 JPH0478683B2 (en) 1992-12-11

Family

ID=15729580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16115285A Granted JPS6223912A (en) 1985-07-23 1985-07-23 Production of fine metallic powder

Country Status (1)

Country Link
JP (1) JPS6223912A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473009A (en) * 1987-09-11 1989-03-17 Showa Denko Kk Production of high purity tantalum or niobium powder
JPH01222028A (en) * 1988-02-29 1989-09-05 Showa Denko Kk Vapor phase reduction method for tantalum or niobium
JPH02259003A (en) * 1989-03-31 1990-10-19 Tanaka Kikinzoku Kogyo Kk Manufacture of copper fine particles
JP2008520824A (en) * 2004-11-19 2008-06-19 ファルコンブリッジ リミテッド Method for producing fine, low bulk density metallic nickel powder
JP2010053372A (en) * 2008-08-26 2010-03-11 Nec Tokin Corp Iron-nickel alloy powder, method for producing the same, and powder magnetic core for inductor using the alloy powder
CN101856725A (en) * 2010-06-22 2010-10-13 荆门市格林美新材料有限公司 Method for preparing superfine nickel powder by direct reduction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127896A (en) * 1974-03-18 1975-10-08
JPS597765A (en) * 1982-07-05 1984-01-14 Nissan Motor Co Ltd Fuel injection-type internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127896A (en) * 1974-03-18 1975-10-08
JPS597765A (en) * 1982-07-05 1984-01-14 Nissan Motor Co Ltd Fuel injection-type internal-combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473009A (en) * 1987-09-11 1989-03-17 Showa Denko Kk Production of high purity tantalum or niobium powder
JPH01222028A (en) * 1988-02-29 1989-09-05 Showa Denko Kk Vapor phase reduction method for tantalum or niobium
JPH02259003A (en) * 1989-03-31 1990-10-19 Tanaka Kikinzoku Kogyo Kk Manufacture of copper fine particles
JP2008520824A (en) * 2004-11-19 2008-06-19 ファルコンブリッジ リミテッド Method for producing fine, low bulk density metallic nickel powder
JP2010053372A (en) * 2008-08-26 2010-03-11 Nec Tokin Corp Iron-nickel alloy powder, method for producing the same, and powder magnetic core for inductor using the alloy powder
CN101856725A (en) * 2010-06-22 2010-10-13 荆门市格林美新材料有限公司 Method for preparing superfine nickel powder by direct reduction

Also Published As

Publication number Publication date
JPH0478683B2 (en) 1992-12-11

Similar Documents

Publication Publication Date Title
ES2208465T3 (en) PROCEDURE FOR THE PRODUCTION OF DUST MIXTURES OR COMPOSITE DUST.
JP7365735B2 (en) Method for producing aluminum-containing alloy powder and its use, and alloy ribbon
Luidold et al. Hydrogen as a reducing agent: State-of-the-art science and technology
US4072514A (en) Magnesium composites and mixtures for hydrogen generation and method for manufacture thereof
CN112207285B (en) Preparation method and application of powder material
US2879154A (en) Acicular metal particles and method of making the same
US20230364677A1 (en) Alloy powder, preparation method therefor, and use therefor
US20080187455A1 (en) Titanium and titanium alloys
JP4132526B2 (en) Method for producing powdered titanium
US4810285A (en) Process for preparing spherical copper fine powder
CN109853001B (en) Device and method for preparing metal or alloy powder by directly reducing metal compound
JPS6223912A (en) Production of fine metallic powder
JP3482420B2 (en) Graphite-coated metal particles and method for producing the same
JP2002226926A (en) Composite functional material and its manufacturing method
CN113493191B (en) Method for preparing high-purity alpha-silicon nitride powder and high-purity alpha-silicon nitride powder
Liu et al. Oxidation behaviour of Fe3Al nanoparticles prepared by hydrogen plasma–metal reaction
JP2004315362A (en) Composite powder having matrix domain structure, method of manufacturing the same and use of the same
US4254093A (en) Solar energy grade cadmium sulfide
Lu et al. Production of fine titanium powder from titanium sponge by the shuttle of the disproportionation reaction in molten NaCl–KCl
JPS6223901A (en) High-purity metal powder
US3975217A (en) Finely divided magnetic cobalt powder
JPS62192507A (en) Production of pulverized metallic powder
KR100453554B1 (en) Producing method for cobalt ultrafine particles by the gas phase reduction
Nowak et al. Preparation Methods of Hydrogen Storage Materials and Nanomaterials
JP2002038206A (en) Method for producing rare earth-transition metal- nitrogen-based alloy powder