JPH0478683B2 - - Google Patents

Info

Publication number
JPH0478683B2
JPH0478683B2 JP60161152A JP16115285A JPH0478683B2 JP H0478683 B2 JPH0478683 B2 JP H0478683B2 JP 60161152 A JP60161152 A JP 60161152A JP 16115285 A JP16115285 A JP 16115285A JP H0478683 B2 JPH0478683 B2 JP H0478683B2
Authority
JP
Japan
Prior art keywords
metal
powder
iron
particles
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60161152A
Other languages
Japanese (ja)
Other versions
JPS6223912A (en
Inventor
Kenzo Hanawa
Norio Ito
Katsura Ito
Hirosumi Izawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP16115285A priority Critical patent/JPS6223912A/en
Publication of JPS6223912A publication Critical patent/JPS6223912A/en
Publication of JPH0478683B2 publication Critical patent/JPH0478683B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉄、ニツケル、コバルト等の金属微粉
の製造法に関し、特に実質的に単結晶で高純度で
あるため、磁性材、粉末治金、各種の充填材等と
して有用な金属微粉の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing fine powder of metals such as iron, nickel, and cobalt. This invention relates to a method for producing fine metal powder useful as a filler, etc.

従来の技術 高純度鉄粉には以下のような製法がある。ニツ
ケル、コバルト等についても同様に製造すること
ができる。
Conventional technology High-purity iron powder can be produced using the following methods. Nickel, cobalt, etc. can also be produced in the same manner.

電解法で得た高純度鉄フレークを粉砕する方
法。
A method of crushing high-purity iron flakes obtained by electrolytic method.

精製した鉄カルボニル(Fe(CO)5)を熱分解
する方法。
A method of thermally decomposing purified iron carbonyl (Fe(CO) 5 ).

溶融した高純度鉄をアトマイズする方法。 A method of atomizing molten high-purity iron.

高純度の塩化鉄又は酸化鉄を水素等で還元す
る方法。
A method of reducing high purity iron chloride or iron oxide with hydrogen, etc.

の鉄粉は、表面がでこぼこの偏平状であり、
25μm以下になると偏平がひどくなる。また粉砕
中に不純物が入るので、微粉になるほど純度が低
下する。の鉄粉は、粒径は1〜10μmの球状粉
である。1〜10μmの範囲では現存の鉄粉の中で
最も高純度であるがCの混入が避けられないので
不純物の合計が約1%である。またその粉末粒子
は層状多結晶である。の鉄粉は、球状と不規則
形状とがあるが、いづれにせよ、10μm以下の微
粉にすることは困難である。純度についても、溶
湯の純度を上げ不活性雰囲気中でアトマイズをす
ればかなり高純度となるが、不純物合計を1%以
下にすることは難しい。粒子の結晶も多結晶であ
る。で酸化鉄を還元した鉄粉は、酸化鉄の形
状・大きさに対応した形状・大きさの鉄粉がある
が、一般に多結晶で酸化鉄が残るのでポーラスで
純度が悪い。
The iron powder has an uneven and flat surface.
When the thickness is less than 25 μm, the flattening becomes severe. Also, since impurities are introduced during pulverization, the finer the powder, the lower the purity. The iron powder is a spherical powder with a particle size of 1 to 10 μm. In the range of 1 to 10 μm, it has the highest purity among existing iron powders, but since C is unavoidable, the total amount of impurities is about 1%. Moreover, the powder particles are layered polycrystalline. There are two types of iron powder: spherical and irregular shapes, but in any case, it is difficult to make it into a fine powder of 10 μm or less. Regarding purity, if the purity of the molten metal is increased and atomization is performed in an inert atmosphere, the purity can be quite high, but it is difficult to reduce the total impurity to 1% or less. The crystals of the particles are also polycrystalline. Iron powder produced by reducing iron oxide is available in shapes and sizes that correspond to the shape and size of iron oxide, but it is generally polycrystalline and leaves iron oxide behind, making it porous and of poor purity.

また塩化鉄を還元する方法には特公昭59−
7765、特開昭59−170211のような方法があるが、
そこで得られた微粉は数珠状に連なつたものであ
り、個々の粒子も単結晶ではない。この方法は塩
化鉄の蒸気と水素ガスの接触面で界面不安定領域
を形成し、ここで多数の金属核を急速に生成させ
るので自然に多結晶になる。
In addition, the method for reducing iron chloride was
There are methods such as 7765 and JP-A-59-170211,
The fine powder obtained there is a string of beads, and the individual particles are not single crystals. This method forms an interfacial unstable region at the contact surface between iron chloride vapor and hydrogen gas, where large numbers of metal nuclei are rapidly generated, naturally resulting in polycrystalline formation.

発明が解決しようとする問題点 従来の鉄等の微粉末は多結晶で、その形状も偏
平であつたり、また不純物も多い。そのため磁性
材、例えばコイルの芯材として使用した場合に十
分にその性能を発揮できない。また偏平であると
フイラーとしての充填性、粉末治金としての使用
にも問題が生ずる。
Problems to be Solved by the Invention Conventional fine powders of iron, etc. are polycrystalline, have a flat shape, and contain many impurities. Therefore, when used as a magnetic material, for example, a core material of a coil, it cannot fully exhibit its performance. In addition, if the material is flat, there will be problems in its filling properties as a filler and in its use in powder metallurgy.

本発明は上記の欠点を改善した高純度のFe,
Ni,Coの粉末又はこれらの合金粉末を提供する
ことを目的とする。
The present invention provides high-purity Fe, which improves the above-mentioned drawbacks.
The purpose is to provide powders of Ni and Co or alloy powders thereof.

問題点を解決するための手段 本発明方法は金属ハロゲン化物の水素還元であ
るが、金属ハロゲン化物の加熱温度を低くして蒸
発量を抑え、かつ水素の流速も下げて核をゆつく
り成長させることによつて実質的に粒子を単結晶
とするものである。金属ハロゲン化物の蒸発量は
少ないので、還元は大部分は金属ハロゲン化物の
粉末層上あるいは層内で起る。前記特許公報に記
載のように金属ハロゲン化物の蒸気を別の帯域に
移動させて、そこで水素ガスと接触させ還元反応
させるのではなく、本発明の方法は原料の金属ハ
ロゲン化物が存在している所、即ち同一帯域で金
属を還元析出させる方法である。この反応機構は
定かでない点もあるが、還元された金属が単結晶
として成長していくことから考えて固相反応では
なく、金属ハロゲン化物が一旦蒸発し、それが水
素で還元されて金属ハロゲン化物の粉末層内ある
いは層上に析出するものと考えられる。
Means for Solving the Problems The method of the present invention involves hydrogen reduction of metal halides, but the heating temperature of the metal halide is lowered to suppress the amount of evaporation, and the flow rate of hydrogen is also lowered to slowly grow the nuclei. In particular, the particles are substantially single-crystalline. Since the amount of metal halide vaporized is small, reduction occurs mostly on or within the metal halide powder layer. Rather than moving the metal halide vapor to a separate zone where it is brought into contact with hydrogen gas and subjected to a reduction reaction as described in the above-mentioned patent publication, the method of the present invention is based on the presence of the raw metal halide. In this method, the metal is reduced and precipitated in the same zone. Although this reaction mechanism is not certain, considering that the reduced metal grows as a single crystal, it is not a solid phase reaction, but rather the metal halide is evaporated and then reduced with hydrogen to form the metal halide. It is thought that the particles precipitate within or on the compound powder layer.

金属ハロゲン化物の加熱温度は上記のようにそ
れが粉末状態を維持する必要があるから金属ハロ
ゲン化物の融点以下である。その下限は反応速度
を実用可能にする必要上金属ハロゲン化物の融点
マイナス400℃が適当である。そして好ましくは
400〜600℃の範囲である。
The heating temperature of the metal halide is below the melting point of the metal halide because it is necessary to maintain the powder state as described above. The lower limit is suitably 400°C minus the melting point of the metal halide in order to make the reaction rate practical. and preferably
It is in the range of 400-600℃.

金属ハロゲン化物はたとえばFeCl3は沸点317
℃であり、この程度の温度では水素ガスと混合し
ても反応しないので、適当な融点を持つものがよ
く二塩化物であるFeCl2,CoCl2,NiCl2が適す
る。これらの粒度は還元された金属の凝集を防ぐ
ため10μm以下が好ましい。上記の原料中に同金
属酸化物を少量混合しておくことが望ましい。そ
れは金属酸化物はハロゲン化物より還元され易
い、それを適当に分散させておくことにより還元
された金属が核となり、単結晶の粒径を制御する
ことができる。もつとも通常はFeCl2等には少量
Fe2O3等が混入しているので、この場合は特に添
加しなくてもよい。
Metal halides, for example FeCl 3 , have a boiling point of 317
℃, and it does not react even when mixed with hydrogen gas at this temperature, so dichlorides such as FeCl 2 , CoCl 2 , and NiCl 2 are suitable if they have an appropriate melting point. The particle size of these particles is preferably 10 μm or less to prevent agglomeration of the reduced metal. It is desirable to mix a small amount of the same metal oxide into the above raw materials. Metal oxides are more easily reduced than halides, and by appropriately dispersing them, the reduced metals become nuclei, and the grain size of the single crystal can be controlled. However, it is usually a small amount for FeCl 2 etc.
Since Fe 2 O 3 etc. are mixed in, there is no need to add them in this case.

水素ガスの流量は多過ぎると単結晶の成長を妨
げる。流量は還元方法によつて適正な値が異なる
が、例えば皿形のような容器に金属ハロゲン化物
を入れ、その上を一方から他方に水素ガスを流す
ような方法、あるいはロータリーキルン方式で原
料を回転させ、キルンの一端から水素ガスを流す
ような方法では水素ガスの流速は5〜100cm/分
が適する。そして好ましくは30〜80cm/分であ
る。また筒体に原料粉末を充填し、筒底から水素
ガスを流して原料層内を通す方式では水素ガスの
流速は5〜100cm/分が適する。
If the flow rate of hydrogen gas is too large, growth of the single crystal will be hindered. The appropriate flow rate differs depending on the reduction method, but for example, metal halide is placed in a dish-shaped container and hydrogen gas is passed over it from one side to the other, or the raw material is rotated using a rotary kiln method. In a method in which hydrogen gas is flowed from one end of the kiln, a flow rate of 5 to 100 cm/min is suitable for the hydrogen gas flow rate. And preferably 30 to 80 cm/min. Further, in a method in which a cylinder is filled with raw material powder and hydrogen gas is flowed from the bottom of the cylinder to pass through the raw material layer, a flow rate of hydrogen gas of 5 to 100 cm/min is suitable.

これらの流速は常温における送入量(cm3/分)
を反応帯の断面積(cm2)で除した値である。
These flow rates are the feed rate (cm 3 /min) at room temperature.
is divided by the cross-sectional area of the reaction zone (cm 2 ).

水素ガスには不活性ガス、CO、H2Oガス等を
含んでいてもよい。
The hydrogen gas may contain an inert gas, CO, H 2 O gas, etc.

本発明の方法によつて得られた金属粉末は実質
的に単結晶である。実質的にとは粒子は結晶粒界
がなく転位密度も非常に低いことを意味する。
The metal powder obtained by the method of the invention is substantially single crystal. Substantially means that the grains have no grain boundaries and a very low dislocation density.

粒子を単結晶とすることにより、磁気特性、例
えばヒステリシス曲線を残留磁気の少ない曲線と
することができる。
By forming the particles into single crystals, the magnetic properties, for example, the hysteresis curve, can be made into a curve with little residual magnetism.

次にその粒子は多面体形状をなしている。その
形は多くは正六面体以上の多面体で、偏平や針状
でない粒状をなしており、アスペクト比で表わせ
ば大部分1〜3の範囲に入る。このような粒状で
あるため、本発明による粒子は、粉末治金用やフ
イラー用として使用すれば充填性が極めてよい。
粒子の大きさは殆んどが0.1〜100μmの範囲であ
る。
The particles then have a polyhedral shape. Most of them have a polyhedral shape of a regular hexahedron or more, and are not flat or acicular, and most of them have an aspect ratio in the range of 1 to 3. Because of this granular shape, the particles according to the present invention have extremely good filling properties when used for powder metallurgy or fillers.
Most particle sizes range from 0.1 to 100 μm.

また本発明による金属粉末は高純度であること
も特徴の一つである。即ち、好ましくは不純物は
0.5重量%以下である。このように不純物が少な
いのは粉末粒子が殆んど結晶欠陥がないので、欠
陥にトラツプされる不純物か少ないからである。
Another feature of the metal powder according to the present invention is that it has high purity. That is, preferably the impurities are
It is 0.5% by weight or less. The reason why there are so few impurities is that the powder particles have almost no crystal defects, so there are few impurities trapped in defects.

実施例 1 市販の試験特級の塩化第1鉄(FeCl2・nH2O)
をナイロン製のボールで1時間粉砕し、その粒度
を50μm以下とした。その3gを軟鋼製のボートに
載せ、内径50mmの石英管を炉芯管とした横型電気
炉にて、流量1/分(これは常温での値で、こ
れを電気炉の断面積で割ると流速50cm/分とな
る。)の水素中、450℃で還元した。還元中、反応
ガス(HClを含む)を水に吸収させ、水溶液の電
導度を測定することによつて反応の終点を捕え
た。その結果約5時間を要した。
Example 1 Commercially available test grade ferrous chloride (FeCl 2 .nH 2 O)
was ground with a nylon ball for 1 hour to reduce the particle size to 50 μm or less. 3g of that was placed on a mild steel boat and placed in a horizontal electric furnace using a quartz tube with an inner diameter of 50mm as the furnace core tube. Reduction was carried out at 450°C in hydrogen at a flow rate of 50 cm/min. During the reduction, the reaction gas (including HCl) was absorbed into water and the end point of the reaction was captured by measuring the conductivity of the aqueous solution. As a result, it took about 5 hours.

生成したボート上の鉄粉は第1図に走査型電子
顕微鏡写真(倍率1000倍)で示すように多面体形
状で結晶欠陥は殆んど見られない。その大きさは
殆んどが6〜8μm、アスペクト比は平均約1であ
る。この粒子の化学的分析の結果不純物は以下の
通り(数字はppm)。
The produced iron powder on the boat has a polyhedral shape with almost no crystal defects, as shown in the scanning electron micrograph (1000x magnification) in Figure 1. Most of them have a size of 6 to 8 μm, and an average aspect ratio of about 1. As a result of chemical analysis of this particle, the impurities are as follows (numbers are in ppm).

Al、 Si、 P、 Ca、 Ti、 5以下 5以下 20以下 3 1 V、 Cr Mn、 Co、 Ni、 2以下 2 1 35 5 Cu、 Zn、 Mo、 W、 Na 1 1以下 4 20以下 − なお、NiCl2,CoCl2からも全く同様に単結晶、
多面体形状の粒子が得られる。
Al, Si, P, Ca, Ti, 5 or less 5 or less 20 or less 3 1 V, Cr Mn, Co, Ni, 2 or less 2 1 35 5 Cu, Zn, Mo, W, Na 1 1 or less 4 20 or less - , NiCl 2 and CoCl 2 also produce single crystals in exactly the same way,
Polyhedral shaped particles are obtained.

発明の効果 本発明の方法によれば従来のような数珠状に連
なり、かつその個々の粒子が多結晶であつたり、
また偏平な形状であつたりする粒子が得られるの
と異なり、単結晶かつ多面体形状であつて高純度
の粒子となるため、多くの用途に優れた性能を発
揮する。
Effects of the Invention According to the method of the present invention, the particles are arranged in a bead shape as in the conventional method, and the individual particles are polycrystalline.
In addition, unlike particles that are flat and uneven, they are single crystal, polyhedral, and highly pure particles, so they exhibit excellent performance in many applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法によつて得られた鉄粉の
走査型電子顕微鏡写真である(倍率1000倍)。
FIG. 1 is a scanning electron micrograph of iron powder obtained by the method of the present invention (1000x magnification).

Claims (1)

【特許請求の範囲】 1 金属ハロゲン化物を水素ガスで還元して金属
粉末を得る方法において、金属ハロゲン化物の温
度をその融点マイナス400℃〜融点、水素ガスの
流速を5〜100cm/分にして、金属をその金属ハ
ロゲン化物と同一帯域で実質的に単結晶として析
出させることを特徴とする金属微粉の製造法。 2 金属がFe,Ni,Coの一種もしくはこれらの
合金である特許請求の範囲第1項記載の金属微粉
の製造法。
[Claims] 1. A method for obtaining metal powder by reducing a metal halide with hydrogen gas, in which the temperature of the metal halide is set to 400°C below its melting point to its melting point, and the flow rate of hydrogen gas is set to 5 to 100 cm/min. A method for producing fine metal powder, characterized in that the metal is precipitated as a substantially single crystal in the same zone as the metal halide. 2. The method for producing metal fine powder according to claim 1, wherein the metal is one of Fe, Ni, and Co or an alloy thereof.
JP16115285A 1985-07-23 1985-07-23 Production of fine metallic powder Granted JPS6223912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16115285A JPS6223912A (en) 1985-07-23 1985-07-23 Production of fine metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16115285A JPS6223912A (en) 1985-07-23 1985-07-23 Production of fine metallic powder

Publications (2)

Publication Number Publication Date
JPS6223912A JPS6223912A (en) 1987-01-31
JPH0478683B2 true JPH0478683B2 (en) 1992-12-11

Family

ID=15729580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16115285A Granted JPS6223912A (en) 1985-07-23 1985-07-23 Production of fine metallic powder

Country Status (1)

Country Link
JP (1) JPS6223912A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473009A (en) * 1987-09-11 1989-03-17 Showa Denko Kk Production of high purity tantalum or niobium powder
JP2702954B2 (en) * 1988-02-29 1998-01-26 昭和電工株式会社 Method for producing high-purity tantalum or high-purity niobium fine particles
JPH02259003A (en) * 1989-03-31 1990-10-19 Tanaka Kikinzoku Kogyo Kk Manufacture of copper fine particles
AU2005306521A1 (en) * 2004-11-19 2006-05-26 Falconbridge Limited Method for producing fine, low bulk density, metallic nickel powder
JP5283165B2 (en) * 2008-08-26 2013-09-04 Necトーキン株式会社 Manufacturing method of iron-nickel alloy powder, and manufacturing method of dust core for inductor using the alloy powder
CN101856725B (en) * 2010-06-22 2013-03-06 荆门市格林美新材料有限公司 Method for preparing superfine nickel powder by direct reduction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127896A (en) * 1974-03-18 1975-10-08
JPS597765A (en) * 1982-07-05 1984-01-14 Nissan Motor Co Ltd Fuel injection-type internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127896A (en) * 1974-03-18 1975-10-08
JPS597765A (en) * 1982-07-05 1984-01-14 Nissan Motor Co Ltd Fuel injection-type internal-combustion engine

Also Published As

Publication number Publication date
JPS6223912A (en) 1987-01-31

Similar Documents

Publication Publication Date Title
ES2208465T3 (en) PROCEDURE FOR THE PRODUCTION OF DUST MIXTURES OR COMPOSITE DUST.
CN112207285B (en) Preparation method and application of powder material
JP7365735B2 (en) Method for producing aluminum-containing alloy powder and its use, and alloy ribbon
US3994716A (en) Process for the production of finely divided cobalt powders
US4216009A (en) Method of making alloy and carbide powders of molybdenum and tungsten
US20230364677A1 (en) Alloy powder, preparation method therefor, and use therefor
US5853451A (en) Ultrafine spherical nickel powder for use as an electrode of laminated ceramic capacitors
CN116056818A (en) Preparation method and application of high-purity powder material and alloy strip
US20080187455A1 (en) Titanium and titanium alloys
WO1999064191A1 (en) Method for producing metal powder
US4810285A (en) Process for preparing spherical copper fine powder
JPH0478683B2 (en)
JP3482420B2 (en) Graphite-coated metal particles and method for producing the same
EP1579936A1 (en) Method and apparatus for producing metal powder
WO2006090151A1 (en) Process of forming a nanocrystalline metal alloy
Stappert et al. Multiply twinned structures in gas-phase sintered stoichiometric FePt nanoparticles
Liu et al. Oxidation behaviour of Fe3Al nanoparticles prepared by hydrogen plasma–metal reaction
Jinshan et al. Synthesis and thermal properties of ultrafine powders of iron group metals
US7435282B2 (en) Elemental material and alloy
Basu et al. Characterization of various commercial forms of ammonium paratungstate powder
US4254093A (en) Solar energy grade cadmium sulfide
US7445658B2 (en) Titanium and titanium alloys
US3975217A (en) Finely divided magnetic cobalt powder
JPS6223901A (en) High-purity metal powder
US5338333A (en) Production of powdery intermetallic compound having very fine particle size