JPS61158828A - Production of iron oxide fine powder - Google Patents
Production of iron oxide fine powderInfo
- Publication number
- JPS61158828A JPS61158828A JP27880784A JP27880784A JPS61158828A JP S61158828 A JPS61158828 A JP S61158828A JP 27880784 A JP27880784 A JP 27880784A JP 27880784 A JP27880784 A JP 27880784A JP S61158828 A JPS61158828 A JP S61158828A
- Authority
- JP
- Japan
- Prior art keywords
- iron oxide
- alkali
- fine powder
- ferrous
- sodium silicate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compounds Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上に利用分野〉
本発明は、第1鉄塩水溶液をアルカリで中和し、空気等
の酸化性ガスにより酸化させて、111粒子酸化鉄を製
造する方法に関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing 111-particle iron oxide by neutralizing a ferrous salt aqueous solution with an alkali and oxidizing it with an oxidizing gas such as air. It is something.
〈従来技術とその問題点〉
酸化鉄は、工業的には、鉄鋼業の鋼板酸洗廃液、チタン
業界から得られる硫酸鉄の焙焼により製造されている。<Prior art and its problems> Iron oxide is industrially produced by roasting iron sulfate obtained from steel plate pickling waste liquid from the steel industry and from the titanium industry.
工業的に得られる酸化鉄は、焙焼法等により熱処理を受
けているため、1次粒子に分散しているのではなく、2
次粒子となり、凝集状態で存在している。また、11次
粒子の大きさも数体と大きく、最近言われている超微粒
子といわれる範躊の粒子径とは異なる大きさで、超微粒
子で利用されるような特性1例えば低融点化などを有し
ていない粒子である。Industrially obtained iron oxide is heat-treated by roasting, etc., so it is not dispersed in primary particles but in secondary particles.
They become secondary particles and exist in an aggregated state. In addition, the size of the 11th-order particles is several orders of magnitude larger, which is different from the particle diameter of the category of ultrafine particles that has recently been called ultrafine particles. It is a particle that does not have.
〈発明の目的〉
本発明者等は、電子材料用原料酸化鉄や、粉末冶金用の
焼結助剤として省エネルギーの観点から、より低い温度
で反応を完了し、あるいは低融点で焼結助剤となリラる
酸化鉄を得る目的で、鋭意研究した結果、本発明に至っ
たのである。<Purpose of the Invention> The present inventors have developed iron oxide as a raw material for electronic materials and a sintering aid for powder metallurgy that can complete the reaction at a lower temperature or as a sintering aid with a low melting point from the viewpoint of energy saving. The present invention was achieved as a result of intensive research aimed at obtaining iron oxide that is suitable for use in iron oxides.
〈発明の構成〉
すなわち、本発明は、第1鉄塩をアルカリで中和し水酸
化鉄とした後、酸化性ガスを導入し、酸化鉄を製造する
に際し、予めケイ酸ナトリウムを生成する酸化鉄に対し
SiO2として3〜20重量%添加することを特徴とす
る微粒子酸化鉄の製造方法を提供するものである。<Structure of the Invention> That is, the present invention involves neutralizing a ferrous salt with an alkali to form iron hydroxide, and then introducing an oxidizing gas to produce iron oxide. The present invention provides a method for producing particulate iron oxide, characterized in that 3 to 20% by weight of SiO2 is added to iron.
以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.
近年、粉体の微粒子化傾向が一段と強まり、各種粉体に
ついて研究されている。微粒子化することによるメリフ
トは、融点が降下すること、触媒効果が現われること、
軽焼結体が得られることなど、種々な効果が期待される
。また、酸化鉄は、ハードフェライトおよびソフトフェ
ライトなど電子材料の素原料としても利用されており、
微粒子化することによる効果は著しいものと考えられる
。In recent years, the trend toward finer particles of powders has become even stronger, and various types of powders are being studied. Melift is made into fine particles, which causes the melting point to drop and the catalytic effect to appear.
Various effects are expected, including the ability to obtain light sintered bodies. Iron oxide is also used as a raw material for electronic materials such as hard ferrite and soft ferrite.
It is thought that the effect of micronization is significant.
酸化鉄の製法は、(1)鉄塩の焙焼、(2)水溶液中で
の湿式合成、(3)水熱合成等、種々の方法がある。各
々の方法の特徴を述べると、 (1)は工業的に利用さ
れている製法であるが、凝集粒子となり易く、粒子形状
の制御が非常に困難である。また、 (3)は高温、高
圧での合成反応であり、安全上問題があり、また粒子形
状制御という面からすると、生成条件によっては六角板
状のMrOが生成するなど、粒成長をコントロールし、
微粒子化することは非常に難しい。There are various methods for producing iron oxide, such as (1) roasting of iron salts, (2) wet synthesis in an aqueous solution, and (3) hydrothermal synthesis. Describing the characteristics of each method, (1) is a manufacturing method that is used industrially, but particles tend to aggregate, and it is very difficult to control the particle shape. In addition, (3) is a synthesis reaction at high temperature and high pressure, which poses safety issues, and from the perspective of particle shape control, depending on the generation conditions, hexagonal plate-shaped MrO may be produced, making it difficult to control grain growth. ,
It is very difficult to make it into fine particles.
本発明による方法は、(2)の湿式合成を応用したもの
であり、本発明者等は、以前から、本方法により磁気記
録媒体であるメタル磁性粉の原料ゲータイトを製造して
きた。その際、金属イオン不純物がゲータイトの針状性
に大きく影響し、結晶成長を抑制する効果のあることを
見出した。The method according to the present invention is an application of the wet synthesis described in (2), and the present inventors have previously produced goethite, a raw material for metal magnetic powder, which is a magnetic recording medium, by this method. At that time, they discovered that metal ion impurities greatly affect the acicularity of goethite and have the effect of suppressing crystal growth.
その中で、ケイ酸塩化合物を不純物として添加すると、
著しく粒子形状が小さくなること、さらには、添加量を
ある量以上加えると非常に微細な粒子となることがわか
り、しかも、それらの粒子は非晶質であることもX線回
折の結果明らかとなった。Among them, when silicate compounds are added as impurities,
X-ray diffraction results showed that the particle shape became significantly smaller, and that when a certain amount or more was added, the particles became extremely fine. Moreover, the X-ray diffraction results revealed that these particles were amorphous. became.
第1鉄塩としては、塩化第一鉄、硫酸第一鉄および硝酸
第一鉄などの水可溶性第1鉄塩が良い。As the ferrous salt, water-soluble ferrous salts such as ferrous chloride, ferrous sulfate and ferrous nitrate are preferred.
また、アルカリとしては、アンモニア水、水酸化ナトリ
ウムに代表されるアルカリ金属あるいはアルカリ土類金
属の水酸化物が良い。Further, as the alkali, hydroxides of alkali metals or alkaline earth metals such as aqueous ammonia and sodium hydroxide are preferable.
酸化性のガスとしては空気などを用いるのがよい。Air or the like is preferably used as the oxidizing gas.
次に、添加物として用いるケイ酸塩は、ケイ酸ナトリウ
ム等の水可溶性ケイ酸塩が好ましい、そして、ケイ酸塩
の添加量は、SiO2として生成される酸化鉄に対し3
〜20重量%の範囲で微粒子化の効果が顕著である。ケ
イ酸塩の添加量が3重量%未満では一部針状のゲータイ
トが生成するため、微粒子酸化鉄を生成するための添加
量としては不十分である。また、20重量%をこえる添
加では系の粘度等水溶液の状態が変化し、完全な酸化が
不可能となり、微粒子の生成に悪影響を及ぼす、従って
、好適な添加量としては、生成される酸化鉄に対しSi
O2として3〜20重量%である。Next, the silicate to be used as an additive is preferably a water-soluble silicate such as sodium silicate, and the amount of the silicate added is 3% to the iron oxide produced as SiO2.
The effect of micronization is significant in the range of 20% by weight. If the amount of silicate added is less than 3% by weight, some acicular goethite will be produced, which is insufficient as the amount to be added to produce particulate iron oxide. In addition, if the addition exceeds 20% by weight, the state of the aqueous solution such as the viscosity of the system changes, making complete oxidation impossible and having a negative effect on the generation of fine particles. For Si
It is 3 to 20% by weight as O2.
水酸化第1鉄中に存在するケイ酸塩は、微粒子酸化鉄生
成の核となり、結晶成長を抑制するため微粒子となるも
のと思われる。3重量%未満では、ケイ酸塩は微粒子生
成の核とはなるが、抑制効果が不十分で針状結晶となる
ものと考えられる。It is thought that the silicate present in ferrous hydroxide becomes a nucleus for the production of fine iron oxide particles and becomes fine particles to suppress crystal growth. If the amount is less than 3% by weight, the silicate acts as a nucleus for the formation of fine particles, but the suppressing effect is insufficient and the formation of needle-like crystals is considered.
また1本発明で得られる微粒子酸化鉄は、ケイ酸塩の添
加量を増加するにつれ、第1図に示すように比表面積も
大きくなることも明らかとなった。It has also been found that the specific surface area of the fine particles of iron oxide obtained by the present invention increases as the amount of silicate added increases, as shown in FIG.
く実 施 例〉 以下、本発明を実施例にもとづいて説明する。Practical example The present invention will be explained below based on examples.
(実施例1)
容量59.のガラス製フラスコに5moi/4の水酸化
ナトリウム2ILをN2ガス雰囲気下で加え1次に水可
溶性ケイ酸ナトリウムを、SiO2換算で生成する酸化
鉄に対し3wt%、約4.88g加え、十分撹拌を行な
った。さらに0.4 mail / lの濃度の塩化第
1鉄水溶液を2.51加え、N2ガスにて数時間攪拌し
た。その後40°Cに昇温し、空気を55L/sinの
流量で流入し、空気酸化により微粒子酸化鉄を得た。生
成した酸化鉄は、N2ガス吸着法による比表面積測定を
行った結果、207m″/gであった。(Example 1) Capacity: 59. Add 2IL of 5moi/4 sodium hydroxide to a glass flask under N2 gas atmosphere.Firstly, add about 4.88g of water-soluble sodium silicate (3wt% based on the iron oxide produced in terms of SiO2) and stir thoroughly. I did this. Furthermore, 2.5 l of ferrous chloride aqueous solution having a concentration of 0.4 mail/l was added, and the mixture was stirred for several hours with N2 gas. Thereafter, the temperature was raised to 40°C, air was introduced at a flow rate of 55 L/sin, and fine particles of iron oxide were obtained by air oxidation. The specific surface area of the produced iron oxide was measured by N2 gas adsorption method, and the result was 207 m''/g.
(実施例2〜6)
実施例1で水可溶性ケイ酸ナトリウムの添加量を5.1
0,15.17,20wt%とした以外は、同一条件で
酸化鉄を得た。比表面積は第1図に示す如くであった。(Examples 2 to 6) In Example 1, the amount of water-soluble sodium silicate added was 5.1
Iron oxide was obtained under the same conditions except that the concentrations were 0, 15.17, and 20 wt%. The specific surface area was as shown in FIG.
(実施例7〜12)
実施例1〜6の微粒子酸化鉄を原料とし、酸化鉄50g
に対し炭酸バリウム11.4gを混合し、1250℃で
120分焼成処理後、粉砕し、フェライト仮焼粉を得た
0次いで、成形圧力2 T/cm2で20Φの成形体を
作成し1150℃、2時間なる製造条件でバリウムフェ
ライト焼結体を作成し、焼結密度を測定した。それらの
結果は表1に示した。(Examples 7 to 12) Using the fine particle iron oxide of Examples 1 to 6 as a raw material, 50 g of iron oxide
11.4 g of barium carbonate was mixed with the mixture, and after firing at 1250°C for 120 minutes, it was crushed to obtain calcined ferrite powder.Next, a molded body of 20Φ was prepared at a molding pressure of 2 T/cm2, and heated at 1150°C. A barium ferrite sintered body was produced under manufacturing conditions of 2 hours, and the sintered density was measured. The results are shown in Table 1.
(比較例1)
鉄綱耐洗廃液より得られた酸化鉄(通常ルスナー法によ
り得られた酸化鉄)を原料として用い、焼結体生成温度
を1270℃とした以外は実施例7〜12と同一条件で
バリウムフェライト焼結体を作成した。(Comparative Example 1) Same as Examples 7 to 12, except that iron oxide obtained from iron steel washing resistant waste liquid (usually iron oxide obtained by the Ruessner method) was used as the raw material, and the sintered body formation temperature was 1270 ° C. A barium ferrite sintered body was created under the same conditions.
(比較例2)
実施例1で水可溶性ケイ酸ナトリウムを0wt%とした
以外は同一条件で酸化鉄を得た0次いで比較例1と同一
条件でバリウムフェライト焼結体を作成した。(Comparative Example 2) Iron oxide was obtained under the same conditions as in Example 1 except that the water-soluble sodium silicate was 0 wt %. Then, a barium ferrite sintered body was produced under the same conditions as in Comparative Example 1.
以上の例から、本発明の実施例で得られるものは、比表
面積が大きくすなわち微粒子化されていることがわかる
。From the above examples, it can be seen that the products obtained in the examples of the present invention have a large specific surface area, that is, they are made into fine particles.
また、焼結時には微粒子化されているために反応温度が
低くてすむこともわかる。そして、得られる焼結体の密
度は高いことも確認された。It can also be seen that the reaction temperature can be low because the particles are finely divided during sintering. It was also confirmed that the obtained sintered body had a high density.
また、第2図には実施例2で得られた酸化鉄の電子顕微
鏡写真を示すが、微粒子酸化鉄かえられていることがわ
かる。Further, FIG. 2 shows an electron micrograph of the iron oxide obtained in Example 2, and it can be seen that fine particles of iron oxide have been changed.
表−1試作フェライト焼結体の密度
〈発明の効果〉
本発明においは、第1鉄塩に予めケイ酸ナトリウムを加
えて酸化鉄を製造することにより、得られる酸化鉄が微
粒子化され、このため、焼結時により低い温度で反応を
完了し、あるいは低融点で焼結助剤となりうる。また、
密度の高い焼結体を得ることができる。Table 1 Density of prototype ferrite sintered body <Effects of the invention> In the present invention, by adding sodium silicate to ferrous salt in advance to produce iron oxide, the iron oxide obtained is made into fine particles. Therefore, the reaction can be completed at a lower temperature during sintering, or it can serve as a sintering aid due to its low melting point. Also,
A sintered body with high density can be obtained.
第1図は、添加したケイ酸ナトリウムの量に対する生成
酸化鉄の比表面積変化を示すグラフである。
第2図は粒子の構造を示す図面代用写真であり、ケイ酸
ナトリウム5wt%添加の場合(実施例2)の透過形電
子顕微鏡写真である。
FIG、l
SiO2,’呑湘量(wt%/ Fe2O3)F I
G、 2
prFIG. 1 is a graph showing changes in the specific surface area of produced iron oxide with respect to the amount of added sodium silicate. FIG. 2 is a photograph substituted for a drawing showing the structure of particles, and is a transmission electron micrograph in the case of adding 5 wt % of sodium silicate (Example 2). FIG, l SiO2, 'Drinking amount (wt%/Fe2O3) F I
G, 2 pr
Claims (1)
酸化性ガスを導入し、酸化鉄を製造するに際し、予めケ
イ酸ナトリウムを生成する酸化鉄に対しSiO_2とし
て3〜20重量%添加することを特徴とする微粒子酸化
鉄の製造方法。(1) After neutralizing the ferrous salt with an alkali to form iron hydroxide,
A method for producing particulate iron oxide, which comprises introducing an oxidizing gas and adding 3 to 20% by weight of SiO_2 to the iron oxide that produces sodium silicate in advance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27880784A JPS61158828A (en) | 1984-12-29 | 1984-12-29 | Production of iron oxide fine powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27880784A JPS61158828A (en) | 1984-12-29 | 1984-12-29 | Production of iron oxide fine powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61158828A true JPS61158828A (en) | 1986-07-18 |
Family
ID=17602440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27880784A Pending JPS61158828A (en) | 1984-12-29 | 1984-12-29 | Production of iron oxide fine powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61158828A (en) |
-
1984
- 1984-12-29 JP JP27880784A patent/JPS61158828A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0056257B1 (en) | Method for production of metal magnetic particles | |
JPS60137002A (en) | Manufacture of tabular ba ferrite fine particle powder for magnetic recording | |
JPH09183620A (en) | Bismuth oxycarbonate powder and its production | |
JPS62275027A (en) | Production of ferromagnetic fine powder for magnetic recording | |
JPS61158828A (en) | Production of iron oxide fine powder | |
JPH01305826A (en) | Production of laminar barium ferrite fine powder | |
JP3884860B2 (en) | Method for producing magnetic powder | |
JPH02175806A (en) | Manufacture of metal magnetic powder for magnetic recorder | |
JPS6060930A (en) | Manufacture of spherical ferrite powder | |
JPH0688794B2 (en) | Method for producing ferromagnetic fine powder for magnetic recording | |
JP2004083350A (en) | Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder | |
JPS62207720A (en) | Preparation of barium ferrite powder | |
JPH0324412B2 (en) | ||
JPH0152443B2 (en) | ||
JPH10251714A (en) | Production of silver powder for powder metallurgy | |
JP2669010B2 (en) | Desiliconization method in metal salt solution | |
JPS6090828A (en) | Manufacture of needlelike spinel ferrite powder | |
JPS58213804A (en) | Production of fine particle of ferromagnetic metal | |
JPS6354763B2 (en) | ||
JP3598120B2 (en) | Manufacturing method of metal magnetic powder | |
JPH0343324B2 (en) | ||
JPH02180718A (en) | Production of fusiform magnetic iron oxide particulate powder | |
JPH0152442B2 (en) | ||
JPH0553843B2 (en) | ||
JPS61159502A (en) | Production of magnetic metallic powder |